|
[1] Z. Mahmood, A. Daud, and R. A. Abbasi, "Using machine learning techniques for rising star prediction in basketball," Knowledge-Based Systems, vol. 211,2021. doi: 10.1016/j.knosys.2020.106506. [2] D. Miljković, L. Gajić, A. Kovačević, and Z. Konjović, "The use of data mining for basketball matches outcomes prediction," in IEEE 8th international symposium on intelligent systems and informatics, pp. 309-312, 2010. [3] W. Cai, D. Yu, Z. Wu, X. Du, and T. Zhou, "A hybrid ensemble learning framework for basketball outcomes prediction," Physica A: Statistical Mechanics and its Applications, vol. 528, 2019. doi: 10.1016/j.physa.2019.121461. [4] G. Soliman, A. Misbah, and S. Eldawlatly, "Predicting all star player in the national basketball association using random forest," in 2017 Intelligent Systems Conference (IntelliSys), pp. 706-713, 2017. [5] J. Shi and K. Song, "A discrete-time and finite-state Markov chain based in-play prediction model for NBA basketball matches," Communications in Statistics - Simulation and Computation, vol. 50, no. 11, pp. 3768-3776, 2019. doi: 10.1080/03610918.2019.1633351. [6] M. A Gómez, S. J Ibáñez, I. Parejo, and P. Furley, "The use of classification and regression tree when classifying winning and losing basketball teams," Kinesiology, vol. 49, no. 1, pp. 47-56, 2017. [7] P. F. Pai, L. H. ChangLiao, and K. P. Lin, "Analyzing basketball games by a support vector machines with decision tree model," Neural Computing and Applications, vol. 28, no. 12, pp. 4159-4167, 2016. doi: 10.1007/s00521-016-2321-9. [8] F. Thabtah, L. Zhang, and N. Abdelhamid, "NBA Game Result Prediction Using Feature Analysis and Machine Learning," Annals of Data Science, vol. 6, no. 1, pp. 103-116, 2019, doi: 10.1007/s40745-018-00189-x. [9] F. J. R. Ruiz and F. Perez Cruz, "A generative model for predicting outcomes in college basketball," Journal of Quantitative Analysis in Sports, vol. 11, no. 1, 2015. doi: 10.1515/jqas-2014-0055. [10] F. Ding, Y. Liu, X. Chen, and F. Chen, "Rising Star Evaluation in Heterogeneous Social Network," IEEE Access, vol. 6, pp. 29436-29443, 2018. doi: 10.1109/access.2018.2812923. [11] X. L. Li, C. S. Foo, K. L. Tew, and S. K. Ng, "Searching for rising stars in bibliography networks," in International conference on database systems for advanced applications, pp. 288-292, 2009. [12] A. Daud, R. Abbasi, and F. Muhammad, "Finding Rising Stars in Social Networks," in Database Systems for Advanced Applications, (Lecture Notes in Computer Science, ch. Chapter 4, pp. 13-24, 2013. [13] A. Daud, M. Ahmad, M. S. I. Malik, and D. Che, "Using machine learning techniques for rising star prediction in co-author network," Scientometrics, vol. 102, no. 2, pp. 1687-1711, 2014. doi: 10.1007/s11192-014-1455-8. [14] Y. Nie, Y. Zhu, Q. Lin, S. Zhang, P. Shi, and Z. Niu, "Academic rising star prediction via scholar’s evaluation model and machine learning techniques," Scientometrics, vol. 120, no. 2, pp. 461-476, 2019. doi: 10.1007/s11192-019-03131-x. [15] Z. Ning, Y. Liu, and X. Kong, "Social gene—A new method to find rising stars," in 2017 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1-6, 2017. [16] C. Zhang, C. Liu, L. Yu, Z. K. Zhang, and T. Zhou, "Identifying the academic rising stars via pairwise citation increment ranking," in Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, pp. 475-483, 2017. [17] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, "Lexicon-based methods for sentiment analysis," Computational linguistics, vol. 37, no. 2, pp. 267-307, 2011. [18] A. Jurek, M. D. Mulvenna, and Y. Bi, "Improved lexicon-based sentiment analysis for social media analytics," Security Informatics, vol. 4, no. 1, 2015. doi: 10.1186/s13388-015-0024-x. [19] C. S. G. Khoo and S. B. Johnkhan, "Lexicon-based sentiment analysis: Comparative evaluation of six sentiment lexicons," Journal of Information Science, vol. 44, no. 4, pp. 491-511, 2017. doi: 10.1177/0165551517703514. [20] S. Zhang, Z. Wei, Y. Wang, and T. Liao, "Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary," Future Generation Computer Systems, vol. 81, pp. 395-403, 2018. doi: 10.1016/j.future.2017.09.048. [21] G. Xu, Z. Yu, H. Yao, F. Li, Y. Meng, and X. Wu, "Chinese Text Sentiment Analysis Based on Extended Sentiment Dictionary," IEEE Access, vol. 7, pp. 43749-43762, 2019. doi: 10.1109/access.2019.2907772. [22] A. S. Manek, P. D. Shenoy, M. C. Mohan, and V. K. R, "Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier," World Wide Web, vol. 20, no. 2, pp. 135-154, 2016. doi: 10.1007/s11280-015-0381-x. [23] J. Singh, G. Singh, and R. Singh, "Optimization of sentiment analysis using machine learning classifiers," Human-centric Computing and Information Sciences, vol. 7, no. 1, 2017. doi: 10.1186/s13673-017-0116-3. [24] F. Huang, S. Zhang, J. Zhang, and G. Yu, "Multimodal learning for topic sentiment analysis in microblogging," Neurocomputing, vol. 253, pp. 144-153, 2017. doi: 10.1016/j.neucom.2016.10.086. [25] L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, "Sentiment Analysis of Review Datasets Using Naïve Bayes‘ and K-NN Classifier," International Journal of Information Engineering and Electronic Business, vol. 8, no. 4, pp. 54-62, 2016. doi: 10.5815/ijieeb.2016.04.07. [26] M. R. Huq, A. Ali, and A. Rahman, "Sentiment analysis on Twitter data using KNN and SVM," International Journal of Advanced Computer Science and Applications, vol. 8, no. 6, pp. 19-25, 2017. [27] L. Yang, Y. Li, J. Wang, and R. S. Sherratt, "Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning," IEEE Access, vol. 8, pp. 23522-23530, 2020. doi: 10.1109/access.2020.2969854. [28] Z. Jianqiang, G. Xiaolin, and Z. Xuejun, "Deep Convolution Neural Networks for Twitter Sentiment Analysis," IEEE Access, vol. 6, pp. 23253-23260, 2018. doi: 10.1109/access.2017.2776930. [29] D. Hyun, C. Park, M. C. Yang, I. Song, J. T. Lee, and H. Yu, "Target-aware convolutional neural network for target-level sentiment analysis," Information Sciences, vol. 491, pp. 166-178, 2019. doi: 10.1016/j.ins.2019.03.076. [30] B. Shin, T. Lee, and J. D. Choi, "Lexicon integrated cnn models with attention for sentiment analysis," arXiv preprint arXiv:1610.06272, 2016. [31] H. Chen, S. Li, P. Wu, N. Yi, S. Li, and X. Huang, "Fine-grained Sentiment Analysis of Chinese Reviews Using LSTM Network," Journal of Engineering Science and Technology Review, vol. 11, no. 1, pp. 174-179, 2018. doi: 10.25103/jestr.111.21. [32] F. Hu, L. Li, Z. L. Zhang, J. Y. Wang, and X. F. Xu, "Emphasizing Essential Words for Sentiment Classification Based on Recurrent Neural Networks," Journal of Computer Science and Technology, vol. 32, no. 4, pp. 785-795, 2017. doi: 10.1007/s11390-017-1759-2. [33] J. Devlin, M.W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding". arXiv preprint arXiv:1810.04805. 2018. [34] 支持向量機示意圖, https://docs.opencv.org/2.4/doc/tutorials/ml/i ntroduction_to_svm/introduction_to_svm.html, retrieved on 2021/12/19 [35] 卷積神經網路架構示意圖, https://reurl.cc/AREv48 ,retrieved on 2021/12/23 [36] 遞迴神經網路架構示意圖, https://iter01.com/166306.html ,retrieved on 2021/12/23 [37] 遞迴神經網路應用示意圖, http://karpathy.github.io/2015/05/21/rnn-effectiveness/ retrieved on 2021/12/23 [38] 長短期記憶模型架構示意圖, https://colah.github.io/posts/2015-08-Understanding-LSTMs/ retrieved on 2021/12/28. [39] 邏輯函數(S型函數)示意圖, https://en.wikipedia.org/wiki/File:Log istic-curve.svg, retrieved on 2021/12/23. [40] NBA球員平均生涯壽命, https://nba.udn.com/nba/story/12608/4343695?utm_source=nbataiwan&utm_medium=fb , retrieved on 2022/07/20
|