|
[1] B. Bross, J. Chen, J. R. Ohm, G. J. Sullivan, and Y. K. Wang, "Developments in international video coding standardization after AVC, with an overview of versatile video coding (VVC)," Proceedings of the IEEE, vol. 109, no. 9, pp. 1463–1493, Sep. 2021. [2] F. Bossen, K. Sühring, A. Wieckowski, and S. Liu, "VVC complexity and software implementation analysis," IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3765–3778, Oct. 2021. [3] B. Bross, Y. K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J. R. Ohm, "Overview of the versatile video coding (VVC) standard and its applications," IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3736–3764, Oct. 2021. [4] W. Hamidouche, T. Biatek, M. Abdoli, E. François, F. Pescador, M. Radosavljević, D. Menard, and M. Raulet, "Versatile video coding standard: a review from coding tools to consumers deployment," IEEE Consumer Electronics Magazine, vol. 11, no. 5, pp. 10-24, Sep. 2022. [5] A. Browne, Y. Ye, and S. H. Kim, Algorithm Description for Versatile Video Coding and Test Model 16 (VTM 16), document JVET-Y2002-v1, Jan. 2022. [6] F. Bossen, X. Li, K. Suehring, Y. He, K. Sharman, V. Seregin, and A. Tourapis, AHG report: Test Model Software Development (AHG3), document JVET-Z0003-v1, Apr. 2022. [7] Y. W. Huang, J. An, H. Huang, X. Li, S. T. Hsiang, K. Zhang, H. Gao, J. Ma, and O. Chubach, "Block partitioning structure in the VVC standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3818–3833, Oct. 2021. [8] VVC Reference Software Version 16.0. Accessed: Apr. 2022. [Online]. Available: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-16.0?ref_type=tags [9] W. J. Chien, L. Zhang, M. Winken, X. Li, R. L. Liao, H. Gao, C. W. Hsu, H. Liu, and C. C. Chen, "Motion vector coding and block merging in the versatile video coding standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3848-3861, Oct. 2021. [10] T. Fu, H. Zhang, F. Mu, and H. Chen, "Two-stage fast multiple transform selection algorithm for VVC intra coding," in Proceedings of 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 2019, pp. 61–66. [11] S. H. Park and J. W. Kang, "Fast affine motion estimation for versatile video coding (VVC) encoding," IEEE Access, vol. 7, pp. 158075–158084, 2019. [12] A. Duarte, P. Gonçalves, L. Agostini, B. Zatt, G. Correa, M. Porto, and D. Palomino, "Fast affine motion estimation for VVC using machine-learning-based early search termination," in Proceedings of 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 2022. [13] N. Tang, J. Cao, F. Liang, J. Wang, H. Liu, X. Wang, and X. Du, "Fast CTU partition decision algorithm for VVC intra and inter coding," in Proceedings of 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, 2019, pp. 361–364. [14] T. Amestoy, A. Mercat, W. Hamidouche, D. Menard, and C. Bergeron, "Tunable VVC frame partitioning based on lightweight machine learning," IEEE Transactions on Image Processing, vol. 29, pp. 1313–1328, 2020. [15] G. Kulupana, V. P. Kumar M, and S. Blasi, "Fast versatile video coding using specialised decision trees," in Proceedings of 2021 Picture Coding Symposium (PCS), Bristol, United Kingdom, 2021. [16] Z. Pan, P. Zhang, B. Peng, N. Ling, and J. Lei, "A CNN-based fast inter coding method for VVC," IEEE Signal Processing Letters, vol. 28, pp. 1260–1264, 2021. [17] W.H. Yeo and B.G. Kim, “CNN-based fast split mode decision algorithm for versatile video coding (VVC) inter prediction,” Journal of Multimedia Information System, vol. 8, no. 3, pp. 147–158, 2021. [18] Y. Li, F. Luo, and Y. Zhu, “Temporal prediction model-based fast inter CU partition for versatile video coding,” Sensors, vol. 22, no. 20, pp. 7741, 2022. [19] A. Tissier, W. Hamidouche, J. Vanne, and D. Menard, "Machine learning based efficient QT-MTT partitioning for VVC inter coding," in Proceedings of 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 2022, pp. 1401–1405. [20] W. Kuang, X. Li, X. Zhao, and S. Liu, "Unified fast partitioning algorithm for intra and inter predictions in versatile video coding," in Proceedings of 2022 Picture Coding Symposium (PCS), San Jose, CA, USA, 2022, pp. 271–275. [21] X. Shang, G. Li, X. Zhao, and Y. Zuo, “Low complexity inter coding scheme for versatile video coding (VVC),” Journal of Visual Communication and Image Representation, vol.90, Art. no. 103683, 2023. [22] M. Aklouf, M. Leny, F. Dufaux, and M. Kieffer, "Low complexity versatile video coding (VVC) for low bitrate applications," in Proceedings of 2019 8th European Workshop on Visual Information Processing (EUVIP), Roma, Italy, 2019, pp. 22–27. [23] A. Mercat, M. Viitanen, and J. Vanne, “UVG dataset: 50/120fps 4K sequences for video codec analysis and development,” in Proceedings of ACM Multimedia Systems Conference, Istanbul, Turkey, May 2020, pp. 297–302. [24] F. Bossen, Common Test Conditions and Software Reference Configurations, document JCTVC-L1100, Jan. 2013. [25] C. Montgomery and H. Lars, “Xiph.org Video Test Media (derf’s collection),” 2017. [Online]. Available: https://media.xiph.org/video/derf/ [26] A. Wieckowski, J. Ma, H. Schwarz, D. Marpe, and T. Wiegand, "Fast partitioning decision strategies for the upcoming versatile video coding (VVC) standard," in Proceedings of 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019, pp. 4130–4134. [27] J. R. Lin, M. J. Chen, Y. S. Ciou, C. H. Yeh, M. H. Lin, L. J. Kau, and C. Y. Chang, "Fast texture coding based on spatial, temporal and inter-view correlations for 3D video coding," IEEE Access, vol. 9, pp. 100081–100095, 2021. [28] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, VTM Common Test Conditions and Software Reference Configurations for SDR Video, document JVET-T2010-v1, Oct. 2020. [29] G. Bjontegaard, Calculation of Average PSNR Differences between RD-curves, document ITU-T SG16/Q6 VCEG-M33, Austin, TX, USA, Apr. 2001. [30] G. Bjontegaard, Improvements of the BD-PSNR Model, document ITU-TSG16 Q.6 VCEG-AI11, Berlin, Germany, Jul. 2008. [31] Z. Wang, E. P. Simoncelli, and A. C. Bovik, "Multi-scale structural similarity for image quality assessment," in Proceedings of The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Pacific Grove, CA, USA, 2003, pp. 1398-1402.
|