帳號:guest(52.15.56.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林柏漢
作者(英文):Po-Han Lin
論文名稱:添加鐵有助於提升無機施肥法養殖的珊瑚礁魚苗存活率
論文名稱(英文):Iron supplementation improves the survival rate of coral reef fish larvae cultured by inorganic fertilization method
指導教授:張桂祥
指導教授(英文):Kwee-Siong Tew
口試委員:郭傑民
沈康寧
張桂祥
口試委員(英文):Jimmy Kuo
Kang-Ning Shen
Kwee-Siong Tew
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:611063004
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:86
關鍵詞:無機營養鹽施肥法海水觀賞魚養殖
關鍵詞(英文):Inorganic fertilizationmarine ornamental fish aquacultureiron
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
珊瑚礁觀賞魚受到許多水族愛好者青睞,據估計目前有90%的海水觀賞魚來源主要來自於野外捕撈,但大多數個體會在採集及運輸過程中死亡,因此海水觀賞魚養殖是減輕野外捕撈壓力的解決方法。先前研究顯示,使用無機鹽取代有機肥料施肥並將氮磷營養鹽濃度維持在N: 700 μg L-1 及P:100 μg L-1可增加水體中小型浮游植物及浮游動物的密度,因此可提供仔魚更多種類的餌料生物並提升仔魚存活率。而鐵是植物生長及生理上重要的微量元素,有助於提升養殖環境中的浮游植物量,從而提高生產力。本次實驗目的為優化前人研究的無機營養鹽施肥法,將實驗組營養鹽濃度維持在N: 700 μg L-1 及P:100 μg L-1並每日額外添加10 μg L-1的鐵,而對照組之營養鹽濃度則維持在N: 700 μg L-1 及P:100 μg L-1。結果顯示,添加鐵可顯著提高浮游植物量,進而產生更多的浮游動物,且不影響水質,最終使得仔魚存活率較對照組高了近3倍。本實驗證明無機營養鹽施肥法中添加鐵是提升仔魚存活的有效方法,將有利於海水觀賞魚養殖。
Coral reef ornamental fish are favored by many aquarium enthusiasts. It is estimated that 90% of marine ornamental fish are sourced from wild fishing. Most individuals die during the collection and transportation process. To alleviate the pressure of wild fishing, marine ornamental fish farming is a viable solution. Previous studies have shown that using inorganic nutrients instead of organic fertilizers for fertilization and maintaining the nutrient concentrations at N: 700 μg L-1, P: 100 μg L-1 can increase the growth of small-sized phytoplankton and zooplankton. This, in turn, provide a wider range of food sources for larvae fish, leading to increased survival rates. Iron, as an essential trace element for plant growth and physiology, plays a crucial role in promoting phytoplankton abundance in the culture environment. The objective of this experiment was to optimize the previous studied inorganic fertilization method. Two experiments were conducted with the experimental group maintained a nutrient concentration at N: 700 μg L-1 and P: 100 μg L-1 with a daily addition of 10 μg L-1 of iron, The control group maintained a nutrient concentration of N: 700 μg L-1 and P: 100 μg L-1. The results showed that the addition of iron increased phytoplankton abundance as compared to the control group, subsequently leading to higher zooplankton production without adversely affecting water quality. Ultimately the survival rate of larvae fish in the experimental group was nearly three times higher than that of the control group. These findings confirm that incorporating iron through inorganic fertilization is an effective approach to enhance larval survival, thus benefiting the cultivation of marine ornamental fish.
摘要 I
Abstract III
表目錄 IX
圖目錄 XI
第一章 前言 1
1.1海水觀賞魚市場與來源 1
1.2海水觀賞魚養殖瓶頸 2
1.3浮游植物 3
1.4有機施肥法 4
1.5無機施肥法 4
1.6微量元素—鐵 6
1.7研究目的 7
第二章 材料與方法 9
2.1實驗地點 9
2.2實驗設計 9
2.3實驗流程 10
2.4魚卵來源 10
2.5魚卵孵化率計算 10
2.6基本水質測定 11
2.7營養鹽測定 11
2.8葉綠素a測定 12
2.9浮游動物計數 13
2.10仔稚魚存活率計算 13
2.11次世代定序(NGS)樣本製備 13
2.12 OTU(operational taxonomic units)分析 14
2.13統計分析 14
第三章 結果 17
3.1第一次實驗 17
3.1.1孵化率 17
3.1.2基本水質 17
3.1.3營養鹽濃度 19
3.1.4浮游植物之葉綠素a濃度 20
3.1.5浮游動物密度 21
3.1.6存活仔魚數與仔魚存活率 22
3.1.7存活仔魚組成 22
3.2第二次實驗 26
3.2.1孵化率 26
3.2.2基本水質 26
3.2.3營養鹽濃度 27
3.2.4浮游植物之葉綠素a濃度 29
3.2.5浮游動物密度 30
3.2.6存活仔魚數與仔魚存活率 30
3.2.7存活仔魚組成 31
3.2.8水體及仔魚胃內容物之生物組成 31
第四章 討論 35
第五章 結論 43
參考文獻 45
附錄 79
Afshari, A., Sourinejad, I., Gharaei, A., Johari, S. A., & Ghasemi, Z. (2021). The effects of diet supplementation with inorganic and nanoparticulate iron and copper on growth performance, blood biochemical parameters, antioxidant response and immune function of snow trout Schizothorax zarudnyi (Nikolskii, 1897). Aquaculture, 539, 736638.
Alderdice, D., & Forrester, C. (1968). Some effects of salinity and temperature on early development and survival of the English sole (Parophrys vetulus). Journal of the Fisheries Board of Canada, 25, 495-521.
Aragão, C., Conceição, L. E., Dinis, M. T., & Fyhn, H. J. (2004). Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture, 234, 429-445.
Arndt, H., Dietrich, D., Auer, B., Cleven, E. J., Grafenhan, T., Weitere, M., & Mylnikov, A. P. (2000). Functional diversity of heterotrophic flagellates in aquatic ecosystems. Systematics Association Special Volume, 59, 240-268.
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer Reil, L. A., & Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series. Oldendorf, 10, 257-263.
Barroso, M., De Carvalho, C., Antoniassi, R., & Cerqueira, V. (2013). Use of the copepod Acartia tonsa as the first live food for larvae of the fat snook Centropomus parallelus. Aquaculture, 388, 153-158.
Basford, A. J., Mos, B., Mishina, T., & Dworjanyn, S. A. (2019). Oyster larvae as a potential first feed for small-mouthed ornamental larval fish. Aquaculture Environment Interactions, 11, 657-669.
Bell, J., McEvoy, L., Estevez, A., Shields, R., & Sargent, J. (2003). Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture, 227, 211-220.
Bergerhouse, D. L. (1992). Lethal effects of elevated pH and ammonia on early life stages of walleye. North American Journal of Fisheries Management, 12, 356-366.
Brown, V. (1968). The calculation of the acute toxicity of mixtures of poisons to rainbow trout. Water Research, 2, 723-733.
Brownell, C. L. (1980). Water quality requirements for first-feeding in marine fish larvae. II. pH, oxygen, and carbon dioxide. Journal of Experimental Marine Biology and Ecology, 44, 285-298.
Bury, N., & Grosell, M. (2003). Iron acquisition by teleost fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135, 97-105.
Cabrera, T., & Hur, S. B. (2001). The nutritional value of live foods on the larval growth and survival of Japanese flounder, Paralichthys olivaceus. Journal of Applied Aquaculture, 11, 35-53.
Callan, C. K., Burgess, A. I., Rothe, C. R., & Touse, R. (2018). Development of improved feeding methods in the culture of yellow tang, Zebrasoma flavescens. Journal of the World Aquaculture Society, 49, 493-503.
Cárdenas, J., Rivas, J., Paneque, A., & Losada, M. (1972). Effect of iron supply on the activities of the nitrate-reducing system from Chlorella. Archiv für Mikrobiologie, 81, 260-263.
Cassiano, E. J., Ohs, C. L., & DiMaggio, M. A. (2012). Stress survival in larvae of Florida Pompano (Trachinotus carolinus) fed enriched rotifers (Brachionus plicatilis) and nauplii of the Calanoid copepod (Pseudodiaptomus pelagicus). Israeli Journal of Aquaculture-Bamidgeh, 64, 1-7.
Cassiano, E. J., Wittenrich, M. L., Waltzek, T. B., Steckler, N. K., Barden, K. P., & Watson, C. A. (2015). Utilizing public aquariums and molecular identification techniques to address the larviculture potential of Pacific blue tangs (Paracanthurus hepatus), semicircle angelfish (Pomacanthus semicirculatus), and bannerfish (Heniochus sp.). Aquaculture International, 23, 253-265.
Chen, J. Y., & Zeng, C. (2021). The effects of live prey and greenwater on the early larval rearing of orchid dottyback Pseudochromis fridmani. Aquaculture, 543, 737008.
Chen, J. Y., Zeng, C., Jerry, D. R., & Cobcroft, J. M. (2020). Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners. Reviews in Aquaculture, 12, 1518-1541.
Chiu, P. S., Leu, M. Y., & Meng, P. J. (2019). Year‐round natural spawning, early development, and the effects of temperature, salinity and prey density on captive ornate goby Istigobius ornatus (Rüppell, 1830) larval survival. Aquaculture Research, 50, 173-187.
Coats, D. W. (1999). Parasitic life styles of marine dinoflagellates 1. Journal of Eukaryotic Microbiology, 46, 402-409.
Cobcroft, J. M., & Battaglene, S. C. (2009). Jaw malformation in striped trumpeter Latris lineata larvae linked to walling behaviour and tank colour. Aquaculture, 289, 274-282.
Cobcroft, J. M., Shu Chien, A. C., Kuah, M. K., Jaya-Ram, A., & Battaglene, S. C. (2012). The effects of tank colour, live food enrichment and greenwater on the early onset of jaw malformation in striped trumpeter larvae. Aquaculture, 356, 61-72.
Conceição, L. E., Yúfera, M., Makridis, P., Morais, S., & Dinis, M. T. (2010). Live feeds for early stages of fish rearing. Aquaculture Research, 41, 613-640.
Culver, D., & Geddes, M. (1993). Limnology of rearing ponds for Australian fish larvae: relationships among water quality, phytoplankton, zooplankton, and the growth of larval fish. Marine and Freshwater Research, 44, 537-551.
Culver, D. A. (1991). Effects of the N: P ratio in fertilizer for fish hatchery ponds. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen, 24, 1503-1507.
Culver, D. A., Madon, S. P., & Qin, J. (1994). Percid pond production techniques: timing, enrichment, and stocking density manipulation. Journal of Applied Aquaculture, 2, 9-32.
Dalabajan, D. (2005). Fixing the broken net: Improving enforcement of laws regulating cyanide fishing in the Calamianes Group of Islands, Philippines. SPC Live Reef Fish Information Bulletin, 15, 3-12.
Das, S. (2022). Role of iron fertilization on the changes of chlorophyll concentration and fish production in the brackish water ponds of Indian Sundarbans. Pond Ecosystems of the Indian Sundarbans, 112, 85-92.
Degidio, J. M. L., Yanong, R. P., Ohs, C. L., Watson, C. A., Cassiano, E. J., & Barden, K. (2018). First feeding parameters of the milletseed butterflyfish Chaetodon miliaris. Aquaculture Research, 49, 1087-1094.
DiMaggio, M. A., Cassiano, E. J., Barden, K. P., Ramee, S. W., Ohs, C. L., & Watson, C. A. (2017). First record of captive larval culture and metamorphosis of the Pacific blue tang, Paracanthurus hepatus. Journal of the World Aquaculture Society, 48, 393-401.
Dobbins, D. A., & Boyd, C. E. (1976). Phosphorus and potassium fertilization of sunfish ponds. Transactions of the American Fisheries Society, 105, 536-540.
Ekelund, F., & Patterson, D. J. (1997). Some heterotrophic flagellates from a cultivated garden soil in Australia. Archiv für Protistenkunde, 148, 461-478.
Ekelund, F., Rønn, R., & Griffiths, B. S. (2001). Quantitative estimation of flagellate community structure and diversity in soil samples. Protist, 152, 301-314.
Fenchel, T., & Patterson, D. (1988). Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Marine Microbial Food Webs, 3, 9-19.
Geider, R. J., & La Roche, J. (1994). The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Research, 39, 275-301.
Govoni, J. J., Hoss, D. E., & Chester, A. J. (1983). Comparative feeding of three species of larval fishes in the northern Gulf of Mexico: Brevoortia patronus, Leiostomus xanthurus, and Micropogonias undulatus. Marine Ecology Progress Series, 13, 189-199.
Guillou, L., Chrétiennot-Dinet, M. J., Boulben, S., Moon-van Der Staay, S. Y., & Vaulot, D. (1999). Symbiomonas scintillans gen. et sp. nov. and Picophagus flagellatus gen. et sp. nov.(Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist, 150, 383-398.
Hamre, K., Srivastava, A., Rønnestad, I., Mangor‐Jensen, A., & Stoss, J. (2008). Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquaculture Nutrition, 14, 51-60.
Harder, C. B., Ekelund, F., & Karpov, S. A. (2014). Ultrastructure and phylogenetic position of Regin rotiferus and Otto terricolus genera et species novae (Bicosoecida, Heterokonta/Stramenopiles). Protist, 165, 144-160.
Harding, J. M. (1999). Selective feeding behavior of larval naked gobies Gobiosoma bosc and blennies Chasmodes bosquianus and Hypsoblennius hentzi: preferences for bivalve veligers. Marine Ecology Progress Series, 179, 145-153.
Harding, J. M., Allen, D. M., Dingley, S., Tremont, R. M., Krug, S. M., & Armstrong, C. T. (2015). Ontogenetic changes in predator–prey interactions between two species of larval fishes and oyster veligers. Journal of Experimental Marine Biology and Ecology, 471, 164-174.
Harvey, H. R., Ederington, M. C., & Mcmanus, G. B. (1997). Lipid composition of the marine ciliates Pleuronema sp. and Fabrea salina: Shifts in response to changes in diet. Journal of Eukaryotic Microbiology, 44, 189-193.
Herrera, G., & Bernal, P. (2004). Food size selectivity and diet overlap in larvae of Clupeiform species from central Chile. CBM-Cahiers de Biologie Marine., 45, 1-8.
Hessen, D. O., Faafeng, B. A., Brettum, P., & Andersen, T. (2006). Nutrient enrichment and planktonic biomass ratios in lakes. Ecosystems, 9, 516-527.
Holliday, G. (1969). The effects of salinity on the eggs and larvae of teleosts. Fish Physiology, 1, 293-311.
Holt, G. J. (2003). Research on culturing the early life stages of marine ornamental fish. Marine Ornamental Species: Collection, Culture and Conservation, John Wiley and Sons, New York, pp. 252-254.
Hong, G. K., Kuo, J., & Tew, K. S. (2023). Iron fertilization can enhance the mass production of copepod, Pseudodiaptomus annandalei, for Fish Aquaculture. Life, 13, 529.
Hong, G. K., & Tew, K. S. (2022). The advantages of inorganic fertilization for the mass production of copepods as food for fish larvae in aquaculture. Life, 12, 441.
Howell, B. (1979). Experiments of the rearing of larval turbot, Scophthalmus maximus L. Aquaculture, 18, 215-225.
Jacob, A. P., & Culver, D. A. (2010). Experimental evaluation of the impacts of reduced inorganic phosphorus fertilization rates on juvenile saugeye production. Aquaculture, 304, 22-33.
Kamiyama, T. (1994). The impact of grazing by microzooplankton in northern Hiroshima Bay, the Seto Inland Seam, Japan. Marine Biology, 119, 77-88.
Kasozi, N., Tandlich, R., Fick, M., Kaiser, H., & Wilhelmi, B. (2019). Iron supplementation and management in aquaponic systems: A review. Aquaculture Reports, 15, 100221.
Kawakami, T., & Tachihara, K. (2005). Diet shift of larval and juvenile landlocked Ryukyu-ayu Plecoglossus altivelis ryukyuensis in the Fukuji Reservoir, Okinawa Island, Japan. Fisheries Science, 71, 1003-1009.
Kim, E., Yubuki, N., Leander, B. S., & Graham, L. E. (2010). Ultrastructure and 18S rDNA phylogeny of Apoikia lindahlii comb. nov. (Chrysophyceae) and its epibiontic protists, Filos agilis gen. et sp. nov.(Bicosoecida) and Nanos amicus gen. et sp. nov.(Bicosoecida). Protist, 161, 177-196.
Kuo, J., Chen, C. Y., Han, C. C., Ju, Y. M., & Tew, K. S. (2021). Analyses of diet preference of larval orange-spotted grouper (Epinephelus coioides) grown under inorganic fertilization method using next-generation sequencing. Aquaculture, 531, 735916.
Leu, M.Y.; Hsu, Y.C.; Tu, Y.H.; Chiu, P.S.; Yu, B.H.; Wang, J.B.; Tew, K.S.; Meng, P.J. (2022). Natural spawning, early development and first successful hatchery production of the bluestreak cleaner wrasse, Labroides dimidiatus (Valenciennes, 1839), with application of an inorganic fertilization method in larviculture. Aquaculture , 553, 738056.
Leu, M. Y., Tai, K. Y., Meng, P. J., Tang, C. H., Wang, P. H., & Tew, K. S. (2018). Embryonic, larval and juvenile development of the longfin batfish, Platax teira (Forsskål, 1775) under controlled conditions with special regard to mitigate cannibalism for larviculture. Aquaculture, 493, 204-213.
Leu, M. Y., Liou, C. H., Wang, W. H., Yang, S. D., & Meng, P. J. (2009). Natural spawning, early development and first feeding of the semicircle angelfish [Pomacanthus semicirculatus (Cuvier, 1831)] in captivity. Aquaculture Research, 40, 1019-1030.
Levich, A., & Bulgakov, N. (1992). Regulation of species and size composition in phytoplankton communities in situ by N: P' ratio. Journal of Fisheries and Aquatic Sciences, 44, 1763-1714.
Lewis Jr, W. M., & Morris, D. P. (1986). Toxicity of nitrite to fish: a review. Transactions of the American Fisheries Society, 115, 183-195.
Li, C., Song, S., Liu, Y., & Chen, T. (2014). Occurrence of Amoebophrya spp. infection in planktonic dinoflagellates in Changjiang (Yangtze River) Estuary, China. Harmful Algae, 37, 117-124.
Liao, I. C., Su, H. M., & Chang, E. Y. (2001). Techniques in finfish larviculture in Taiwan. Aquaculture, 200, 1-31.
Lucu, Č. (1989). Evidence for Cl− exchangers in perfused Carcinus gills. Comparative Biochemistry and Physiology Part A: Physiology, 92, 415-420.
Lyon, D. D., & Fisher, M. R. (1998). Temperature and pH-related mortality of Red Drum larvae in fertilized culture ponds. The Progressive Fish-Culturist, 60, 227-230.
Ma, Z., Qin, J. G., Hutchinson, W., & Chen, B. N. (2013). Food consumption and selectivity by larval yellowtail kingfish Seriola lalandi cultured at different live feed densities. Aquaculture Nutrition, 19, 523-534.
Madhu, K., Madhu, R., & Retheesh, T. (2016). Spawning, embryonic development and larval culture of redhead dottyback Pseudochromis dilectus Lubbock, 1976 under captivity. Aquaculture, 459, 73-83.
Majoris, J. E., Francisco, F. A., Atema, J., & Buston, P. M. (2018). Reproduction, early development, and larval rearing strategies for two sponge-dwelling neon gobies, Elacatinus lori and E. colini. Aquaculture, 483, 286-295.
Mcevoy, L., Naess, T., Bell, J., & Lie, Ø. (1998). Lipid and fatty acid composition of normal and malpigmented Atlantic halibut (Hippoglossus hippoglossus) fed enriched Artemia: a comparison with fry fed wild copepods. Aquaculture, 163, 237-250.
McKinnon, A., Duggan, S., Nichols, P., Rimmer, M., Semmens, G., & Robino, B. (2003). The potential of tropical paracalanid copepods as live feeds in aquaculture. Aquaculture, 223, 89-106.
Moorhead, J. A., & Zeng, C. (2011). Breeding of the forktail blenny Meiacanthus atrodorsalis: broodstock management and larval rearing. Aquaculture, 318, 248-252.
Murray, J. M., Bersuder, P., Davis, S., & Losada, S. (2020). Detecting illegal cyanide fishing: Establishing the evidence base for a reliable, post-collection test. Marine Pollution Bulletin, 150, 110770.
Mustafa, G., Wakamatsu, S., Takeda, T. A., Umino, T., & Nakagawa, H. (1995). Effects of algae meal as feed additive on growth, feed efficiency, and body composition in red sea bream. Fisheries Science, 61, 25-28.
Naas, K., & Harboe, T. (1992). Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water. Aquaculture, 105, 143-156.
Nack, C. C., Limburg, K. E., & Schmidt, R. E. (2015). Diet composition and feeding behavior of larval American Shad, Alosa sapidissima (Wilson), after the introduction of the invasive zebra mussel, Dreissena polymorpha (Pallas), in the Hudson River estuary, NY. Northeastern Naturalist, 22, 437-450.
Nagano, N., Iwatsuki, Y., Kamiyama, T., & Nakata, H. (2000). Effects of marine ciliates on survivability of the first-feeding larval surgeonfish, Paracanthurus hepatus: laboratory rearing experiments. Hydrobiologia, 432, 149-157.
O'Brien, W. J., & Denoyelles Jr, F. (1972). Photosynthetically elevated pH as a factor in zooplankton mortality in nutrient enriched ponds. Ecology, 53, 605-614.
O’Kelly, C. J., & Nerad, T. A. (1998). Kinetid architecture and bicosoecid affinities of the marine heterotrophic nanoflagellate Caecitellus parvulus (Griessmann, 1913) Patterson et al., 1993. European Journal of Protistology, 34, 369-375.
Olivotto, I., Piccinetti, C. C., Avella, M. A., Rubio, C. M., & Carnevali, O. (2010). Feeding strategies for striped blenny Meiacanthus grammistes larvae. Aquaculture Research, 41, e307-e315.
Olivotto, I., Planas, M., Simões, N., Holt, G. J., Avella, M. A., & Calado, R. (2011). Advances in breeding and rearing marine ornamentals. Journal of the World Aquaculture Society, 42, 135-166.
Ostrowski, A. C., & Laidley, C. W. (2001). Application of marine foodfish techniques in marine ornamental aquaculture: reproduction and larval first feeding. Aquarium Sciences and Conservation, 3, 191-204.
Palmer, P. J., Burke, M. J., Palmer, C. J., & Burke, J. B. (2007). Developments in controlled green-water larval culture technologies for estuarine fishes in Queensland, Australia and elsewhere. Aquaculture, 272, 1-21.
Palmtag, M. R. (2017). The marine ornamental species trade. Marine Ornamental Species Aquaculture, John Wiley & Sons, New York, pp. 3-14.
Pandey, B. D., & Yeragi, S. (2004). Preliminary and mass culture experiments on a heterotrichous ciliate, Fabrea salina. Aquaculture, 232, 241-254.
Park, J. S., Cho, B. C., & Simpson, A. G. (2006). Halocafeteria seosinensis gen. et sp. nov.(Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles, 10, 493-504.
Park, J. S., & Simpson, A. G. (2010). Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles. Environmental Microbiology, 12, 1173-1184.
Park, M. G., Yih, W., & Coats, D. W. (2004). Parasites and phytoplankton, with special emphasis on dinoflagellate infections. Journal of Eukaryotic Microbiology, 51, 145-155.
Payne, M., Rippingale, R., & Cleary, J. (2001). Cultured copepods as food for West Australian dhufish (Glaucosoma hebraicum) and pink snapper (Pagrus auratus) larvae. Aquaculture, 194, 137-150.
Pick, F. R., & Lean, D. R. (1987). The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. New Zealand Journal of Marine and Freshwater Research, 21, 425-434.
Prakash, S., Kumar, T. T. A., Raghavan, R., Rhyne, A., Tlusty, M. F., & Subramoniam, T. (2017). Marine aquarium trade in India: Challenges and opportunities for conservation and policy. Marine Policy, 77, 120-129.
Qin, J., & Culver, D. A. (1992). The survival and growth of larval walleye, Stizostedion vitreum, and trophic dynamics in fertilized ponds. Aquaculture, 108, 257-276.
Qin, J. G. (2012). Management strategy 1: manipulation of pond nutrient ratios. Aquaculture Pond Fertilization: Impacts of Nutrient Input on Production, John Wiley & Sons, New York, pp. 93-109.
Rajkumar, M. (2006). Suitability of the copepod, Acartia clausi as a live feed for Seabass larvae (Lates calcarifer Bloch): Compared to traditional live-food organisms with special emphasis on the nutritional value. Aquaculture, 261, 649-658.
Randall, D. J., & Tsui, T. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45, 17-23.
Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205-221.
Reitan, K. I., Rainuzzo, J. R., Øie, G., & Olsen, Y. (1993). Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture, 118, 257-275.
Rhee, G. Y. (1978). Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography, 23, 10-25.
Rønnestad, I., Thorsen, A., & Finn, R. N. (1999). Fish larval nutrition: a review of recent advances in the roles of amino acids. Aquaculture, 177, 201-216.
Rueler, J. G., & Ades, D. R. (1987). The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae). Journal of Phycology, 23, 452-457.
Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science, 195, 260-262.
Schrader, K. K., & Dennis, M. E. (2005). Cyanobacteria and earthy/musty compounds found in commercial catfish (Ictalurus punctatus) ponds in the Mississippi Delta and Mississippi–Alabama Blackland Prairie. Water Research, 39, 2807-2814.
Shan, X., & Lin, M. (2014). Effects of algae and live food density on the feeding ability, growth and survival of miiuy croaker during early development. Aquaculture, 428, 284-289.
Shao, L., & Zeng, C. (2020). Survival, growth, ingestion rate and foraging behavior of larval green mandarin fish (Synchiropus splendidus) fed copepods only versus co-fed copepods with rotifers. Aquaculture, 520, 734958.
Shields, R. J., Bell, J. G., Luizi, F. S., Gara, B., Bromage, N. R., & Sargent, J. R. (1999). Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. The Journal of Nutrition, 129, 1186-1194.
Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221, 669-671.
Soderberg, R. W., Kirby, J. M., & Marcinko, M. T. (2000). Lack of response of juvenile walleyes to increased levels of fertilization or liming in soft-water ponds. North American Journal of Aquaculture, 62, 26-32.
Spencer, P., Pollock, R., & Dubé, M. (2008). Effects of un-ionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus). Aquatic Toxicology, 90, 300-309.
Spotte, S. (1979). Fish and invertebrate culture: Water Management in Closed Systems. John Wiley & Sons, New York.
Stevens, C., Croft, D., Paull, G., & Tyler, C. (2017). Stress and welfare in ornamental fishes: what can be learned from aquaculture? Journal of Fish Biology, 91, 409-428.
Støttrup, J. (2000). The elusive copepods: their production and suitability in marine aquaculture. Aquaculture Research, 31, 703-711.
Street, J. H., & Paytan, A. (2005). Iron, phytoplankton growth, and the carbon cycle. Metal Ions in Biological Systems, 43,153-193.
Stuart, K. R., & Drawbridge, M. (2011). The effect of light intensity and green water on survival and growth of cultured larval California yellowtail (Seriola lalandi). Aquaculture, 321, 152-156.
Takeda, S. (1998). Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393, 774-777.
Taniguchi, A. (1977). Biomass and size composition of copepod nauplii and tintinnids in the Philippine Sea and the Celebes Sea, summer 1972. Bulletin of Plankton Society of Japan, 24, 1-10.
Tew, K. S., Chang, Y. C., Meng, P. J., Leu, M. Y., & Glover, D. C. (2016). Towards sustainable exhibits–application of an inorganic fertilization method in coral reef fish larviculture in an aquarium. Aquaculture Research, 47, 2748-2756.
Tew, K. S., Conroy, J. D., & Culver, D. A. (2006). Effects of lowered inorganic phosphorus fertilization rates on pond production of percid fingerlings. Aquaculture, 255, 436-446.
Tew, K. S., Meng, P. J., Lin, H. S., Chen, J. H., & Leu, M. Y. (2013). Experimental evaluation of inorganic fertilization in larval giant grouper (E pinephelus lanceolatus Bloch) production. Aquaculture Research, 44, 439-450.
Tice, B. J., Soderberg, R. W., Kirby, J. M., & Marcinko, M. T. (1996). Growth and survival of walleyes reared in ponds fertilized with organic or inorganic materials. The Progressive Fish Culturist, 58, 135-139.
Tilman, D. (1977). Resource competition between plankton algae: an experimental and theoretical approach. Ecology, 58, 338-348.
Verhagen, F. J., Zölffel, M., Brugerolle, G., & Patterson, D. J. (1994). Adriamonas peritocrescens gen. nov., sp. nov., a new free-living soil flagellate (Protista, Pseudodendromonadidae incertae sedis). European Journal of Protistology, 30, 295-308.
Watanabe, T., & Kiron, V. (1994). Prospects in larval fish dietetics. Aquaculture, 124, 223-251.
Watson, A., Liss, P., & Duce, R. (1991). Design of a small‐scale in situ iron fertilization experiment. Limnology and Oceanography, 36, 1960-1965.
Weihrauch, D., Morris, S., & Towle, D. W. (2004). Ammonia excretion in aquatic and terrestrial crabs. Journal of Experimental Biology, 207, 4491-4504.
Wheaton, F. W. (1977). Aquacultural Engineering. Wiley-Interscience, New York.
Yeh, H. D., Questel, J. M., Maas, K. R., & Bucklin, A. (2020). Metabarcoding analysis of regional variation in gut contents of the copepod Calanus finmarchicus in the North Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 180, 104738.
Zeng, C., Shao, L., Ricketts, A., & Moorhead, J. (2018). The importance of copepods as live feed for larval rearing of the green mandarin fish Synchiropus splendidus. Aquaculture, 491, 65-71.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *