帳號:guest(3.128.204.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李宗柏
作者(英文):Zong-Bo Lee
論文名稱:以低壓化學氣相沉積法合成硫化鎵薄膜及其結構分析
論文名稱(英文):LPCVD synthesis and structure analyze of gallium sulfide thin film
指導教授:陳怡嘉
指導教授(英文):Yi-Jia Chen
口試委員:傅彥培
楊天賜
陳怡嘉
口試委員(英文):Yen-Pei Fu
Tien-Syh Yang
Yi-Jia Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:611022112
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:70
關鍵詞:低壓化學氣相沉積法三硫化二鎵硫化鎵
關鍵詞(英文):LPCVDgallium(Ⅲ) sulfidegallium(Ⅱ) sulfide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
我們以低壓化學氣相沉積法合成硫化鎵薄膜。藉由 XRD 我們可以得知上游薄膜主要成分為α相與α’相的Ga2S3且含有少量平躺於基板與朝特定方向傾斜於基板的 GaS。透過改變載流氣體與 EDS 得知薄膜下游為 GaS。改變鎵蒸氣比的實驗知道就算提高鎵的分壓比仍然沒辦法使他更傾向長出 GaS,反而要在鎵的分壓低的下游才長得出來。XPS讓我們更確定薄膜上游為Ga2S3,下游為 GaS。且薄膜是先在基板上長出 GaS,成長到一定厚度後底部會開始變為Ga2S3。由量測薄膜厚度的實驗我們可以推算出薄膜下游成長 GaS 時鎵的分壓。
We synthesize gallium sulfide thin films by low pressure chemical vapor deposition. XRD analysis revealed that the predominant phases on the film surface were the α-phase and α'-phase of Ga2S3, with a small amount of GaS present. EDS analysis revealed that the downstream region of the film consisted of GaS. Moreover, it was observed that even increasing the concentration of Ga vapor did not promote the preferential growth of GaS. Instead, GaS was found to grow in the downstream region with lower gallium vapor concentration. XPS confirmed that the upstream region of the film was composed of Ga2S3, while the downstream region consisted of GaS. Additionally, our findings indicated that the growth of the film initially started with the formation of GaS on the substrate, and as it reached a certain thickness, it gradually transformed into Ga2S3 at the bottom. From experimental measurements of film thickness, we were able to infer the gallium partial pressure during the growth of GaS in the downstream region.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XV
第一章.緒論 1
1.1. 前言 1
1.2. 研究動機 2
第二章.文獻回顧 3
2.1. GaS 基本性質與發展 3
2.2. GaS 的製程方法 5
2.3. Ga2S3的基本性質 6
2.4. Ga2S3的發展與應用 8
第三章.實驗方法 9
3.1. 實驗流程 9
3.2. 實驗步驟與參數 10
3.3. 分析方法 13
3.3.1. X 光繞射儀(XRD) 14
3.3.2. 場發射型掃描式電子顯微鏡(FE-SEM) 16
3.3.3. 能量色散光譜儀(EDS) 17
3.3.4. X 射線光電子能譜儀(XPS) 18
3.3.5. 紫外光-可見光分光光譜儀(UV-Vis) 19
3.3.6. 三維表面輪廓儀 20
第四章.結果與討論 21
4.1. 試片外觀 21
4.2. XRD-θ/2θ 法分析 24
4.2.1. 使用 θ/2θ 量測試片之 XRD 光譜 24
4.3. XRD 極圖掃描 34
4.4. FE-SEM 影像與 EDS 數據分析 36
4.4.1. 參數一的試片 36
4.4.2. 參數二的試片 39
4.4.3. 參數三的試片 43
4.4.4. 參數四的試片 46
4.5. XPS分析 49
4.6. 漫反射光譜 56
4.7. 三維輪廓儀數據 58
4.8. 薄膜成長機制 62
第五章.結論 65
References 67
1. Ahmed, S., et al., Two-Dimensional Gallium Sulfide as a Novel Saturable Absorber for Broadband Ultrafast Photonics Applications.ACS Appl Mater Interfaces, 2021. 13(51): p. 61518-61527.
2. Bai, Y., K. Deng, and E. Kan, Band gap engineering and visible light response for GaS monolayer by isovalent anion-cation codoping.
Materials Chemistry and Physics, 2017. 198: p. 275-282.
3. Gang, R., et al., Fabrication of MoS(2) QDs/ZnO nanosheet 0D/2D heterojunction photocatalysts for organic dyes and gaseous heavy metal removal. J Colloid Interface Sci, 2020. 579: p. 853-861.
4. Harvey, A., et al., Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chemistry of Materials, 2015. 27(9): p. 3483-3493.
5. Hu, P., et al., Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett, 2013. 13(4): p. 1649-54.
6. Hu, L. and D. Wei, Janus Group-III Chalcogenide Monolayers and Derivative Type-II Heterojunctions as Water-Splitting Photocatalysts with Strong Visible-Light Absorbance. The Journal of Physical Chemistry C, 2018. 122(49): p. 27795-27802.
7. Jastrzebski, C., et al., Raman scattering studies on very thin layers of gallium sulfide (GaS) as a function of sample thickness and temperature. J Phys Condens Matter, 2019. 31(7): p. 075303.
8. Li, Y., et al., Photocatalyst design based on two-dimensional materials. Materials Today Chemistry, 2019. 11: p. 197-216.
9. Lu, Y., et al., Controlling Defects in Continuous 2D GaS Films for High-Performance Wavelength-Tunable UV-Discriminating Photodetectors. Adv Mater, 2020. 32(7): p. e1906958.
10. Rosman, N.N., et al., Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. International Journal of Hydrogen Energy, 2018. 43(41): p. 68 18925-18945.
11. Son, S., et al., Understanding the relative efficacies and versatile roles of 2D conductive nanosheets in hybrid-type photocatalyst. Applied Catalysis B: Environmental, 2019. 257.
12. Wang, X., et al., Chemical Vapor Deposition Growth of TwoDimensional Monolayer Gallium Sulfide Crystals Using Hydrogen Reduction of Ga(2)S(3). ACS Omega, 2018. 3(7): p. 7897-7903.
13. Zappia, M.I., et al., Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors. J Phys Chem C Nanomater Interfaces, 2021. 125(22): p. 11857-11866.
14. Zheng, Y., et al., Large‐Size Ultrathin α‐Ga2S3Nanosheets toward High‐Performance Photodetection. Advanced Functional Materials, 2020. 31(6).
15. Tsai, M.-L., et al., Monolayer MoS2 heterojunction solar cells. ACS nano, 2014. 8(8): p. 8317-8322.
16. Hussain, T., et al., Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure. ACS Sens, 2018. 3(4): p. 867-874.
17. Zappia, M.I., et al., Solution‐Processed GaSe Nanoflake‐Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical‐Type Photodetectors. Advanced Functional Materials, 2020. 30(10).
18. Wang, T., et al., First-principles study of monolayer SnS2(1−x)Se2x alloys as anode materials for lithium ion batteries. Applied Surface Science, 2018. 457: p. 256-263.
19. Huang, A., W. Shi, and Z. Wang, Optical Properties and Photocatalytic Applications of Two-Dimensional Janus Group-III Monochalcogenides. The Journal of Physical Chemistry C, 2019. 123(18): p. 11388-11396.
20. Ho, C. and S. Lin, Optical properties of the interband transitions of layered gallium sulfide. Journal of applied physics, 2006. 100(8): p. 083508.
21. Jastrzebski, C., et al., Synthesis and structural characterization of microcrystalline Ga2S3 layers on a GaP semiconductor substrate.
Materials Science in Semiconductor Processing, 2019. 94: p. 80-85.
22. Lin, C., et al., Evidence of network demixing in GeS2–Ga2S3 69
chalcogenide glasses: A phase transformation study. Journal of Solid State Chemistry, 2011. 184(3): p. 584-588.
23. Haizheng, T., et al., Raman scattering studies of the GeS2–Ga2S3 CsCl glassy system. Solid State Communications, 2005. 133(5): p. 327 332.
24. Yamashita, M., Formation and ionic conductivity of Li2S–GeS2– Ga2S3 glasses and thin films. Solid State Ionics, 2003. 158(1-2): p. 151-156.
25. Zhang, M.-J., et al., Two phases of Ga2S3: promising infrared secondorder nonlinear optical materials with very high laser induced damage thresholds. Journal of Materials Chemistry C, 2013. 1(31).
26. Liu, H.F., et al., Synthesis and phase evolutions in layered structure of Ga2S3 semiconductor thin films on epiready GaAs (111) substrates. ACS Appl Mater Interfaces, 2014. 6(5): p. 3501-7.
27. Gutierrez, Y., et al., Exploring the Thickness-Dependence of the Properties of Layered Gallium Sulfide. Front Chem, 2021. 9: p. 781467.
28. Mishra, P., et al., Enhancement of hydrogen storage capacity on cofunctionalized GaS monolayer under external electric field. International Journal of Hydrogen Energy, 2020. 45(22): p. 12384 12393.
29. Zhang, C.J., et al., Enabling Flexible Heterostructures for Li-Ion Battery Anodes Based on Nanotube and Liquid-Phase Exfoliated 2D Gallium Chalcogenide Nanosheet Colloidal Solutions. Small, 2017. 13(34).
30. Yang, S., et al., High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale, 2014. 6(5): p. 2582-7.
31. Kato, K. and N. Umemura, Sellmeier equations for GaS and GaSe and their applications to the nonlinear optics in GaS x Se 1− x. Optics letters, 2011. 36(5): p. 746-747.
32. Ahmed, S., et al., Nonlinear Optical Activities in Two-Dimensional Gallium Sulfide: A Comprehensive Study. ACS nano, 2022. 16(8): p. 12390-12402.
33. K. Momma, F. Izumi, and J. Appl., Data retrieved from the Materials 70 Project for GaS (mp-2507) from database version v2022.10.28. Crystallogr, 2011. 44: p. 1272–1276.
34. Meng, X., et al., Atomic Layer Deposition of Gallium Sulfide Films Using Hexakis(dimethylamido)digallium and Hydrogen Sulfide. Chemistry of Materials, 2014. 26(2): p. 1029-1039.
35. Kuhs, J., Z. Hens, and C. Detavernier, Plasma enhanced atomic layer deposition of gallium sulfide thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2019. 37(2).
36. Paorici, C. and G. Zuccalli, An open-tube technique to grow Ga2S3 crystals. Journal of Crystal Growth, 1970. 7(2): p. 265-266.
37. Herrero, J. and J. Ortega, Electrochemical synthesis of photoactive In2Se3 thin films. Solar energy materials, 1987. 16(6): p. 477-485.
38. Dénoue, K., et al., Mechanochemical synthesis and structural characterization of gallium sulfide Ga2S3. Journal of Solid State Chemistry, 2020. 292.
39. Huang, Z., et al. Ga 2 S 3: Optical properties and perspectives for THz applications. in 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). 2015. IEEE.
40. Zhou, N., et al., Nonlayered Two-Dimensional Defective Semiconductor gamma-Ga(2)S(3) toward Broadband Photodetection. ACS Nano, 2019. 13(6): p. 6297-6307.
41. 黃昭運, 低壓化學氣相沉積法合成硫化鎵結晶及其二維片狀結構鑑定與特性分析. 國立東華大學, 2022.
42. Pardo, M., et al., Diagramme de phases gallium-soufre et études structurales des phases solides. Journal of Solid State Chemistry, 1993. 102(2): p. 423-433
(此全文20250801後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *