帳號:guest(3.144.31.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:張詠翔
作者(英文):Chang-Yung Hsiang
論文名稱:鈦酸鉀奈米棒結構應用於寬電位超級電容器與光電容之研究
論文名稱(英文):Application of Potassium Titanate Nanorods as a wide Operation Potential Supercapacitor and Photo-Charging Supercapacitor
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:徐裕奎
蔡志宏
陳盈竹
口試委員(英文):Yu-Kuei Hsu
Chih-Hung Tsai
Ying-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:611025018
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:51
關鍵詞:鈦酸鉀鎳鈷硫化物插層式超級電容疊層式光電容照光充電
關鍵詞(英文):KTi8O16NiCo2S4intercalation supercapacitorplanar sandwich photo capacitorphoto charge
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
為了解決日益嚴重的全球暖化問題,除了加速綠色能源的開發提升效率之外,使不穩定的綠色能源成為穩定好用的能量儲存裝置也同樣重要,本篇將探討一種插層式電容並對其優化,並加入太陽能電池使其能自行照光充電,成為疊層式的光電容。
在第一部份的研究中,我們利用水熱法生長鈦酸鉀奈米棒,並對其進行製程優化,其特殊的隧道結構能作為具有寬電位窗口的插層式超級電容器。在30 mA/cm2的充放電電流密度下,在電位窗口在1 V ~ 1.8 V 間時,面積電容能保持在1.8 F/cm2,在1 V的電位窗口並用5 mA/cm2的電流密度進行充放電時,能具有6.32 F/cm2的面積電容。我們使用鎳鈷硫與鈦酸鉀搭配組成非對稱式電容,在0 V ~ 1.6 V的電位範圍內以 3 mA/cm2的電流密度量測,其擁有785.6 mF/cm2的電容值,將電解液替換成膠狀電解質後,仍然保有629.3 mF/cm2約80 %的電容值。
第二部分的研究中我們在第一部份的架構上增加染料敏化太陽譨電池,利用鎳鈷硫可同時作為太陽能電池的陰極與電容器正電極的特性,使其成為可自行照光充電的疊層式光電容,並比較其電鍍於不同基板的表現。在30 mW/cm2的光功率密度下,以0.1 mA/cm2的放電速率下能有9.7 mF/cm2的面積電容值,而當光功率密度減弱至10 mW/cm2時,同樣以0.1 mA/cm2的速率放電,能有16.37 mF/cm2的面積電容值。
To solve the problem of global warming, we must not only accelerate the development of green energy, but also support more stable energy storage of green energy. This study will discuss intercalation of supercapacitors, and then adding solar cells to make them self-charging as stacked photo-rechargeable supercapacitors.
In the first part, we grow potassium titanate nanorods using a hydrothermal method and then optimize the synthesis process to achieve the highest capacitance. Potassium titanate nanorods have a special tunnel structure and can be intercalated supercapacitors with a wide potential window. At a charge-discharge current density of 30 mA/cm2, the areal capacitance can be maintained at 1.8 F/cm2 when the potential ranges from 1 V to 1.8 V. At low charge/discharge current densities in the potential range of 5 mA/cm2 down to 1 V, an areal capacitance of 6.32 F/cm2 can be achieved. In addition, an asymmetric supercapacitor with nickel-cobalt sulfide as the positive electrode and potassium titanate as the negative electrode was also tested. The areal capacitance value can be 785.6 mF/cm2 when the potential range is 1.6 V at a charge/discharge current density of 3 mA/cm2. Even when the electrolyte was replaced with a gel electrolyte, the asymmetric supercapacitor retained about 80% of its capacitance value of 629.3 mF/cm2.
In the second part, the dye-sensitized solar cell (DSSC) is combined with an asymmetric supercapacitor to make a photo-rechargeable supercapacitor. It is worth noting that nickel-cobalt sulfide can serve as both the cathode of DSSC and the cathode of supercapacitor electrodes. The effect of different substrates on the performance of DSSCs and supercapacitors was analyzed. In addition, the fabrication of stacked photo-supercapacitors was carried out, realizing photo-rechargeable properties. Under the discharge current density of 0.1 mA/cm2 and the light intensity of 30 mW/cm2, the capacitance value is 9.7 mF/cm2. When the light intensity is reduced to 10 mW/cm2, the capacitance can reach 16.37 mF/cm2.
第一章 緒論 1
1.1. 能源概敘 1
1.2. 能量儲存 2
1.3. 超級電容器 3
1.4. 光電容 4
第二章 理論基礎與文獻回顧 5
2.1. 電化學 5
2.1.1. 簡介 5
2.1.2. 電化學系統 5
2.2. 電化學電容器 6
2.2.1. 電雙層電容(EDLC) 6
2.2.2. 偽電容(Pseudocapacitors) 7
2.2.2.1. 欠電位沉積 7
2.2.2.2. 氧化還原偽電容 7
2.2.2.3. 插層式偽電容 7
2.3. 光電容 8
第三章 實驗製程與量測儀器介紹 9
3.1. 實驗製成 9
3.1.1. 鈦酸鉀奈米棒之寬電位非對稱式超級電容器 9
3.1.2. 疊層式光電容 10
3.1.3. 場發射掃描式電子顯微鏡 13
3.1.4. X 射線繞射儀 14
3.1.5. X射線光電子能譜儀 15
3.1.6. 拉曼光譜儀 16
3.1.7. 電化學分析儀 17
3.1.7.1. 伏安法 17
3.1.7.2. 計時電位法 18
3.1.7.3. 交流阻抗頻譜 18
第四章 結果與討論 19
4.1. 鈦酸鉀與鎳鈷硫之寬電位非對稱超級電容 19
4.1.1. SEM分析 19
4.1.2. XRD分析 22
4.1.3. XPS分析 23
4.1.4. EDS 分析 24
4.1.5. 電化學分析 25
4.1.6. 交流阻抗分析 34
4.1.7. 電化學穩定性分析 36
4.1.8. 泡沫鈦/鈦酸鉀//鎳鈷硫/碳布非對稱式電容器 37
4.1.9. 固態式電容測試 39
4.1.10. 結論 40
4.2. 疊層式光電容 41
4.2.1. 染料敏化太陽能電池對電極測試 42
4.2.2. 染料敏化太陽能電池測試 43
4.2.3. 電容器測試 44
4.2.4. 光電容測試 46
4.2.5. 結論 47
第五章 結論與未來展望 48
第六章 參考資料 49

[1] International Energy Agency, Net zero by 2050
[2] Farag, M. (2013). Lithium-ion batteries: Modelling and state of charge estimation (Doctoral dissertation).
[3] Namsheer, K., & Rout, C. S. (2021). Photo-powered integrated supercapacitors: a review on recent developments, challenges and future perspectives. Journal of Materials Chemistry A, 9(13), 8248-8278
[4] 黃瑞雄,顏溪成,漫談電化學
[5] 禪譜科技,電化學系統
[6] TDK, EDLC Series Electric Double Layer Capacitors/Supercapacitors
[7] 方昱閎,”金屬銅奈米線成長於柔性材料之電化學應用”,國立東華大學光電工程研究所碩士論文,2022
[8] Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 7(5), 1597-1614.
[9] Ng, C. H., Lim, H. N., Hayase, S., Harrison, I., Pandikumar, A., & Huang, N. M. (2015). Potential active materials for photo-supercapacitor: a review. Journal of Power Sources, 296, 169-185.
[10] Zheng, X., Sun, Y., Qin, H., & Ji, Z. (2019). Solar-charged pseudocapacitors: simultaneous conversion and storage of solar energy in ZnO@ NiO nanorod arrays. Journal of Alloys and Compounds, 781, 351-356.
[11] Wang, L., Bu, Y., Wang, M., Wang, M., Wang, D., & Shen, Y. (2022). KTi8O16. 5 Nanobelt Array with the Zero Strain Property for High-Performance Lithium-Ion Batteries with Enhanced Capacity and Rate Capability. ACS Applied Energy Materials, 5(8), 9641-9647.
[12] Yang, P., Wang, S., Hu, J., Sun, X., Shi, J., & Xing, H. (2021). Facile Electrochemical Deposition of Porous NiCo2S4 on FeCo2O4 Array as a Positive Material for Battery-Supercapacitor Hybrid Device. Journal of The Electrochemical Society, 167(16), 160554.
[13] 劉晏誠,”以新穎奈米複合材料製備染料敏化太陽能電池對電極之研究”,國立東華大學光電工程研究所碩士論文,2020
[14] 科學指南針,掃描顯微性(SEM)五大案例在失效分析中應用
[15] 科學指南針,XPS數據整理(一)
[16] 禪譜科技,電化學分析儀
[17] 知乎,極簡電化學
[18] He, C., Bo, T., Ke, Y., Wang, B. T., Tao, J., & Shen, P. K. (2021). Black potassium titanate nanobelts: Ultrafast and durable aqueous redox electrolyte energy storage. Journal of Power Sources, 483, 229140.
[19] Li, D., Guo, W., Li, Y., Tang, Y., Yan, J., Meng, X., ... & Gao, F. (2019). Tunnel structured hollandite K0. 06TiO2 microrods as the negative electrode for 2.4 V flexible all-solid-state asymmetric supercapacitors with high performance. Journal of Power Sources, 413, 34-41.
[20] Chen, X., Liu, H., Zhou, M., Fang, G., Zhang, H., Cai, Z., ... & Zhang, Y. (2022). Construting stable 2× 2 tunnel-structured K1. 28Ti8O16@ N-doped carbon nanofibers for ultralong cycling sodium-ion batteries. Electrochimica Acta, 401, 139522.
[21] Juan, J., Fernandez-Werner, L., Bechthold, P., Jiménez, M. J., Jasen, P. V., Faccio, R., & Gonzalez, E. A. (2021). Thermodynamic functions and vibrational properties of Li intercalation in TiO2 (B). Applied Surface Science, 566, 150679.
[22] Lou, S., Zhao, Y., Wang, J., Yin, G., Du, C., & Sun, X. (2019). Ti‐based oxide anode materials for advanced electrochemical energy storage: lithium/sodium ion batteries and hybrid pseudocapacitors. Small, 15(52), 1904740.
[23] Bamberger, C. E., Begun, G. M., & MacDougall, C. S. (1990). Raman spectroscopy of potassium titanates: Their synthesis, hydrolytic reactions, and thermal stability. Applied Spectroscopy, 44(1), 30-37.
[24] Frank, O., Zukalova, M., Laskova, B., Kürti, J., Koltai, J., & Kavan, L. (2012). Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Physical Chemistry Chemical Physics, 14(42), 14567-14572.
[25] Li, D., Liu, C., Huang, D., Zhang, M., Zhang, X., Gou, H., ... & Wang, G. (2021). Atomic layer deposition regulating hydrated K2Ti6O13 nanobelts on graphene platform with accelerated solid solution potassiation for potassium ion capacitors. Chemical Engineering Journal, 417, 128048.
[26] Majumdar, D. (2021). Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. Journal of Electroanalytical Chemistry, 880, 114825.
[27] Zhang, C., Deng, L., Zhang, P., Ren, X., Li, Y., & He, T. (2017). Mesoporous NiCo 2 O 4 networks with enhanced performance as counter electrodes for dye-sensitized solar cells. Dalton Transactions, 46(13), 4403-4411.
[28] Sun, H., Zhang, L., & Wang, Z. S. (2014). Single-crystal CoSe 2 nanorods as an efficient electrocatalyst for dye-sensitized solar cells. Journal of Materials Chemistry A, 2(38), 16023-16029.
(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *