帳號:guest(3.17.176.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:張稚靈
作者(英文):Zhang-ZH Ling
論文名稱:使用電容耦合技術之28GHz低相位雜訊雙推式壓控振盪器設計
論文名稱(英文):A 28 GHz Low Phase Noise Push-Push VCO Using Capacitive Coupling Technology
指導教授:翁若敏
指導教授(英文):Ro-Min Weng
口試委員:魏宏哲
郭岳芳
口試委員(英文):Hung-Che Wei
Yue-Fang Kuo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:611023002
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:52
關鍵詞:基底偏壓技術低相位雜訊壓控振盪器雙推式
關鍵詞(英文):body-bias technologylow phase noisevoltage-controlled oscillatorpush-push
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏收藏:0
近年由於疫情的影響之下,使得無線通訊的要求也被越來越重視,讓大多數的人對於高速且低延遲的產品也有所增加,而壓控振盪器(Voltage-controlled Oscillator , VCO)為了要提供穩定的訊號讓他在無線收發機系統中成為不可或缺的存在。本篇論文總共設計兩顆晶片並將目標朝5G系統的毫米波方向進行設計,本篇設計為採用台灣積體電路製造公司(Taiwan Semiconductor Manufacturing Company , tsmc) 0.18 µm 1P6M CMOS 製程進行模擬與晶片製作
本論文中所設計的第一顆電路為應用於5 G系統毫米波雙推式式低雜訊壓控振盪器。操作頻率在25.89 GHz至28.05 GHz。並使用一組MOS對將輸出功率提高至-3.7dBm。核心消耗功率為8.48mW。在載波頻率1MHz處的相位雜訊為
-108.67dBc/Hz。
本論文中所設計的第二顆電路為使用電容耦合技術之28GHz低相位雜訊雙推式壓控振盪器設計。操作頻率在27.5 GHz至29.76 GHz。使用擬態電組讓核心功耗有下降,使電路核心消耗功率為4.62mW。在離載波頻率1MHz偏移處的相位雜訊-109.03dBc/Hz。
In recent years, due to the impact of the pandemic, the demand for wireless communication has been increasingly emphasized. Most people also have an increased demand for high-speed and low-latency products. The voltage controlled oscillators (VCOs) are indispensable components in wireless transceiver systems that needs to provide stable signals. Thesis paper designs a total of two chips and aims to target the millimeter-wave direction of 5G systems, and the design is simulated and manufactured using tsmc 0.18 µm 1P6M CMOS process.
The first circuit designed in thesis paper is a push-push low noise VCO for millimeter-wave 5G systems. The oscillation frequency is from 25.89 to 25.05 GHz, and a MOS pair is used to increase the output power to -3.7dBm. The core power consumption is 8.48mW. The phase noise is -108.67dBc/Hz at 1MHz offset frequency.
The second circuit designed in this paper is a 28 GHz low phase noise push-push VCO using capacitive coupling technology. The oscillation frequency is from 27.5 to 29.76 GHz. The core power consumption is reduced to 4.62mW by using a pseudo resistance. The phase noise is -109.03dBc/Hz at the carrier frequency of 1MHz.
第一章 序論   1
第二章 壓控振盪器介紹及原理分析   5
第三章 應用於5G系統毫米波雙推式低雜訊壓控振盪器   19
第四章 使用電容耦合技術之28GHz低相位雜訊雙推式壓控振盪器設計   35
第五章 結論與未來展望   49





[1] B. Razavi, “RF Microelectronics,” Prentice-Hall, 1997.
[2] 5G Observatory “5g-spectrum” https://5gobservatory.eu/5g-spectrum/.
[3] RF Page “5G spectrum status in Oceania, South East Asia, and India” https://www.rfpage.com/what-are-5g-frequency-bands/.
[4] 邱鈺娟,採用四階諧振器技術低功耗壓控振盪器應用於Ka-Band系統,國立東華大學電機工程研究所碩士論文,民國一百零五年
[5] 黃政翰,應用於60GHz/90GHz高頻系統之低相位雜訊低功耗壓控振盪器設計,國立東華大學電機工程研究所碩士論文,民國一百零六年
[6] Y.-H. Chang, Y.-C. Chiang, and C.-Y. Yang, “A V-Band Push-Push VCO With Wide Tuning Range Using 0.18μm CMOS Process,” IEEE Micro. Wireless Comp. Lett., vol. 25, no. 2, pp. 115-117, Feb. 2015.
[7] Sen Wang, and Chang-Yuan Xiao, IEEE, “A 7/24-GHz CMOS VCO With High Band Ratio Using a Current-Source Switching Topology” IEEE Trans. Sonics Ultrason, vol. 63, no. 5, May 2016.
[8] Yupeng Fu, Lianming Li, Dongming Wang, Xuan Wang, and Long He, “28-GHz CMOS VCO With Capacitive Splitting and Transformer Feedback Techniques for 5G Communication,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 27, no. 9, Sept 2019.
[9] Tianao Ding, Xiangning Fan and Dixian Zhao, “Ka-band wideband VCO with LC filtering technique in 65-nm CMOS,” ELECTRONICS LETTERS 16th, vol. 55 no. 10 pp. 581–583, May 2019.
[10] Yupeng Fu, Lianming Li, Dongming Wang, and Xuan Wang “A -193.6 dBc/Hz FoMT 28.6-to-36.2 GHz Dual-Core COMS VCO for 5G Applications,” IEEE Access, pp. 62191 - 62196, Dec 2020.
[11] Zong-Yi Yang, and Roger Yubtzuan Chen, “High-Performance Low-Cost Dual 15 GHz/30 GHz CMOS LC Voltage-Controlled Oscillator,” IEEE Microw. Wirel. Compon. Lett, vol. 26, no. 9, pp. 714 – 716, Sept 2016.
[12] P.-Y. Wang et al., “Design of 24 GHz CMOS VCO using Armstrong topology with asymmetric transformer,” in Proc. Asia–Pacific Microw. Conf. (APMC), pp. 956–958, Nov. 2014.
[13] Hong-Yeh Chang, Chi-Hsien Lin, Yu-Cheng Liu, Yeh-Liang Yeh, Kevin Chen, and Szu-Hsien Wu, “65-nm CMOS Dual-Gate Device for -Band Broadband Low-Noise Amplifier and High-Accuracy Quadrature Voltage-Controlled Oscillator,” IEEE Trans. Microw. Theory Tech, vol. 61, no. 6, pp. 2402 – 2413, June 2013.
[14] Dongyi Liao, Yucai Zhang, Fa Foster Dai, Zhenqi Chen, and Yanjie Wang, “An mm-Wave Synthesizer With Robust Locking Reference-Sampling PLL and Wide-Range Injection-Locked VCO,” IEEE J. Solid-State Circuits, vol. 55, no. 3, pp. 536 - 546, March 2020.
[15] Egidio Ragonese, Giuseppe Papotto, Claudio Nocera, Andrea Cavarra, and Giuseppe Palmisano, “CMOS Automotive Radar Sensors: mm-Wave Circuit Design Challenges,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69 no. 6, pp. 2610 – 2616, June 2022.
[16] Rui Zhang, Zhe Chen, Zekun Li, Debin Hou, Jixin Chen, and Wei Hong, “A Wide Tuning Range Low-Phase-Noise Ku/Ka Dual Bands SiGe VCO Based on Transformer-Coupled Tank,” IEEE Microw. Wirel. Compon. Lett, vol. 32, no. 8, pp. 437 – 440, May 2022.
[17] “Signal Source System Platfrom”
https://ebs.tsri.org.tw/ebs/equiIntroduction/equiIntroductionAction_doQuery.action
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *