帳號:guest(3.145.191.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:楊秉軒
作者(英文):BING-XUAN YANG
論文名稱:過渡金屬複合氧化石墨烯材料應用於染料敏化太陽能電池對電極之成效
論文名稱(英文):The effect of transition metal composite graphene materials on the counter electrodes of dye-sensitized solar cells
指導教授:蔡志宏
指導教授(英文):Chih-Hung Tsai
口試委員:蔡志宏
游源祥
莊沁融
口試委員(英文):Chih-Hung Tsai
Yuan-Hsiang Yu
Ching-Jung Chuang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:611025001
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:83
關鍵詞:染料敏化太陽能電池錯合物氧化石墨烯
關鍵詞(英文):Dye-sensitized solar cellsComplexGraphene oxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
近年來我們都可以從媒體、氣象研究等得知,改善地球的環境問題是刻不容緩的,而染料敏化太陽能電池的製程與其他類型的太陽能電池相比,優勢在原料成本低、容易的製作過程,這些優點也使得許多人投入這個項目之中。

本研究分為三個部分,首先為以鐵錯合物與氧化石墨烯複合,作為對電極,研究不同的鐵錯合物與氧化石墨烯比例以提升對電極的效能,SEM分析對電極材料的表面狀態,以XPS分析材料的元素構成含量,以J-V曲線、EIS頻譜來探討其作為元件後的性能表現,Fe/GO(5:1)作為對電極,轉換效率略高Pt,達8.17%。

其次為以錳錯合物與氧化石墨烯複合,製備於對電極,研究不同的錳錯合物與氧化石墨烯比例以提升對電極的效能,TEM分析對電極材料的表面形貌,以XRD分析材料的層距變化,以EQE曲線、CV曲線來探討其作為元件後的性能表現,Mn/GO(3:1)作為對電極,轉換效率達6.64%。

本研究分第三個部分,以鋅錯合物與氧化石墨烯複合,作為對電極,研究不同的鋅錯合物與氧化石墨烯比例以提升對電極的效能,FE-SEM分析對電極材料的薄膜樣態,以XRD分析材料的層距變化,以J-V曲線、EIS頻譜來探討其作為元件後的性能表現,Zn/GO(3:1)作為對電極,達7.87%。

In recent years, we can all learn from the media, weather research and other sources that improving the earth's environmental problems is urgent, and the process of dye-sensitized solar cells has the advantages of low raw material cost and easy production process compared to other types of solar cells. These advantages have also attracted many people to this project.

This study is divided into three parts. First, iron complex and graphene oxide are composite to be used as the electrode, and the different ratios of iron complex and graphene oxide are studied to improve the performance of the electrode. SEM analysis is used to study the surface state of the electrode material, and XPS analysis is used to study the elemental composition of the material. The performance of the component is studied using J-V curve and EIS spectrum, and Fe/GO (5:1) is used as the electrode, with a conversion efficiency slightly higher than Pt, reaching 8.17%.

Secondly, manganese complex and graphene oxide are composite to be used as the electrode, and the different ratios of manganese complex and graphene oxide are studied to improve the performance of the electrode. TEM analysis is used to study the surface morphology of the electrode material, and XRD analysis is used to study the layer spacing change of the material. The performance of the component is studied using EQE curve and CV curve, and Mn/GO (3:1) is used as the electrode, with a conversion efficiency of 6.64%.

Finally, zinc complex and graphene oxide are composite to be used as the electrode, and the different ratios of zinc complex and graphene oxide are studied to improve the performance of the electrode. FE-SEM analysis is used to study the film state of the electrode material, and XRD analysis is used to study the layer spacing change of the material. The performance of the component is studied using J-V curve and EIS spectrum, and Zn/GO (3:1) is used as the electrode, with a conversion efficiency of 7.87%.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
第二章 鐵錯合物/氧化石墨烯複合物在染料敏化太陽能電池之成效 15
第三章 錳錯合物/氧化石墨烯複合物在染料敏化太陽能電池之成效 39
第四章 鋅錯合物/氧化石墨烯複合物在染料敏化太陽能電池之成效 59
第五章 總結論 79

[1]經濟部能源局
https://www.moeaboe.gov.tw/ECW_WEBPAGE/FlipBook/2020EnergyStaHandBook/#p=2
[2]Solar cell efficiency tables (version 43)
http://onlinelibrary.wiley.com/doi/10.1002/pip.2452/pdf
[3] Lee, Solhee, et al. "Characterization of Potential-Induced Degradation and Recovery in CIGS Solar Cells." Energies 14.15 (2021): 4628.
[4] 陳祉雲、李玉郎,"染料敏化太陽能電池",科學發展 2019 年 12 月 564 期
[5] NREL https://www.nrel.gov/pv/cell-efficiency.html
[6] O'regan, Brian, and Michael Grätzel. "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films." nature 353.6346 (1991): 737-740.
[7] Raut, Prasad, et al. "A Review on Gel Polymer Electrolytes for Dye-Sensitized Solar Cells." Micromachines 13.5 (2022): 680.
[8] Wu, Zhisheng, et al. "Co-sensitization of N719 with an organic dye for dye-sensitized solar cells application." Bulletin of the Korean Chemical Society 35.5 (2014): 1449-1454.
[9] Kundu, Sumana, et al. "Enhancing the Efficiency of DSSCs by the Modification of TiO2 Photoanodes using N, F and S, co-doped Graphene Quantum Dots." Electrochimica Acta 242 (2017): 337-343.
[10] Weerasinghe, Hasitha C., Fuzhi Huang, and Yi-Bing Cheng. "Fabrication of flexible dye sensitized solar cells on plastic substrates." Nano Energy 2.2 (2013): 174-189.
[11]工業技術學院
https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=01_content&SiteID=1&MmmID=1036233376244004650&MGID=620633242163733741
[12] Grätzel, Michael. "Recent advances in sensitized mesoscopic solar cells." Accounts of chemical research 42.11 (2009): 1788-1798.
[13] Grätzel, Michael. "Photoelectrochemical cells." Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011. 26-32.
[14] 維基百科,"穿透式電子顯微鏡",取自:
https://zh.wikipedia.org/w/index.php?title=%E9%80%8F%E5%B0%84%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C&oldid=72890025.
[15] 維基百科,"掃描電子顯微鏡",取自:
https://zh.wikipedia.org/w/index.php?title=%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C&oldid=72501878.
[16] Newbury, Dale E. "X-ray microanalysis in the variable pressure (environmental) scanning electron microscope." Journal of Research of the National Institute of Standards and Technology 107.6 (2002): 567.
[17] 維基百科,"拉曼光譜學",取自:
https://zh.wikipedia.org/w/index.php?title=%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8&oldid=62316949.
[18] Bumbrah, Gurvinder Singh, and Rakesh Mohan Sharma. "Raman spectroscopy–Basic principle, instrumentation and selected applications for the characterization of drugs of abuse." Egyptian Journal of Forensic Sciences 6.3 (2016): 209-215.
[19] Bunaciu, Andrei A., Elena Gabriela UdriŞTioiu, and Hassan Y. Aboul-Enein. "X-ray diffraction: instrumentation and applications." Critical reviews in analytical chemistry 45.4 (2015): 289-299.
[20] 維基百科,"X射線光電子能譜學",取自:
https://zh.wikipedia.org/w/index.php?title=X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6&oldid=74627282.

[21] Stevie, Fred A., and Carrie L. Donley. "Introduction to x-ray photoelectron spectroscopy." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 38.6 (2020): 063204.
[22] 維基百科,"Solar simulator",https://en.wikipedia.org/wiki/Solar_simulator
[23] https://elightinformation.com/leadership-ideas/iv-curves-and-solar-power
[24] Uddin, Md G. "Development of Simplified In Situ Processing Routes for Rear-Side Patterning of Silicon Heterojunction Interdigitated Back Contact (SHJ-IBC) Solar Cells. " MS thesis. Itä-Suomen yliopisto, 2018.
[25] Samin, Adib, Erik Lahti, and Jinsuo Zhang. "Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions." AIP Advances 5.8 (2015): 087141.
[26] Moliton, André, and Jean‐Michel Nunzi. "How to model the behaviour of organic photovoltaic cells." Polymer International 55.6 (2006): 583-600.
[27] Sunarya, Risa Rahmawati, et al. "Electrocatalytic Activation of a DSSC Graphite Composite Counter Electrode Using In Situ Polymerization of Aniline in a Water/Ethanol Dispersion of Reduced Graphene Oxide." Journal of Electronic Materials 49.5 (2020): 3182-3190.
[28] Wang, Hui, and Yun Hang Hu. "Graphene as a counter electrode material for dye-sensitized solar cells." Energy & Environmental Science 5.8 (2012): 8182-8188.
[29] Yu, Zhou, et al. "One-step synthesis of three-dimensional nitrogen and sulfur co-doped graphene networks as low cost metal-free counter electrodes for dye-sensitized solar cells." Chemical Engineering Journal 311 (2017): 302-309.
[30] Lavin-Lopez, Maria del Prado, et al. "Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method." Industrial & Engineering Chemistry Research 55.50 (2016): 12836-12847.
[31] Akbari, Ebrahim, Iman Akbari, and Mohammad Reza Ebrahimi. "sp2/sp3 bonding ratio dependence of the band-gap in graphene oxide." The European Physical Journal B 92.4 (2019): 1-6.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *