帳號:guest(3.133.145.76)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:鐘裕森
作者(英文):Yu-Sen Zhong
論文名稱:對電極石墨烯奈米複合材料與工作電極表面改性之染料敏化太陽能電池分析
論文名稱(英文):Analysis of Dye-Sensitized Solar Cells with Graphene Nanocomposites as Counter Electrode and Surface Modification of Working Electrode
指導教授:蔡志宏
指導教授(英文):Chih-Hung Tsai
口試委員:莊沁融
游源祥
口試委員(英文):Chin-Jung Chuang
Yuan-Hsiang Yu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:611025016
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:100
關鍵詞:染料敏化太陽能電池工作電極對電極奈米複合材料石墨烯硫化鎳二氧化鈦氫氧化鈉白金
關鍵詞(英文):Dye-sensitized solar cellsworking electrodescounter electrodesnanocompositesGrapheneNickel SulfideTitanium DioxideSodium HydroxidePlatinum
相關次數:
  • 推薦推薦:1
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏收藏:0
染料敏化太陽能電池是一種價格便宜,且室內室外光皆可發電的太陽能電池,可以在室溫,且使用簡易的方法製作,具備可撓性、多彩性與可透光性等等,使得應用範圍廣泛。由於大多為半透明,適合作為建築窗材,像是利用於玻璃帷幕大樓,作為遮陽、絕熱及發電利用。染料敏化太陽能電池由工作電極、對電極、染料、電解液等組成。目前常見使用在對電極的材料是白金。白金是為貴金屬,顧名思義價格高且稀少。

在我的研究中前兩個部份,是將白金對電極替換成由不同重量比的石墨烯為基底組成的奈米複合材料。因對電極需要促使電子與碘電解液的氧化還原,因此大表面積的非凡導體或氧化還原特性強的半導體將成為我的首選。我分別複合了不同重量比硫化鎳和石墨烯,以及複合不同重量比二氧化鈦和石墨烯的材料。對其進行結構、材料分析,電子顯微鏡進行表面型態、樣貌觀察,循環伏安法量測其氧化還原能力,最後量測各項如I-V曲線、EIS曲線、EQE曲線等等的光伏參數。在硫化鎳/石墨烯重量比2:1中有最好的光電轉換效率,而二氧化鈦/石墨烯重量比1:3有最高的轉換效率。

第三部分的研究是將二氧化鈦工作電極,浸泡在氫氧化鈉溶液中,使薄膜表面積增加,且使薄膜有一些Ti-OH鍵結,有文獻稱其為薄膜、介面改性。改性會使導帶負移,雖然導帶負移會導致電流密度下降,同時也會使開路電壓增大,抑制電荷在工作電極復合的機會。製作出完整電池元件後量測各種光伏參數如I-V曲線、EIS曲線、EQE曲線等等的影響,以及使用電子顯微鏡進行表面型態觀察等等。最終結果是二氧化鈦泡在氫氧化鈉中10分鐘的情況下,光電轉換效率最高,高達8.96 %,相比原先沒有使用氫氧化鈉清洗多了1.48 %。
The dye-sensitized solar cell is a cheap solar cell that can generate electricity both indoors and outdoors. It can be produced at room temperature with a simple method. Because most of them are translucent, they are suitable as building window materials, such as glass curtain buildings, for sunshade, heat insulation and power generation. A dye-sensitized solar cell consists of a working electrode, a counter electrode, a dye, and an electrolyte. Platinum is currently the most commonly used material for the counter electrode. Platinum is a precious metal, as the name implies, it is expensive and rare.

In the first two parts of my research, the platinum counter electrode was replaced by a nanocomposite material composed of graphene in different weight ratios. Because the counter electrode needs to promote the redox of electrons and iodine electrolyte, an extraordinary conductor with a large surface area or a semiconductor with strong redox properties will be my first choice. I compounded different weight ratios of nickel sulfide and graphene, and composite materials of different weight ratios of titanium dioxide and graphene. Analyze its structure and materials, observe its surface morphology and appearance with an electron microscope, measure its redox ability by cyclic voltammetry, and finally measure various photovoltaic parameters such as I-V curves, EIS curves, and EQE curves. The best photoelectric conversion efficiency is in the nickel sulfide/graphene weight ratio of 2:1, while the titanium dioxide/graphene weight ratio of 1:3 has the highest conversion efficiency.

The third part of the research is to soak the titanium dioxide working electrode in sodium hydroxide to remove a large amount of fluoride remaining on the surface of the titanium dioxide. Measure the influence of various photovoltaic parameters such as I-V curves, EIS curves, EQE curves, etc. on dye-sensitive solar cells, and use an electron microscope to observe the surface morphology. The final result is that when titanium dioxide is soaked in sodium hydroxide for 10 minutes, the photoelectric conversion efficiency is the highest, as high as 8.94%, which is 1.66% higher than the original cleaning without sodium hydroxide.
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
第二章 石墨烯混合二氧化鈦之奈米複合材料應用於染料敏化太陽能電池對電極之研究 29
第三章 不同比例之石墨烯混合硫化鎳奈米複合材料應用於染料敏化太陽能電池對電極之研究 53
第四章 以氫氧化鈉將二氧化鈦薄膜表面處理應用於染料敏化太陽能電池之工作電極 77
[1] Bernard Aboagye, Samuel Gyamfi, Eric Antwi Ofosu, Sinisa Djordjevic “Status of renewable energy resources for electricity supply in Ghana”(2021)
[2]林裕翔 “奈米複合材料於染料敏化太陽能電池織製備與分析” 國立東華大學(2021)
[3] Nadarajah Kannan, Divagar Vakeesan “Solar energy for future world: - A review”(2016)
[4]蕭宇辰 “染料敏化太陽能電池電極材料與製備方法之研究” 國立東華大學(2014)
[5]中央氣象局 https://south.cwb.gov.tw/inner/GArV1573462514GjWc
[6]Malcolm G “Uptake of Silicon by Sugarcane from Applied Sources May Not Reflect Plant-Available Soil Silicon and Total Silicon Content of Sources”(2017)
[7]國家實驗研究院-科普講堂-傳統矽晶太陽能電池https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K143524098971028797
[8]經濟部工業局-化合物半導體產業技術交流研討會https://www.moeaidb.gov.tw/ctlr?PRO=indparknews.rwdIndparknewsView&id=28342
[9]劉康平 “化合物半導體與聚光行太陽能電池之研究” 國立臺灣海洋大學(2009)
[10]吳鎮國、林鴻、盧以昕、許仲成、陳欣卉 “淺談太陽能電池的原理與應用” 國立台灣大學(2014)
[11]Liu, G., Niu, P., Sun, C. et al “Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4”(2010)
[12]Wang, X., Blechert, S., and Antonietti, M. “Polymeric graphitic carbon nitride for heterogeneous photocatalysis”(2012)
[13]S.N. Karthick1, K.V. Hemalatha, Suresh Kannan Balasingam, F. Manik Clinton, S. Akshaya, Hee-Je Kim “Dye-Sensitized Solar Cells : History,Components,Configuration,and Working Principle”(2019)
[14]M.Ryan, “PGM HIGHLIGHTS:Progress in Ruthenium Complexes for Dye-Sensitised Solar Cells”(2009)
[15]黃建憲 “應用於染料敏化太陽能電池支吾金屬有機染料於不同環境下之光譜動力學研究” 國立交通大學(2000)
[16]Papageorgiou “Counter-electrode function in nanocrystalline photoelectrochemical cell configurations”(2004)
[17]Roman Voloshin, Margarita V. Rodionova “Components of Natural Photosynthetic Apparatus in Solar Cells”(2016)
[18]Wujun Wang “Simulate a Sun for Solar Research: A Literature Review of Solar Simulator Technology”(2014)
[19]王載德 “https://ir.nctu.edu.tw/bitstream/11536/40321/2/581002.pdf” 國立交通大學(2010)
[20]劉晏誠 “以新穎奈米複合材料製備染料敏化太陽能電池對電極之研究” 國立東華大學(2020)
[21]劉茂煌 “分析化學實驗教學成果發表” http://www.teachers.fju.edu.tw/FDIRC/files/981/981015-1.pdf
[22]許曉壟 “石墨烯於染料敏化太陽能電池膠態電解質及對電極之研究” 國立東華大學(2018)
[23]Malak Refaei “Modeling and Simulation of III-Nitride-Based Solar Cells using Nextnano”(2017)
[24] “中興大學化學分析電子能譜儀介紹” https://www.mse.nchu.edu.tw/zh_tw/equipment/property10/%E5%8C%96%E5%AD%B8%E5%88%86%E6%9E%90%E9%9B%BB%E5%AD%90%E8%83%BD%E8%AD%9C%E5%84%80-ESCA-26503315
[25]國立東華大學 “理工學院貴重及共同儀器使用暨管理辦法” https://mse.ndhu.edu.tw/var/file/43/1043/img/277/XRD.pdf
[26]羅聖全 “小奈米大世界之研發奈米科技的基本工具之一電子顯微鏡介紹” 清華大學博士
[27]國立東華大學 “貴重儀器使用中心儀器介紹及收費標準 > FE-SEM介紹” https://equ.ndhu.edu.tw/files/11-1166-15301.php
[28]H. Bi, W. Zhao, S. Sun, H. Cui, T. Lin, F. Huang, X. Xie, M. Jiang “Graphene films
decorated with metal sulfide nanoparticles for use as counter electrodes of dyesensitized solar cells”(2013)
[29]蕭宇辰 “染料敏化太陽能電池電及材料與製備方法之研究”國立東華大學(2014)
[30]https://ir.nctu.edu.tw/bitstream/11536/47640/2/555202.pdf,國立交通大學
[31]A. Sarkar, Amit K. Chakraborty, S. Bera “NiS/rGO nanohybrid: An excellent counter electrode for dye sensitized solar cell”(2018)
[32]林裕翔 “奈米複合材料於染料敏化太陽能電池織製備與分析”國立東華大學(2021)
[33]北京石墨烯研究院 “http://www.bgi-graphene.org/article/168”
[34]Won Seok Chi, Joung Woo Han, Sungeun Yang, Dong Kyu Roh, Hyunjoo Lee, Jong Hak Kim “Employing electrostatic self-assembly of tailored nickel sulfidenanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes”(2012)
[35] François Guillaume, Shanshan Huang, Kenneth D. M. Harris, Michel Couzi, David Talaga “Optical phonons in millerite NiS from single-crystal polarized Raman spectroscopy”(2008)
[36]A. Sarkar, Amit K. Chakraborty, S. Bera “NiS/rGO nanohybrid: An excellent counter electrode for dye sensitized solar cell”(2018)
[37]林裕翔 “奈米複合材料於染料敏化太陽能電池織製備與分析”國立東華大學(2021)
[38] H. W. Nesbitt, D. Legrand & G. M. Bancroft “Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators”(2000)
[39]Hui Bi, Wei Zhao, Shengrui Sun, Houlei Cui, Tianquan Lin, Fuqiang Huang, Xiaoming Xie, Mianheng Jiang “Graphene films decorated with metal sulfide nanoparticles for use as counter electrodes of dye-sensitized solar cells”(2013)
[40]蕭宇辰 “染料敏化太陽能電池電及材料與製備方法之研究”國立東華大學(2014)
[41]Xia Wu, Gaoqing (Max) Lu, Lianzhou Wang “Effect of sodium on photovoltaic properties of dye-sensitized solar cells assembled with anatase TiO2 nanosheets with exposed {0 0 1} facets”(2013)
[42]Jing Zhang, Qian Xu, Meijun Li, Zhaochi Feng, and Can Li “UV Raman Spectroscopic Study on TiO2. II. Effect of Nanoparticle Size on the Outer/Inner Phase Transformations”(2009)
[43]Cham Kim, Jong Tae Kim, Hoyoung Kim, Sung Hwan Park, Kyoung-Cheon Son, Yoon Soo Han “Effects of metal hydroxide-treated photoanode on the performance of hybrid solar cells”(2010)
[44]Tian Liu, Baoyuan Wang, Jian Xie, Quantong Li, Jun Zhang, Muhammad Imran Asghar, Peter D. Lund, Hao Wang “Photovoltaic properties of dye sensitised solar cells using TiO2 nanotube arrays for photoanodes: Role of hydrochloric acid treatment” (2015)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *