帳號:guest(18.118.189.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:方昱閎
作者(英文):Yu-Hung Fang
論文名稱:金屬銅奈米線成長於柔性材料之電化學應用
論文名稱(英文):Growth of Copper Nanowires on Flexible Material for Electrochemical Applications
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:陳盈竹
蔡志宏
口試委員(英文):ying-chu Chen
Chih-Hung Tsai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:611025002
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:81
關鍵詞:奈米線超級電容可饒式電容析氫反應表面電漿共振
關鍵詞(英文):BismuthCopperNanowiresSupercapacitorFlexible capacitorHydrogen evolution reactionsLocalized surface plasmon resonance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
第一部分的研究利用水熱法的方式,在碳布上(CC)合成了金屬鉍奈米結構應用於非對稱電容器的負極,而正極的部分則是利用電鍍法在碳布上的銅奈米線成長CoxNi1-x(OH)2。本研究中利用FE-SEM確認電極表面為奈米結構有效的增加工作面積,在材料分析部分利用Raman、XRD、XPS可證實材料的成長符合預期,另外CV量測可以展現電容器的穩定性和得知非對稱式電容器的電位窗口為1.7 V,而CP計算出正極、負極、非對稱式的電容值分別為3.1 、1.87、0.95 F cm-2,非對稱式電容也擁有相當不錯功率密度與能量密度的表現,分別為0.38 mWh cm-2 與 3.4 mW cm-2。同時在5000圈的充放電測試中能可以維持87%的效率表現。若將非對稱式電容器封裝成元件,可同時點亮紅色跟黃色的LED燈,並且彎曲不同角度CV曲線也可維持電荷儲存特性。

第二部分將銅奈米線所擁有的LSPR特性用來增強析氫反應,將銅奈米線以硫酸進行蝕刻,使得奈米線的表面產生起伏,增加析氫反應的效率。而銅納米線的LSPR效應所產生的熱電子能改善過電位大小,由152 mV 照射雷射光後下降至139 mV,塔菲爾斜率維持107 mV dec-1左右。並且藉由氣層析儀(GC)證明氫氣的法拉第效率在銅奈米線照光前後皆能維持在90%左右,也證明LSPR效應所產生的熱電子能貢獻於析氫反應,並且使氫氣的產量增加約為18%。
The first part of the thesis, the synthesis of metallic bismuth nanostructure on the carbon cloth (CC) use as a negative electrode of asymmetric supercapacitors by hydrothermal method. In addition, the positive electrode of CoxNi1-x (OH)2 was electrochemically deposited on the Cu NWs/CC surface. The morphology of the electrode surface was analyzed by FE-SEM, and the Raman, XRD and XPS prove the structural and compositional information of electrode materials. The CV measurements can show the redox properties and working potential range of the supercapacitor. Then CP measurements illustrate the positive and negative electrode of capacitance value of 3.1 and 1.87 F cm-2, respectively. Finally, the asymmetric supercapacitor shows the high capacitance of 0.95 F cm-2 at 4 mA cm-2. This novel device has well performance in power density and energy density of 0.38 mWh cm-2 and 3.4 mW cm-2, respectively, and can maintain 87% efficiency after 5000 cycles of charge and discharge test. Furthermore, the asymmetric capacitive device can light up the red and yellow LED simultaneously, and the CV curves maintain the redox shape at different bending angles.

In the second part of the thesis, the LSPR characteristic of copper nanowires are used to enhance the Hydrogen Evolution Reaction (HER). The copper nanowires are etched with sulfuric acid to make roughness on copper nanowires surface and increase the efficiency of the HER. The hot electrons generated by the LSPR of the copper nanowires can improve the overpotential value, which decreases from 152 mV to 139 mV after laser irradiation. The Tafel slope maintain about 107 mV dec-1. Gas Chromatography (GC) analysis proves that the Faradaic efficiency of hydrogen can be maintained about 90% before and after the laser illumination. It was also demonstrated that the hot electrons generated by the LSPR effect contributed to the HER, increasing the hydrogen production by about 18%.
第一章、緒論 1
1.1能源概況 1
1.2能量儲存 2
1.2.1超級電容優勢 2
1.2.2超級電容的應用與展望 3
1.3氫能 4
1.3.1氫氣的特色與取得 4
1.3.2氫能應用與展望 5

第二章、理論基礎與文獻回顧 7
2.1電化學 7
2.1.1簡介 7
2.1.2電化學量測架構 7
2.1.3氧化還原 8
2.1.4法拉第電解定律 8
2.2電化學電容器 9
2.2.1電雙層電容 9

第三章、實驗方法與步驟 19
3.1 負極氧化鉍與正極鈷鎳氫氧化物組成之可撓式非對稱式電容器 19
3.1.1鈷鎳氫氧化物/銅奈米線/碳布製備 19
3.1.2水熱法金屬鉍/碳布製備 21
3.1.3可撓式非對稱式電容器之組裝架構 22
3.2金屬銅奈米線侷域表面電漿共振應用於光電化學產氫 23
3.2.1 銅奈米線/碳布基板製備 23
3.3材料特性分析 24
3.3.1場發射掃瞄式電子顯微鏡 24
3.3.2 X-ray 繞射儀 25
3.3.3 X射線光電子能譜儀 26
3.3.4 拉曼光譜 27
3.3.5 吸收光譜儀 28
3.3.6氣相層析儀 (Gas Chromatography) 29
3.4電化學分析 30
3.4.1循環伏安法(Cyclic Voltammetry) 30
3.4.2計時電位法(Chronopotentiometry) 31
3.4.3線性掃描伏安法(LSV) 31
3.4.4安培法 (Amperometric i-t curve) 31
3.4.5外部量子轉換效率(IPCE) 32
3.4.6電化學交流阻抗頻譜分析(EIS) 32

第四章、結果與討論 33
4.1金屬鉍作為負極之可繞式非對稱式超級電容 33
4.1.1 FE-SEM分析 33
4.1.2 EDS 分析 35
4.1.3 Raman 分析 36
4.1.4 XRD分析 37
4.1.5 XPS分析 38
4.1.5單電極電化學分析 40
4.1.6交流阻抗分析 46
4.1.7鈷鎳氫氧化物/銅奈米線/碳布//金屬鉍/碳布非對稱式電容器 48
4.1.8超級電容器穩定度分析 50
4.1.9 Ragone Plot 51
4.1.10固態式電容封裝測試 52
4.1.11結論 54
4.2 金屬銅奈米線侷域表面電漿共振應用於析氫反應 55
4.2.1 SEM image 56
4.2.2 XRD & XPS 分析 57
4.2.3吸收光譜 58
4.2.4表面積分析 59
4.2.5 LSPR效應增益析氫反應 60
4.2.6不同電極材料線性伏安法分析(LSV) 61
4.2.7不同光波長分析 62
4.2.8不同光功率分析 64
4.2.9文獻比較 66
4.2.10穩定性分析 67
4.2.11腐蝕率 68
4.2.12 EIS 69
4.2.13氣相層析儀 (GC) 70
4.2.14反應後結構分析 71
4.2.15結論 73

第五章、結論與未來展望 74

第六章、參考文獻 75



[1] 台灣電力公司,再生能源發電簡介.
[2] 維基百科,水力發電.
[3] EDN Taiwan,能量儲存策略與發電同樣重要!
[4] 林宜慶,超級電容器技術發展與應用趨勢分析.
[5] 百科知識.Ragone plot
[6] 劉邦毅,氧化錳納米結構應用於寬電位超級電容器與光電容之研究.
[7] Muzaffar, A., Ahamed, M. B., Deshmukh, K., & Thirumalai, J. (2019). A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews, 101, 123-145.
[8] StockFeel 股感,氫燃料電池:是終極能源方案還是愚蠢投資?
[9] 材料世界網,氫能趨勢分析與儲能應用新思維
[10] 黃瑞雄,顏溪成,漫談電化學
[11] 華人百科, 參比電極
[12] Allen J. Bard, Electrochemical Methods: Fundamentals and Applications
[13] Yu, G., Xie, X., Pan, L., Bao, Z., & Cui, Y. (2013). Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2(2), 213-234.
[14] Bélanger, D., Brousse, T., & Long, J. (2008). Manganese oxides: battery materials make the leap to electrochemical capacitors. The Electrochemical Society Interface, 17(1), 49.
[15] Zeng, M., & Li, Y. (2015). Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 3(29), 14942-14962.
[16] 材料牛, 你真的瞭解電催化產氫這些知識嗎?已爲你總結好,快戳!

[17] Eftekhari, A. (2017). Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 42(16), 11053-11077.
[18] Karthik, P. E. "Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment." (2018).
[19] HTEC太極基礎電化學, 電催化中Tafel斜率與決速步.
[20] Shinagawa, T., Garcia-Esparza, A. T., & Takanabe, K. (2015). Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific reports, 5(1), 1-21.
[21] Youn, J. S., Jeong, S., Kang, H., Kovendhan, M., Park, C. M., & Jeon, K. J. (2019). Effect of carbon coating on Cu electrodes for hydrogen production by water splitting. International Journal of Hydrogen Energy, 44(37), 20641-20648.
[22] Wang, L., Hasanzadeh Kafshgari, M., & Meunier, M. (2020). Optical properties and applications of plasmonic‐metal nanoparticles. Advanced Functional Materials, 30(51), 2005400.
[23] Araujo, T. P., Quiroz, J., Barbosa, E. C., & Camargo, P. H. (2019). Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals. Current Opinion in Colloid & Interface Science, 39, 110-122.
[24] Zeng, Y., Lin, Z., Meng, Y., Wang, Y., Yu, M., Lu, X., & Tong, Y. (2016). Flexible Ultrafast Aqueous Rechargeable Ni//Bi Battery Based on Highly Durable Single‐Crystalline Bismuth Nanostructured Anode. Advanced Materials, 28(41), 9188-9195.
[25] 楊紫玲,“氧化氧銅應用於無偏壓光電化學分解水產氫之研究”,國立東華大學光電工程研究所碩士論文,2020
[26] 劉邦毅,“氧化錳奈米結構應用於寬電位超級電容器與光電容之研究”,國立東華大學光電工程研究所碩士論文,2021
[27] 羅聖全,科學基礎研究之重要利器-掃瞄式電子顯微鏡 (SEM)
[28] 國家實驗研究院,利用X-ray 看透材料原子排列結構世界
[29] 米格實驗室,XPS原理及應用
[30] 利泓科技,拉曼光譜儀分析原理
[31] 島津科技,氣相色譜 (GC)
[32] 禪譜科技,基本交流阻抗
[33] Nguyen, T., Boudard, M., Carmezim, M. J., & Montemor, M. F. (2017). NixCo1-x (OH) 2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors. Energy, 126, 208-216.
[34] Zeng, Y., Lin, Z., Meng, Y., Wang, Y., Yu, M., Lu, X., & Tong, Y. (2016). Flexible Ultrafast Aqueous Rechargeable Ni//Bi Battery Based on Highly Durable Single‐Crystalline Bismuth Nanostructured Anode. Advanced Materials, 28(41), 9188-9195.
[35] Wang, W., Liu, W., Zeng, Y., Han, Y., Yu, M., Lu, X., & Tong, Y. (2015). A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Advanced materials, 27(23), 3572-3578.
[36] Chang, Z. H., Feng, D. Y., Huang, Z. H., & Liu, X. X. (2018). Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotube film for supercapacitor. Chemical Engineering Journal, 337, 552-559.
[37] Wang, Y., & Xie, Y. (2020). Electroactive FeS2-modified MoS2 nanosheet for high-performance supercapacitor. Journal of Alloys and Compounds, 824, 153936.
[38] Xiao, X., Ding, T., Yuan, L., Shen, Y., Zhong, Q., Zhang, X., ... & Wang, Z. L. (2012). WO3− x/MoO3− x core/shell nanowires on carbon fabric as an anode for all‐solid‐state asymmetric supercapacitors. Advanced Energy Materials, 2(11), 1328-1332.
[39] Yang, P., Ding, Y., Lin, Z., Chen, Z., Li, Y., Qiang, P., ... & Wang, Z. L. (2014). Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano letters, 14(2), 731-736.
[40] ] Zuo, W., Yang, C., Zang, L., Liang, C., & Liu, X. (2021). One-step hydrothermal synthesis of flower-like MnO2–NixCo1− x (OH) 2@ carbon felt positive electrodes with 3D open porous structure for high-performance asymmetric supercapacitors. Journal of Materials Science, 56(7), 4797-4809.
[41] Sakita, A. M., Della Noce, R., Gastelois, P. L., Macedo, W. A., & Lavall, R. L. (2022). Binder-free graphitic films with high conductivity for supercapacitor devices. Chemical Engineering Journal, 427, 131731.
[42] Wang, N., Wang, X., Zhang, Y., Hou, W., Chang, Y., Song, H., Zhao,Y. & Han, G. (2020). All-in-one flexible asymmetric supercapacitor based on composite of polypyrrole-graphene oxide and poly (3, 4-ethylenedioxythiophene). Journal of Alloys and Compounds, 835, 155299.
[43] Liu, J., Shen, G., Zhao, S., He, X., Zhang, C., Jiang, T., Jiang,J. & Chen, B. (2019). A one-dimensional Ag NW@ NiCo/NiCo (OH) 2 core–shell nanostructured electrode for a flexible and transparent asymmetric supercapacitor. Journal of Materials Chemistry A, 7(14), 8184-8193.
[44] Wang, N., Han, G., Song, H., Xiao, Y., Li, Y., Zhang, Y., & Wang, H. (2018). Integrated flexible supercapacitor based on poly (3, 4-ethylene dioxythiophene) deposited on Au/porous polypropylene film/Au. Journal of Power Sources, 395, 228-236.
[45] Sheng, H., Zhang, X., Ma, Y., Wang, P., Zhou, J., Su, Q., Lan,W. Xie,E. & Zhang, C. J. (2019). Ultrathin, wrinkled, vertically aligned Co (OH) 2 nanosheets/Ag nanowires hybrid network for flexible transparent supercapacitor with high performance. ACS applied materials & interfaces, 11(9), 8992-9001.
[46] Yao, Guo-Ying, et al. "Theoretical calculations for localized surface plasmon resonance effects of Cu/TiO2 nanosphere: Generation, modulation, and application in photocatalysis." Solar Energy Materials and Solar Cells 208 (2020): 110385.
[47] Rodrigues, M. P. D. S., Dourado, A. H., Cutolo, L. D. O., Parreira, L. S., Alves, T. V., Slater, T. J., ... & Cordoba de Torresi, S. I. (2021). Gold–rhodium nanoflowers for the plasmon-enhanced hydrogen evolution reaction under visible light. ACS catalysis, 11(21), 13543-13555.
[48] Li, X., Zhang, J., Zhang, Y., Zhang, R., Chen, D., Zhang, C., ... & Li, N. B. (2020). Copper induced phosphide for enhanced electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 45(41), 21422-21430.
[49] Li, Z., Yu, C., Wen, Y., Gao, Y., Xing, X., Wei, Z., ... & Song, W. (2019). Mesoporous hollow Cu–Ni alloy nanocage from core–shell Cu@ Ni nanocube for efficient hydrogen evolution reaction. ACS Catalysis, 9(6), 5084-5095.
[50] Li, Z., Yu, C., Wen, Y., Gao, Y., Xing, X., Wei, Z., ... & Song, W. (2019). Mesoporous hollow Cu–Ni alloy nanocage from core–shell Cu@ Ni nanocube for efficient hydrogen evolution reaction. ACS Catalysis, 9(6), 5084-5095..
[51] Butt, F. A., Anwar, M., & Unal, U. (2021). Synthesis of metallic copper nanowires using dielectric barrier discharge plasma and their application in hydrogen evolution reaction. International Journal of Hydrogen Energy, 46(36), 18866-18877.
[52] Xu, J., Wang, R., Chen, X., Zhou, R., & Zhang, J. (2020). Cu2SnS3 nanocrystals decorated rGO nanosheets towards efficient and stable hydrogen evolution reaction in both acid and alkaline solutions. Materials Today Energy, 17, 100435.
(此全文20260115後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *