帳號:guest(18.119.115.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:鄭翔鴻
作者(英文):Xiang-Hong Zheng
論文名稱:具時變的邊界層滑動模式控制在永磁式同步馬達的伺服控制應用
論文名稱(英文):Sliding Mode Control with Time-Varying Boundary Layer and Its Application to the Servo Control of Permanent Magnet Synchronous Motor
指導教授:陳震宇
蘇仲鵬
指導教授(英文):Jen-Yeu Chen
Zhong-Peng Su
口試委員:王俊傑
蘇仲鵬
陳震宇
口試委員(英文):Jun-Jieh Wang
Zhong-Peng Su
Jen-Yeu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:611023003
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:69
關鍵詞:永磁同步馬達磁場導向控制空間向量脈寬調變解耦控制前饋控制滑動模式控制
關鍵詞(英文):Permanent Magnet Synchronous MotorField Oriented ControlSpace Vector Pulse Width ModulationDecoupling ControlFeedforward ControlSliding Mode Control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本論文提出具時變的邊界層調整滑模控制對永磁同步馬達進行實作與驗證,系統內有磁場導向控制與空間向量脈寬調變,電流迴圈有著解耦控制,並與前饋控制、滑動模式控制做比較。

永磁同步馬達多使用 PI 控制作為其控制法,PI 控制有著計算簡單與參數容易修正等長處,缺點是無法應對外部負載更新控制器的參數。滑模控制可以針對外部負載切換控制參數,缺點是切換動作過於理想,實際測試會產生顫動影響實作的結果。具時變的邊界層滑模控制依據外部負載給予邊界層隨時間變化,進而消除顫動造成的影響,改善滑模控制的缺陷。

本論文利用 PSIM 軟體進行上述各控制器模擬軌跡測試,邊界層自適應滑模控制在位置 sine 軌跡的響應與 PI 控制相比,有著更小的追蹤誤差,與滑模控制相比,可以改善在速度響應時的震動,使其更滑順。透過 CCS 可將模擬所設計程式在實際馬達與 MG-SET 上做軌跡測試,比較三者的控制器在負載影響下的響應情形,具時變的邊界層滑模控制在受到反向扭矩影響時,能夠在瞬間回升至目標軌跡,與 PI 控制、滑模控制不同,並不會有過衝的情形發生,且定速追蹤時與滑模控制相比則更為穩定,不會有受到反向扭矩影響後,速度響應降低的問題。經模擬與實作觀測到於位置追蹤測試時,滑模控制的速度回授值會有顫動產生,將自邊界層自適應置入滑模控制後,可以於速度回授值觀測到顫動現象已經被消除。
This thesis proposes a time-varying boundary layer adjusted sliding mode control for the implementation and verification of permanent magnet synchronous motors. The system has field-oriented control and space vector pulse width modulation. The current loop has decoupling control and is integrated with feedforward. Control, slide mode control for comparison.

Permanent magnet synchronous motors mostly use PI control as their control method. PI control has the advantages of simple calculation and easy parameter modification. The disadvantage is that it cannot update the parameters of the controller in response to external loads. Sliding mode control can switch control parameters for external loads. The disadvantage is that the switching action is too ideal, and the actual test will produce vibrations that will affect the results of the implementation. The time-varying boundary layer sliding mode control is based on the external load to give the boundary layer a change with time, thereby eliminating the influence of vibration and improving the defects of sliding mode control.

This thesis uses PSIM software to test the simulated trajectory of the above controllers. Compared with PI control, the boundary layer adaptive sliding mode control has a smaller tracking error in the position sine trajectory. Compared with sliding mode control, it can improve the Vibration during speed response, making it smoother. Through CCS, the simulated design program can be tested on the actual motor and MG-SET to compare the response of the three controllers under the influence of load. The timevarying boundary layer sliding mode control is affected by the reverse torque. can return to the target trajectory in an instant, unlike PI control and sliding mode control, there will be no overshooting situation, and the constant speed tracking is more stable than sliding mode control, and will not be affected by reverse After the torque is affected, the speed response is reduced. Through simulation and practice, it is observed that during the position tracking test, the speed feedback value of the sliding mode control will vibrate. After the self-boundary layer self-adaptive is inserted into the sliding mode control, the vibration phenomenon can be observed in the speed feedback value. is eliminated.
第一章 序論1
1.1 研究目的與方法 1
1.2 文獻回顧 2
1.3 論文架構 3
第二章 永磁同步馬達的模型與 PI 伺服控制 5
2.1 永磁同步馬達數學模型 6
2.2 磁場導向控制數學模型 8
2.2.1 座標轉換 9
2.2.2 空間向量脈寬調變(SVPWM) 10
2.3 PI 控制 14
2.3.1 電流解耦控制 14
2.3.2 速度前饋控制 18
第三章 滑動模式控制 21
3.1 滑動模式控制原理 21
3.2 滑動平面的邊界層原理與設計 29
第四章 硬體架構 35
4.1 永磁同步馬達驅動器 35
4.2 控制發展板 37
4.3 永磁同步馬達 MG-SET 負載測試平台 40
第五章 模擬與實測結果 43
5.1 模擬結果 43
5.1.1 速度步階響應 43
5.1.2 位置命令追蹤 48
5.2 實作驗證 57
第六章 結論與未來展望 63
6.1 結論 63
6.2 未來展望 64
作者簡介 65
參考文獻 67
J. -W. Choi and S. -C. Lee, "Antiwindup Strategy for PI-Type Speed
Controller," in IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2039-2046, June 2009, doi: 10.1109/TIE.2009.2016514.

M. Tursini, F. Parasiliti and Daqing Zhang, "Real-time gain tuning of PI controllers for high-performance PMSM drives," in IEEE Transactions
on Industry Applications, vol. 38, no. 4, pp. 1018-1026, July-Aug. 2002, doi: 10.1109/TIA.2002.800564.

H. -Y. Chung, C. -C. Hou and C. -L. Chao, "Speed-control of a PMSM
based on Integral-Fuzzy control," 2013 International Conference on
Fuzzy Theory and Its Applications (iFUZZY), pp. 77-82, Taipei, Taiwan, 2013

V. I. Utkin, "Sliding mode control design principles and applications to electric drives," in IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 23-36, Feb. 1993, doi: 10.1109/41.184818.

B. Singh, B. P. Singh and S. Dwivedi, "DSP based implementation of
Sliding Mode Speed Controller for Vector Controlled Permanent Magnet
Synchronous Motor drive," 2006 India International Conference on
Power Electronics, pp. 22-27, Chennai, India, 2006, doi: 10.1109/IICPE.2006.4685335.

Chich-Hsing Fang, Shir-Kuan Lin, Chun-Ming Huang, Mu-Ping Chen and Jan-Ku Chen, "Sliding-mode torque control of a permanent magnet synchronous motor," 4th IEEE International Conference on Power Electronics and Drive Systems. IEEE PEDS 2001 - Indonesia. Proceedings (Cat. No.01TH8594),vol.2, pp. 578-582, Denpasar, Indonesia, 2001, doi: 10.1109/PEDS.2001.975382.

P. Pillay and R. Krishnan, "Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous
motor drive," in IEEE Transactions on Industry Applications, vol. 25,
no. 2, pp. 265-273, March-April 1989, doi: 10.1109/28.25541.

P. Pillay and R. Krishnan, "Modeling of permanent magnet motor drives," in IEEE Transactions on Industrial Electronics, vol. 35, no. 4, pp. 537-541, Nov. 1988, doi: 10.1109/41.9176.

M. Abassi, A. Khlaief, O. Saadaoui, A. Chaari and M. Boussak, "Performance analysis of FOC and DTC for PMSM drives using SVPWM technique," 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering( STA ) , pp. 228-233, Monastir, Tunisia, 2015, doi: 10.1109/STA.2015.7505167.

Microsemi Corporation,Park, Inverse Park And Clarke, Inverse Clarke
Transformations MSS Software ImplementationnUser Guide,2023. Retrieved from:https://www.microsemi.com/document-portal/doc_view/132799-parkinverse-park-and-clarke-inverse-clarke-transformations-mss-softwareimplementation-user-guide.

Wikipedia ,Space vector modulation,2023. March.28. Retrieved from:https://en.wikipedia.org/wiki/Space_vector_modulation.

Matlab ,Hardware Connections,2023. Retrieved from:https://www.mathworks.com/help/mcb/gs/hardware-connections.html.

Tech Webモーターの種類と分類, 2017. December.06. Retrieved from:https://techweb.rohm.co.jp/product/motor/motor-driver/motor-driverbasic/12216/.

Texas Instruments,BOOSTXL-DRV8305EVM User’s Guide, 2017.June. Retrieved from:https://www.ti.com/lit/ug/slvuai8a/slvuai8a.pdf?ts

Texas Instruments,LAUNCHXL-F28379D Overview, 2019. March. Retrieved from:https://www.ti.com/lit/ug/sprui77c/sprui77c.pdf?ts.

J.-P. Su, “Variable Structure Control of a Class of Cascade-Connected
Nonlinear Systems” Class Handout, National Dong-Hwa University, 2023.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *