帳號:guest(3.15.25.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:何明叡
作者(英文):Ming-Jui Ho
論文名稱:無人車導航決策系統與車輛虛實整合框架的設計及實現
論文名稱(英文):The Design and Implementation of AGV Navigation Decision Making System and CPVS Simulation Framework
指導教授:孫宗瀛
謝欣然
指導教授(英文):Tsung-Ying Sun
Hsin-Jang Shieh
口試委員:吳秀陽
謝鴻琳
口試委員(英文):Shiow-yang Wu
Horng-Lin Shieh
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:611023011
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:100
關鍵詞:模糊推論車輛虛實整合系統車聯網自駕車數位模擬機器人操作系統
關鍵詞(英文):Fuzzy inference SystemCyber-Physical Vehicle SystemV2XAGVdigital simulationRobot Operating System
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
近幾年,自駕車快速發展且越來越普及,設計導航控制系統是主要的研究重點之一。自駕車的導航控制必須因應複雜多變的行車環境,且須考慮安全、成本、法規等諸多因素。仰賴模擬器的輔助設計是必經之途,但是目前的模擬系統僅局限於部分功能的測試,甚少關注導航系統在複雜多變的行車環境做出正確決策的重要議題。
本研究目的在於設計自駕車導航決策系統,並且實現於實驗載具及車輛虛實整合系統(Cyber-Physical Vehicle System, CPVS),在虛擬行車場景下做模擬和測試。本研究提出的CPVS由ROS2整合實體系統載具的車輛資訊,虛擬系統以Unity為主,可模擬V2X環境生成模擬行駛資料或是接收ROS2發出的資料,並透過兩者的結合達成協同最佳化。
車輛導航及決策系統除了路線跟隨,遇到障礙物時則透過V2X進行預測並進行避障,接著以模糊決策根據兩車關係得到危險程度,進一步推論出車速和方向的調整。以此方式可以模擬人們駕駛車輛時對下情況的判斷做出的駕駛決策。除此之外,設定一α值對模糊推論進行調整,可調整以執行效率為主或是舒適度與安全性為主的決策模式。
本研究在車輛虛實整合系統下測試模擬及實際載具,並設定數種情況測試導航及決策系統,皆能夠以安全的情況避開來車並到達終點。未來,此CPVS架構可運用於真實車輛的控制系統設計和測試。
In recent years, automated guided vehicle (AGV) technology has been advancing rapidly. AGV navigation and control must adapt to complex and volatile driving environments while considering factors such as safety, cost, and legal approval. Thus, the simulation system is always an important issue. However, most existing systems are restricted to limited aspects that fail to accurately correspond with reality in complex and volatile environments.
The objective of this study is to design an AGV navigation decision making system and implement it within a Cyber-Physical Vehicle System (CPVS). Furthermore, we simulate and test the system on both simulated and physical vehicle. The proposed framework is based on CPVS, with the physical-system integrating vehicle information with ROS2, and the virtual-system built on Unity platform. The virtual-system can simulate the V2X environment to generate test data for testing AGV system. Combining both systems to achieve co-optimization.
The AGV navigation and decision making system not only follows routes but also avoid obstacles with V2X data. Fuzzy inference is then used to determine the degree of danger based on the relationship between the two vehicles. It further infers the necessary adjustments of vehicle speed and direction. In this way, it is possible to simulate the driving decisions made by people when driving a vehicle. In addition, the parameter α is adjusted to focus the fuzzy decision-making system on either execution efficiency or comfort and safety
This study tests the navigation and decision-making system on both simulated and physical vehicles with the the proposed CPVS. The system successfully avoids oncoming vehicles and safely reaches the destination in various testing scenarios. In the future, this CPVS framework could be applied to the designing and testing control systems for real AGVs.
摘要 I
ABSTRACT III
誌謝 V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
1-3 文獻回顧 5
1-4 研究方法 6
1-5 論文架構 8
第二章 相關理論與應用 9
2-1 模糊推論系統 9
2-1-1 模糊推論的架構 9
2-1-2 模糊規則庫 10
2-1-3 模糊化階段 11
2-1-4 模糊推論 13
2-1-5 解模糊階段 16
2-2 車輛虛實整合系統 18
2-2-1 虛實整合系統 19
2-2-2 車輛虛實整合系統 20
第三章 車輛虛實整合系統設計與實現 21
3-1 車輛虛實整合系統功能 21
3-2 系統特性 22
3-3 虛擬系統的設計與實現 23
3-3-1 模擬器 25
3-3-2 車聯網 31
3-3-3 行車場景編輯子系統及運行腳本 33
3-4 實際系統的設計與實現 44
3-4-1 架構說明 44
3-4-2 實驗車體 45
第四章 載具導航與決策系統的設計與實現 51
4-1 路線跟隨 52
4-2 避障演算法 55
4-3 導航模糊決策 59
4-4 導航與決策系統整合 73
第五章 實驗與結果 77
5-1 車輛虛實整合系統 77
5-2 導航模糊決策 79
第六章 結論及未來研究方向 95
6-1 結論 95
6-2 未來研究方向 95
參考文獻 97
作者簡歷 101
[1] J. E. Naranjo, C. Gonzalez, J. Reviejo, R. Garcia, and T. d. Pedro, "Adaptive fuzzy control for inter-vehicle gap keeping," IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 3, pages 132-142, 2003.
[2] E. Armagan and T. Kumbasar, "A fuzzy logic based autonomous vehicle control system design in the TORCS environment," in 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), 2017, pp. 737-741.
[3] G. Shi, Y. Jing, A. Xu, and J. Ma, "Study and Simulation of Based-fuzzy-logic Parallel Hybrid Electric Vehicles Control Strategy," in Sixth International Conference on Intelligent Systems Design and Applications, 2006, vol. 1, pp. 280-284.
[4] W. Li, Z. Xie, J. Zhao, J. Gao, Y. Hu, and P. K. Wong, "Human-Machine Shared Steering Control for Vehicle Lane Keeping Systems via a Fuzzy Observer-Based Event-Triggered Method," IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pages 13731-13744, 2022.
[5] J. Cao, C. Song, S. Peng, S. Song, X. Zhang, and F. Xiao, "Trajectory Tracking Control Algorithm for Autonomous Vehicle Considering Cornering Characteristics," IEEE Access, vol. 8, no. pages 59470-59484, 2020.
[6] H. Ohara and T. Murakami, "A Stability Control by Active Angle Control of Front-Wheel in a Vehicle System," IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pages 1277-1285, 2008.
[7] K. Mahmud and L. Tao, "Vehicle speed control through fuzzy logic," in 2013 IEEE Global High Tech Congress on Electronics, 2013, pp. 30-35.
[8] T. Liu, L. Jia, N. Yang, and C. Li, "Research on the handling stability of four-wheel steering vehicle," Journal of Physics: Conference Series, vol. 1213, no. pages 052039, 2019.
[9] H. Masuda, O. E. Marai, M. Tsukada, T. Taleb, and H. Esaki, "Feature-Based Vehicle Identification Framework for Optimization of Collective Perception Messages in Vehicular Networks," IEEE Transactions on Vehicular Technology, vol. 72, no. 2, pages 2120-2129, 2023.
[10] V. Maglogiannis, D. Naudts, S. Hadiwardoyo, D. v. d. Akker, J. Marquez-Barja, and I. Moerman, "Experimental V2X Evaluation for C-V2X and ITS-G5 Technologies in a Real-Life Highway Environment," IEEE Transactions on Network and Service Management, vol. 19, no. 2, pages 1521-1538, 2022.
[11] SA8700A C-V2X Test Solution [Online] Available: https://www.keysight.com/us/en/product/C8732114A/sa8700a-c-v2x-test-solution.html (2023)
[12] L. Žlajpah, "Simulation in robotics," Mathematics and Computers in Simulation, vol. 79, no. 4, pages 879-897, 2008.
[13] J. Wan, H. Yan, D. Li, K. Zhou, and L. Zeng, "Cyber-Physical Systems for Optimal Energy Management Scheme of Autonomous Electric Vehicle," The Computer Journal, vol. 56, no. 8, pages 947-956, 2013.
[14] C. Lv, X. Hu, A. Sangiovanni-Vincentelli, Y. Li, C. M. Martinez, and D. Cao, "Driving-Style-Based Codesign Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach," IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pages 2965-2975, 2019.
[15] M. Lukasiewycz, S. Steinhorst, F. Sagstetter, W. Chang, P. Waszecki, M. Kauer, and S. Chakraborty, "Cyber-Physical Systems Design for Electric Vehicles," in 2012 15th Euromicro Conference on Digital System Design, 2012, pp. 477-484.
[16] Y. Zhang, L. Chu, Y. Ou, C. Guo, Y. Liu, and X. Tang, "A Cyber-Physical System-Based Velocity-Profile Prediction Method and Case Study of Application in Plug-In Hybrid Electric Vehicle," IEEE Transactions on Cybernetics, vol. 51, no. 1, pages 40-51, 2021.
[17] R. Gottumukkala, R. Merchant, A. Tauzin, K. Leon, A. Roche, and P. Darby, "Cyber-physical System Security of Vehicle Charging Stations," in 2019 IEEE Green Technologies Conference(GreenTech), 2019, pp. 1-5.
[18] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pages 338-353, 1965.
[19] 孫宗瀛,楊英魁(2005)。Fuzzy控制:理論、實作與應用(修訂版)。臺北市:全華圖書。.
[20] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pages 116-132, 1985.
[21] E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller," International Journal of Man-Machine Studies, vol. 7, no. 1, pages 1-13, 1975.
[22] P. Martin Larsen, "Industrial applications of fuzzy logic control," International Journal of Man-Machine Studies, vol. 12, no. 1, pages 3-10, 1980.
[23] Mamdani, "Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis," IEEE Transactions on Computers, vol. C-26, no. 12, pages 1182-1191, 1977.
[24] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, "Cyber-physical systems: The next computing revolution," in Design Automation Conference, 2010, pp. 731-736.
[25] U. N. S. Foundation. Cyber-Physical Systems (CPS), NSF 08−611 [Online] Available: http://www.nsf.gov/pubs/20-08/nsf08611/nsf08611.htm (2023)
[26] K. Wan, D. Hughes, K. Man, T. Krilavičius, and S. Zou, "Investigation on Composition Mechanisms for Cyber Physical Systems," International Journal of Design, Analysis and Tools for Integrated Circuits and Systems, vol. 2, no. pages 2010.
[27] J. Jamaludin and J. M. Rohani, "Cyber-Physical System (CPS): State of the Art," in International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), 2018, pp. 1-5.
[28] J. M. Bradley and E. M. Atkins, "Optimization and Control of Cyber-Physical Vehicle Systems," Sensors, vol. 15, no. 9, pages 23020-23049, 2015.
[29] M. S. P. d. Melo, J. G. d. S. Neto, P. J. L. d. Silva, J. M. X. N. Teixeira, and V. Teichrieb, "Analysis and Comparison of Robotics 3D Simulators," in 2019 21st Symposium on Virtual and Augmented Reality (SVR), 2019, pp. 242-251.
[30] Z. Wang, K. Han, and P. Tiwari, "Digital Twin Simulation of Connected and Automated Vehicles with the Unity Game Engine," in IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), 2021, pp. 1-4.
[31] Y. Mizuchi and T. Inamura, "Cloud-based multimodal human-robot interaction simulator utilizing ROS and unity frameworks," in 2017 IEEE/SICE International Symposium on System Integration (SII), 2017, pp. 948-955.
[32] K. Fan, A. Marzullo, N. Pasini, A. Rota, M. Pecorella, G. Ferrigno, and E. D. Momi, "A Unity-based Da Vinci Robot Simulator for Surgical Training," in 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 2022, pp. 1-6.
[33] D. D. L. P. López, C. A. P. Orta, F. M. Chávez, and L. M. V. Coronado, "ROS2 and Unity based Simulation for telepresence robot," in International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), 2022, pp. 1-6.
[34] Unity-Technologies. ML-ImageSynthesis [Online] Available: https://bitbucket.org/Unity-Technologies/ml-imagesynthesis/src/master/ (2023)
[35] Unity-Technologies. Navigation 2 SLAM Example [Online] Available: https://github.com/Unity-Technologies/Robotics-Nav2-SLAM-Example (2023)
[36] V. Mannoni, V. Berg, S. Sesia, and E. Perraud, "A Comparison of the V2X Communication Systems: ITS-G5 and C-V2X," in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019, pp. 1-5.
[37] DIY Mars Perseverance Rover Replica – Arduino based Project [Online] Available: https://howtomechatronics.com/projects/diy-mars-perseverance-rover-replica-with-arduino/ (2023)
[38] Mars Perseverance Rover, 3D Model [Online] Available: https://mars.nasa.gov/resources/25042/mars-perseverance-rover-3d-model/ (2023)
[39] Open Source Rover: Software Controls [Online] Available: https://github.com/nasa-jpl/open-source-rover/blob/master/software/Software%20Controls.pdf (2023)
[40] J. L. Giesbrecht, D. Mackay, J. A. Collier, and S. Verret, "Path Tracking for Unmanned Ground Vehicle Navigation: Implementation and Adaptation of the Pure Pursuit Algorithm," 2005, in DRDC Suffield TM 2005-224, Defence R&D Canada-Suffield,
[41] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pages 100-107, 1968.
[42] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik, vol. 1, no. 1, pages 269-271, 1959.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *