帳號:guest(13.59.66.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:石楷
作者(英文):Koi Siek
論文名稱:以幾何形態和耳石微型結構探討溫度對尖翅燕魚生活史初期個體發生的影響
論文名稱(英文):Explore the effect of temperature on the ontogeny of Platax teira early life stage using geometric morphologic and otolith microstructure method
指導教授:謝泓諺
張桂祥
指導教授(英文):Hung-Yen Hsieh
Kwee-Siong Tew
口試委員:張至維
林秀瑾
張桂祥
口試委員(英文):Chih-Wei Chang
Hsiu-Chin Lin
Kwee-Siong Tew
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:611063015
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:72
關鍵詞:暖化初期生活史仔魚耳石幾何形態形態指標
關鍵詞(英文):warmingearly life stagelarvaeotolithgeometric morphologyshape indices
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
IPCC 2021報告預測RCP8.5情境下,平均海水溫度在2040年將升溫3℃。許多研究透過耳石形態與結構,發現變溫動物的魚類代謝速率受環境溫度變化影響其生長與形態發育。而生物的形態與其特徵功能相關,潛在著影響行為的表現。由於仔稚魚時期的生理恆定尚未發育成熟,較易觀察到環境壓力的影響。因此本實驗利用幾何形態分析和耳石形態指數探討暖化對尖翅燕魚(Platax teira)仔稚魚前段身軀和矢狀耳石形態變化。結果顯示在不同溫度下孵化後第10天的仔魚存活率無顯著差異,升溫3℃仍在該物種仔魚期的代謝最適溫度範圍。但在不同的水溫發育下,其生長表現、身軀前段形態和耳石形態具顯著差異:27℃控制組的體長較短,乾重較輕,耳石型態較小且呈平滑的圓形,前段身驅偏流線形態;30℃暖化組體長較長,乾重較重,耳石型態較大且呈波紋輪廓的不規則四邊形,前段身驅偏短壯形態。樣本個體的體型與形態間具顯著的正相關,呈現異速生長現象,但解釋度低。未來可透過其他實驗設計與形態分析方法,來進一步了解氣候變遷海水暖化對魚類完整生活史之形態和行為表現的影響。
IPCC 2021 report predicted in RCP8.5 scenario, the mean temperature of ocean will increase 3℃ globally in 2040. Many researches revealed that the metabolic rate of fish, which are ectotherms varies with the change of environment temperature by otolith shape and structure, can affect their growth and morphological development. The morphology of organisms closely related to functional traits that potentially effect behaviour performance. Because the physiologic homeostasis of larval stage is immature, it is easier to observe the effect of external pressures. Therefore, this study used the geometric morphologic analysis and otolith shape indices to explore the warming effect on the preanal portion and the sagittal otolith shape change of Platax teira larvae. The results showed that there was no significant difference in survival rate on 10th day post hatching under different rearing temperature, rising of 3℃ of water temperature still within metabolic optimum temperature range of this species. However, under different temperature of rearing conditions, their growth performance, morphology of preanal portion and otolith shape were significantly different. Under 27℃ control treatment, the body length are shorter with lighter dry weight, the otolith are smaller with smooth, rounded shape and preanal portion trend in stream-lined shape. The 30℃ warming treatment resulted in longer body length with heavier dry weight, larger otolith with a wavy contour and robust preanal portion. There was a significant positive correlation between size and shape of larvae, which showed ontogeny allometric but with low degree of interpretation. In order to understand the adaption of fish under climate change, the effects of ocean warming to the morphology of other life stage and behavior performance need further to be examined by other design of experiment and morphology analysis.
誌謝 i
摘要 iii
Abstract v
目錄 vii
表目錄 ix
圖目錄 xi
附表目錄 xiii
附圖目錄 xv
一、前言 1
1.1 全球氣候變遷對環境與生態的影響 1
1.2 水溫對魚類的影響 1
1.3 魚類生活史 2
1.4 魚類耳石 2
1.5 魚類形態與分析 3
1.6 研究物種:尖翅燕魚 3
1.7 研究目的與假設 4
二、材料與方法 5
2.1 物種受精卵來源 5
2.2 實驗設計與養殖 5
2.3 水質測量 6
2.4 仔魚形態幾何形態分析 7
2.5 仔魚乾重量測 8
2.6 仔魚耳石參數與形態指標 9
2.7 統計分析 9
三、結果 11
3.1 魚卵數、孵化率與存活率 11
3.2 實驗期間水質參數 11
3.3 仔魚參數 11
3.4 幾何形態分析 12
3.5 耳石形態分析 13
四、討論 15
4.1 實驗期間的水質條件 15
4.2 尖翅燕魚仔魚的養殖 15
4.3 10dph尖翅燕魚仔魚的發育之體長與乾重 16
4.4 海水暖化對魚類耳石的影響 17
4.5 10dph尖翅燕魚仔魚前端身軀形態的變化 18
4.6 尖翅燕魚初期生活史的異速生長現象 19
4.7 海水暖化對尖翅燕魚其他生活階段與族群的潛在影響 20
4.8 未來研究方向 21
五、結論 23
文獻參考 25

Adams, D. C., Collyer, M. L., Kaliontzopoulou, A., & Baken, E. (2016). Geomorph: Software for geometric morphometric analyses. In (Version R package version)
Adams, D. C., Otárola-Castillo, E., & Paradis, E. (2013). geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4(4), 393-399.
Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: Ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71(1), 5-16.
Anaya‐Godínez, E., Silva‐Segundo, C. A., Landaeta, M. F., Funes‐Rodríguez, R., Trujillo‐Millán, O., Blanco‐Jarvio, A., & Marín‐Enríquez, E. (2022). Influence of oceanographic conditions on the body shape variability of Scomber japonicus larvae from the western coast of the Baja California Peninsula. Fisheries Oceanography, 31(3), 225-237.
Angilletta, J., M. J., & Dunham, A. E. (2003). The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. The American Naturalist, 162(3), 332-342.
Arechavala-Lopez, P., Sanchez-Jerez, P., Bayle-Sempere, J. T., Sfakianakis, D. G., & Somarakis, S. (2011). Morphological differences between wild and farmed Mediterranean fish. Hydrobiologia, 679(1), 217-231.
Assumpção, L. D., Makrakis, M. C., Makrakis, S., Wagner, R. L., Silva, P. S. D., Lima, A. F. D., & Kashiwaqui, E. A. L. (2012). The use of morphometric analysis to predict the swimming efficiency of two Neotropical long-distance migratory species in fish passage. Neotropical Ichthyology, 10(4):, 797-804.
Audzijonyte, A., Richards, S. A., Stuart-Smith, R. D., Pecl, G., Edgar, G. J., Barrett, N. S., Payne, N., & Blanchard, J. L. (2020). Fish body sizes change with temperature but not all species shrink with warming. Nature Ecology & Evolution, 4(6), 809-814.
Axler, K. E., Sponaugle, S., Hernandez, F., Culpepper, C., & Cowen, R. K. (2020). Consequences of plume encounter on larval fish growth and condition in the Gulf of Mexico. Marine Ecology Progress Series, 650, 63-80.
Barros, B., Sakai, Y., Hashimoto, H., & Gushima, K. (2007). Feeding behavior of leaf-like juveniles of the round batfish Platax orbicularis (Ephippidae) on reefs of Kuchierabu-jima Island, southern Japan. Journal of Ethology, 26(2), 287-293.
Barros, B., Sakai, Y., Hashimoto, H., & Gushima, K. (2011). Effects of prey density on nocturnal zooplankton predation throughout the ontogeny of juvenile Platax orbicularis (Teleostei: Ephippidae). Environmental Biology of Fishes, 91(2), 177-183.
Barros, B., Sakai, Y., Pereira, P. H., Gasset, E., Buchet, V., Maamaatuaiahutapu, M., Ready, J. S., Oliveira, Y., Giarrizzo, T., & Vallinoto, M. (2015). Comparative Allometric Growth of the Mimetic Ephippid Reef Fishes Chaetodipterus faber and Platax orbicularis. PLoS One, 10(12), e0143838.
Bellwood, D. R., Hughes, T. P., & Hoey, A. S. (2006). Sleeping functional group drives coral-reef recovery. Current Biology, 16, 2434–2439.
Bounket, B., Gibert, P., Gennotte, V., Argillier, C., Carrel, G., Maire, A., Logez, M., & Morat, F. (2019). Otolith shape analysis and daily increment validation during ontogeny of larval and juvenile European chub Squalius cephalus. Journal of Fish Biology, 95(2), 444-452.
Brett, J. R. (1971). Energetic Responses of Salmon to Temperature. A Study of Some Thermal Relations in the Physiology and Freshwater Ecology of Sockeye Salmon (Oncorhynchus nerkd). American Zoologist, 11(1), 99–113.
Brown, A. L., Busby, M. S., & Mier, K. L. (2001). Walleye pollock Theragra chalcogramma during transformation from the larval to juvenile stage: otolith and osteological development. Marine Biology, 139(5), 845-851.
Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263-297.
Campana, S. E., & Thorrold, S. R. (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 30-38.
Chapra, S. C., Camacho, L. A., & McBride, G. B. (2021). Impact of Global Warming on Dissolved Oxygen and BOD Assimilative Capacity of the World’s Rivers: Modeling Analysis. Water, 13(17).
Chiu, P. S., Chu, Y. T., Huang, C. H., Ho, S. W., Huang, J. W., & Yeh, S. L. (2020). Effects of stocking density on growth performance, survival and size heterogeneity of juvenile longfin batfish Platax teira. Aquaculture Research, 51(12), 5269-5272.
Cooper, W. J., Parsons, K., McIntyre, A., Kern, B., McGee-Moore, A., & Albertson, R. C. (2010). Bentho-pelagic divergence of cichlid feeding architecture was prodigious and consistent during multiple adaptive radiations within African rift-lakes. PLoS One, 5(3), e9551.
Cowen, R. K., & Sponaugle, S. (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science, 1, 443-466.
D'Iglio, C., Famulari, S., Albano, M., Carnevale, A., Di Fresco, D., Costanzo, M., Lanteri, G., Spano, N., Savoca, S., & Capillo, G. (2023). Intraspecific variability of the saccular and utricular otoliths of the hatchetfish Argyropelecus hemigymnus (Cocco, 1829) from the Strait of Messina (Central Mediterranean Sea). PLoS One, 18(2), e0281621.
Dhaneesh, K. V., Nanthini Devi, K., Ajith Kumar, T. T., Balasubramanian, T., & Tissera, K. (2012). Breeding, embryonic development and salinity tolerance of Skunk clownfish Amphiprion akallopisos. Journal of King Saud University - Science, 24(3), 201-209.
Dickson, K. A., Donley, J. M., Sepulveda, C., & Bhoopat, L. (2002). Effects of temperature on sustained swimming performance and swimming kinematics of the chub mackerel Scomber japonicus. Journal of Experimental Biology, 205(7), 969-980.
Domenici, P., & Blake, R. W. (1997). The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 200, 1165-1178.
Downie, A. T., Illing, B., Faria, A. M., & Rummer, J. L. (2020). Swimming performance of marine fish larvae: review of a universal trait under ecological and environmental pressure. Reviews in Fish Biology and Fisheries, 30(1), 93-108.
Franz, G. P., Lewerentz, L., & Grunow, B. (2021). Observations of growth changes during the embryonic-larval-transition of pikeperch (Sander lucioperca) under near-natural conditions. Journal of Fish Biology, 99(2), 425-436.
Frederich, B., Colleye, O., Lepoint, G., & Lecchini, D. (2012). Mismatch between shape changes and ecological shifts during the post-settlement growth of the surgeonfish, Acanthurus triostegus. Frontiers in Zoology, 9(1), 1-9.
Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., & Jensen, O. P. (2019). Impacts of historical warming on marine fisheries production. Science, 363(6430), 979-983.
Froese, R. (2020). R code (PrefTempBatch_5.R) to estimate preferred temperature from AquaMaps (ver. 10/2019). As cited in Froese, R. and D. Pauly. Editors. (2022). FishBase.
Fruciano, C. (2016). Measurement error in geometric morphometrics. Development Genes and Evolution, 226, 139-158.
Gagliano, M., & McCormick, M. I. (2004). Feeding history influences otolith shape in tropical fish. Marine Ecology Progress Series, 278, 291-296.
Gagliano, M., McCormick, M. I., & Meekan, M. G. (2007). Survival against the odds: ontogenetic changes in selective pressure mediate growth-mortality trade-offs in a marine fish. Proceedings of the Royal Society B: Biological Sciences, 274(1618), 1575-1582.
Galeano-Chavarria, A. M., Landaeta, M. F., Plaza, G., Castillo, M. I., & Alarcon, D. S. (2020). Environmental determinants in morphospace and diet of the larval blenny Calliclinus geniguttatus from an upwelling ecosystem. Journal of Fish Biology, 97(6), 1808-1820.
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: a third universal response to warming? Trends in Ecology & Evolution, 26(6), 285-291.
Geladakis, G., Kourkouta, C., Somarakis, S., & Koumoundouros, G. (2022). Developmental temperature shapes the otolith morphology of metamorphosing and juvenile gilthead seabream (Sparus aurata Linnaeus, 1758). Fishes, 7(2), 82.
Gower, J. C. (1975). Generalized Procrustes analysis. Psychometrika, 40, 33-51.
Green, B. S., & Fisher, R. (2004). Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. Journal of Experimental Marine Biology and Ecology, 299(1), 115-132.
Gross, J., & Ligges, U. (2015). nortest: Tests for Normality. R package version, 1(4).
Guillerme, T., Cooper, N., Brusatte, S. L., Davis, K. E., Jackson, A. L., Gerber, S., Goswami, A., Healy, K., Hopkins, M. J., Jones, M. E. H., Lloyd, G. T., O'Reilly, J. E., Pate, A., Puttick, M. N., Rayfield, E. J., Saupe, E. E., Sherratt, E., Slater, G. J., Weisbecker, V., . . . Donoghue, P. C. J. (2020). Disparities in the analysis of morphological disparity. Biology Letters, 16(7), 20200199.
Hall, A. E., Vitale, L., & Kingsford, M. J. (2019). Planktonic larval duration, early growth, and the influence of dietary input on the otolith microstructure of Scolopsis bilineatus (Nemipteridae). Environmental Biology of Fishes, 102(4), 541-552.
Hargreaves, J. A., & Kucuk, S. (2001). Effects of diel un-ionized ammonia fluctuation on juvenile hybrid striped bass, channel catfish, and blue tilapia. Aquaculture 195(1-2), 163–181.
Ho, C.-H., Yagi, N., & Tian, Y. (2020). An impact and adaptation assessment of changing coastal fishing grounds and fishery industry under global change. Mitigation and Adaptation Strategies for Global Change, 25(6), 1073-1102.
Ho, C.-H. L., Hsueh-Jung; Chen, Jyun-Long and Yagi Nobuyuki. (2016). Changes in fish species composition as shown by coastal fisheries under climate change: evidence from catch data (1996-2012) in the Gongliao Village, Taiwan. ICEO&SI Conference, 2016, 113-118.
Hoey, A. S., & McCormick, M. I. (2004). Selective predation for low body condition at the larval-juvenile transition of a coral reef fish. Oecologia, 139(1), 23-29.
Houde, E. (1989). Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fishery Bulletin, 87(3):471-95.
Huss, M., Lindmark, M., Jacobson, P., van Dorst, R. M., & Gardmark, A. (2019). Experimental evidence of gradual size-dependent shifts in body size and growth of fish in response to warming. Global Change Biology, 25(7), 2285-2295.
Hüssy, K. (2008). Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. Journal of Experimental Marine Biology and Ecology, 364(1), 35-41.
Ishimatsu, A., Hayashi, M., & Kikkawa, T. (2008). Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series, 373, 295-302.
Jahnsen-Guzman, N., Bernal-Duran, V., & Landaeta, M. F. (2018). Parasitic copepods affect morphospace and diet of larvae of a temperate reef fish. Journal of Fish Biology, 92(2), 330-346.
Jobling, M., Jorgensen, E. H., Arnesen, A. M., & Ringo, E. (1993). Feeding, growth and environmental requirements of Arctic charr: a review of aquaculture potential. Aquaculture International, 1(1), 20-46.
Johansen, J. L., Nadler, L. E., Habary, A., Bowden, A. J., & Rummer, J. (2021). Thermal acclimation of tropical coral reef fishes to global heat waves. Elife, 10.
Johnston, I. A., & Temple, G. K. (2002). Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. Journal of Experimental Biology, 205(15), 2305-2322.
Jonsson, E. P., Campana, S. E., Solmundsson, J., Jakobsdottir, K. B., & Baretharson, H. (2021). The effect of growth rate on otolith-based discrimination of cod (Gadus morhua) ecotypes. PLoS One, 16(9), e0247630.
Kassambara, A. (2017). Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra (Vol. 2). Sthda.
Kerschbaumer, M., & Sturmbauer, C. (2011). The utility of geometric morphometrics to elucidate pathways of cichlid fish evolution. International Journal of Evolutionary Biology, 2011.
Khemis, I. B., Gisbert, E., Alcaraz, C., Zouiten, D., Besbes, R., Zouiten, A., Masmoudi, A. S., & Cahu, C. (2013). Allometric growth patterns and development in larvae and juveniles of thick-lipped grey mullet Chelon labrosusreared in mesocosm conditions. Aquaculture Research, 44(12), 1872-1888.
Kim, E., Yoo, S., Ro, H. Y., Han, H. J., Baek, Y. W., Eom, I. C., Kim, H. M., Kim, P., & Choi, K. (2013). Aquatic toxicity assessment of phosphate compounds. Environmental Health and Toxicology, 28.
Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353-357.
Klingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226(3), 113-137.
Klingenberg, C. P. G. S. M. (1998). Geometric morphometrics of developmental instability: analyzing pat- terns of fluctuating asymmetry with Procrustes methods. Evolution, 52, 1363-1375.
Kourkouta, C., Printzi, A., Geladakis, G., Mitrizakis, N., Papandroulakis, N., & Koumoundouros, G. (2021). Long lasting effects of early temperature exposure on the swimming performance and skeleton development of metamorphosing Gilthead seabream (Sparus aurata L.) larvae. Scientific Reports, 11(1), 1-11.
Kuiter, R. H., & Debelius, H. (2001). Surgeonfishes, Rabbitfishes, and their Relatives: A comprehensive guide to Acanthuroidei. TMC Pub.
LaMonica, L. E., Fox, R. J., & Donelson, J. M. (2021). Thermal sensitivity of juvenile rabbitfishes Siganus doliatus and S. lineatus (Siganidae): a key role for habitat? Coral Reefs, 40(4), 1307-1320.
Landaeta, M. F., Bernal-Durán, V., Castillo, M. I., Díaz-Astudillo, M., Fernández-General, B., & Núñez-Acuña, P. (2019). Nearshore environmental conditions influence larval growth and shape changes for a temperate rocky reef fish. Hydrobiologia, 839(1), 159-176.
Landaeta, M. F., Zavala-Muñoz, F., Bernal-Durán, V., Herrera, G. A., & Brown, D. I. (2016). Larval development and shape variation of the kelpfish Myxodes viridis Teleostei: Clinidae). Scientia Marina, 80(1).
Langerhans, R. B. (2009). Morphology, performance, fitness: functional insight into a post-Pleistocene radiation of mosquitofish. Biology Letters, 5(4), 488-491.
Langerhans, R. B., & Reznick, D. N. (2010). Ecology and evolution of swimming performance in fishes. Fish locomotion: An ecoethological perspective, 200-248.
Leis, J. M., Bullock, S., Duday, A., Guion, C., & Galzin, R. (2012). Development of morphology and swimming in larvae of a coral-reef fish, the royal gramma, Gramma loreto (Grammatidae: Teleostei). Scientia Marina, 76(2), 281-288.
Leis, J. M., Hay, A. C., Lockett, M. M., Chen, J., & Fang, L. (2007). Ontogeny of swimming speed in larvae of pelagic-spawning, tropical, marine fishes. Marine Ecology Progress Series, 349, 255-267.
Leu, M.-Y., Tai, K.-Y., Meng, P.-J., Tang, C.-H., Wang, P.-H., & Tew, K. S. (2018). Embryonic, larval and juvenile development of the longfin batfish, Platax teira (Forsskål, 1775) under controlled conditions with special regard to mitigate cannibalism for larviculture. Aquaculture, 493, 204-213.
Loy, A., Bertelletti, M., Costa, C., Ferlin, L., & Cataudella, S. (2001). Shape changes and growth trajectories in the early stages of three species of the genus Diplodus (Perciformes, Sparidae). Journal of Morphology, 250(1), 24-33.
Mardones, A., Gonzalez, M., Rivas-Mancilla, C., Vega, R., Augsburger, A., Encina, F., & De Los Rios, P. (2019). Determination of acute toxicity of ammonium in juvenile Patagonian blenny (Eleginops maclovinus). Brazilian Journal of Biology, 79(4), 646-650.
Martinez-Leiva, L., Landeira, J. M., Fatira, E., Diaz-Perez, J., Hernandez-Leon, S., Roo, J., & Tuset, V. M. (2023). Energetic Implications of Morphological Changes between Fish Larval and Juvenile Stages Using Geometric Morphometrics of Body Shape. Animals (Basel), 13(3).
McCosker, E., Stuart‐Smith, R. D., Edgar, G. J., Steinberg, P. D., Vergés, A., & Grech, A. (2022). Sea temperature and habitat effects on juvenile reef fishes along a tropicalizing coastline. Diversity and Distributions, 28(6), 1154-1170.
McLeod, I. M., Rummer, J. L., Clark, T. D., Jones, G. P., McCormick, M. I., Wenger, A. S., & Munday, P. L. (2013). Climate change and the performance of larval coral reef fishes: the interaction between temperature and food availability. Conservation Physiology, 1(1), cot024.
Medeiros, R. S., Lopez, B. A., Sampaio, L. A., Romano, L. A., & Rodrigues, R. V. (2015). Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquaculture International, 24(4), 985-993.
Mérigot, B., Letourneur, Y., & Lecomte-Finiger, R. (2007). Characterisation of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Marine Biology, 2007, 151, 997-1008.
Michie, L. E., Thiem, J. D., Facey, J. A., Boys, C. A., Crook, D. A., & Mitrovic, S. M. (2020). Effects of suboptimal temperatures on larval and juvenile development and otolith morphology in three freshwater fishes: implications for cold water pollution in rivers. Environmental Biology of Fishes, 103(12), 1527-1540.
Miller, G. M., Kroon, F. J., Metcalfe, S., & Munday, P. L. (2015). Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecological Applications, 25(3), 603-620.
Moore, B., Jolly, J., Izumiyama, M., Kawai, E., Ryu, T., & Ravasi, T. (2023). Clownfish larvae exhibit faster growth, higher metabolic rates and altered gene expression under future ocean warming. Science of The Total Environment, 873, 162296.
Morales-Nin, B., & Panfili, J. (2002). Sclerochronological studies : age estimation. Manual of Fish Sclerochronology’.(Eds J. Panfili, H. Troadec, H. de Pontual and PJ Wright.), 91-98.
Morita K, F. M., Tanimata N, Yamamura O. (2010). Size- dependent thermal preferences in a pelagic fish. Oikos, 119(8), 1265–1272.
Moshayedi, F., Eagderi, S., & Rabbaniha, M. (2016). Allometric growth pattern and morphological changes of green terror Andinoacara rivulatus (Günther, 1860) (Cichlidae) during early development: Comparison of geometric morphometric and traditional methods. Iranian Journal of Fisheries Sciences, 16, 222-237.
Munday, P. L., Hernaman, V., Dixson, D. L., & Thorrold, S. R. (2011). Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences, 8(6), 1631-1641.
Myers, R. F. (1991). Micronesian reef fishes. Second Ed. Coral Graphics, Barrigada, Guam, 298.
Neuheimer, A. B., Thresher, R. E., Lyle, J. M., & Semmens, J. M. (2011). Tolerance limit for fish growth exceeded by warming waters. Nature Climate Change, 1(2), 110-113.
Nunn, A. D., Tewson, L. H., & Cowx, I. G. (2011). The foraging ecology of larval and juvenile fishes. Reviews in Fish Biology and Fisheries, 22(2), 377-408.
Ohlberger, J., Staaks, G., & Holker, F. (2006). Swimming efficiency and the influence of morphology on swimming costs in fishes. Journal of Comparative Physiology B, 176(1), 17-25.
Oksanen, F. J., et al. (2017). Vegan: Community Ecology Package. R package Version 2.4-3.
Osman, Y. A. A., Mahé, K., El-Mahdy, S. M., Mohammad, A. S., & Mehanna, S. F. (2021). Relationship between Body and Otolith Morphological Characteristics of Sabre Squirrelfish (Sargocentron spiniferum) from the Southern Red Sea: Difference between Right and Left Otoliths. Oceans, 2(3), 624-633.
Osse, J. W. M., & Van den Boogaart, J. G. M. (2004). Allometric growth in fish larvae: timing and function. In: The development of form and function in fishes and the questionof larval adaptation. American Fisheries Society Syposium, 167-194.
Pascual, M., Rives, B., Schunter, C., & Macpherson, E. (2017). Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS One, 12(5), e0176419.
Pittman, K., Yúfera, M., Pavlidis, M., Geffen, A. J., Koven, W., Ribeiro, L., Zambonino-Infante, J. L., & Tandler, A. (2013). Fantastically plastic: fish larvae equipped for a new world. Reviews in Aquaculture, 5, S224-S267.
Quitzau, M., Frelat, R., Bonhomme, V., Mollmann, C., Nagelkerke, L., & Bejarano, S. (2022). Traits, landmarks and outlines: Three congruent sides of a tale on coral reef fish morphology. Ecology and Evolution, 12(4), e8787.
R Devolopment Core Team. (2022). R: A language and environment for statistical computing. In R Foundation for Statistical Computing.
Randall, J. E., & Emery, A. R. (1971). On the resemblance of the young of the fishes Platax pinnatus and Plectorhynchus chaetodontoides to flatworms and nudibranchs. Zoologica, 56, 115–119.
Raventos, N., Torrado, H., Arthur, R., Alcoverro, T., & Macpherson, E. (2021). Temperature reduces fish dispersal as larvae grow faster to their settlement size. Journal of Animal Ecology, 90(6), 1419-1432.
Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Mo ̈llmann, C., and Pinnegar, J. K. (2009). Resolving the effect of climate change on fish populations. ICES Journal of Marine Science, 66, 1570–1583.
Robertson, M. P., Caithness, N., & Villet, M. H. (2001). A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Diversity and Distributions, 7(1-2), 15-27.
Rohlf, F. J. (1990). Morphometrics. Annual Review of Ecology and Systematics, 21(1), 299-316.
Rohlf, F. J. (1998). On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology, 47, 147-158.
Rueda‐Jasso, R. A., De los Santos‐Bailón, A., & Campos‐Mendoza, A. (2017). Nitrite toxicity in juvenile Goodeinae fishes Skiffia multipunctata (Pellegrin, 1901) and Goodea atripinnis (Jordan, 1880). Journal of Applied Ichthyology, 33, 300-305.
Sánchez-González, J. R., Morcillo, F., Ruiz-Legazpi, J., & Sanz-Ronda, F. J. (2021). Fish morphology and passage through velocity barriers. Experience with northern straight-mouth nase (Pseudochondrostoma duriense Coelho, 1985) in an open channel flume. Hydrobiologia, 849(6), 1351-1366.
Santos, L., & Vaz-dos-Santos, A. M. (2022). Insights of Otoliths Morphology to Reveal Patterns of Teleostean Fishes in the Southern Atlantic. Fishes, 8(1).
Sardi, A. E., Begout, M. L., Lalles, A. L., Cousin, X., & Budzinski, H. (2023). Temperature and feeding frequency impact the survival, growth, and metamorphosis success of Solea solea larvae. PLoS One, 18(3), e0281193.
Savriama, Y. (2018). A Step-by-Step Guide for Geometric Morphometrics of Floral Symmetry. Frontiers in Plant Science, 9, 1433.
Schismenou, E., Palmer, M., Giannoulaki, M., Alvarez, I., Tsiaras, K., Triantafyllou, G., & Somarakis, S. (2016). Seasonal changes in otolith increment width trajectories and the effect of temperature on the daily growth rate of young sardines. Fisheries Oceanography, 25(4), 362-372.
Schumacker, R., & Tomek, S. (2014). Understanding statistics using R. Technometrics, 54.
Servili, A., Canario, A. V., Mouchel, O., & Muñoz-Cueto, J. A. (2020). Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. General and Comparative Endocrinology, 291, 113439.
Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1(8), 401-406.
Skulason, S., Parsons, K. J., Svanback, R., Rasanen, K., Ferguson, M. M., Adams, C. E., Amundsen, P. A., Bartels, P., Bean, C. W., Boughman, J. W., Englund, G., Guethbrandsson, J., Hooker, O. E., Hudson, A. G., Kahilainen, K. K., Knudsen, R., Kristjansson, B. K., Leblanc, C. A., Jonsson, Z., . . . Snorrason, S. S. (2019). A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biological Reviews, 94(5), 1786-1808.
Sollner, C., Burghammer, M., Busch-Nentwich, E., Berger, J., Schwarz, H., Riekel, C., & Nicolson, T. (2003). Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science, 302(5643), 282-286.
Styga, J. M., Houslay, T. M., Wilson, A. J., & Earley, R. L. (2017). Ontogeny of the morphology-performance axis in an amphibious fish (Kryptolebias marmoratus). Experimental Zoology Part A: Ecological and Integrative Physiology, 327(10), 620-634.
Takeda, T., Okada, T., & Ishibashi, Y. (2022). Effects of stocking density and rearing factors on aggressive behaviour and cannibalism in the Pacific bluefin tuna Thunnus orientalis (Temminck & Schlegel) larvae. Research Square.
Teichert, N., Lagarde, R., Occelli, N., Ponton, D., & Gaudin, P. (2021). Water temperature influences larval survival of the amphidromous goby Sicyopterus lagocephalus. Ecology of Freshwater Fish, 30(4), 531-540.
Teichert, N., Lizé, A., Cabral, H., Acou, A., & Trancart, T. (2023). Decoupling carry-over effects from environment in fish nursery grounds. Science of The Total Environment, 857, 159487.
Thambithurai, D., Racz, A., Lindstrom, J., Parsons, K. J., & Killen, S. S. (2022). Simulated trapping and trawling exert similar selection on fish morphology. Ecology and Evolution, 12(2), e8596.
Thunell, V., Gardmark, A., Huss, M., & Vindenes, Y. (2023). Optimal energy allocation trade-off driven by size-dependent physiological and demographic responses to warming. Ecology, 104(4), e3967.
Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466(7310), 1098-1101.
Tu, C. Y., Chen, K. T., & Hsieh, C. H. (2018). Fishing and temperature effects on the size structure of exploited fish stocks. Scientific Reports, 8(1), 7132.
Tuset, V. M., Lozano, I. J., Gonzalez, J. A., Pertusa, J. F., and Garcia-Diaz, M. M. (2003). Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journalof Applied Ichthyology, 19, 88-93.
Tuset, V. M., Otero-Ferrer, J. L., Siliprandi, C., Manjabacas, A., Marti-Puig, P., & Lombarte, A. (2021). Paradox of otolith shape indices: routine but overestimated use. Canadian Journal of Fisheries and Aquatic Sciences, 78(6), 681-692.
Ugrin, N., Škeljo, F., Ferri, J., & Krstulović Šifner, S. (2021). Use of otolith morphology and morphometry for species discrimination of megrims Lepidorhombus spp. in the Central Eastern Adriatic Sea. Journal of the Marine Biological Association of the United Kingdom, 101(4), 735-741.
Van Dorst, R. M., Gardmark, A., Svanback, R., Beier, U., Weyhenmeyer, G. A., & Huss, M. (2018). Warmer and browner waters decrease fish biomass production. Global Change Biology.
VanDerWal, J., Murphy, H. T., Kutt, A. S., Perkins, G. C., Bateman, B. L., Perry, J. J., & Reside, A. E. (2012). Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change. Nature Climate Change, 3(3), 239-243.
Verzani, J. (2011). Getting started with RStudio. " O'Reilly Media, Inc.".
Vignon, M. (2012). Ontogenetic trajectories of otolith shape during shift in habitat use: Interaction between otolith growth and environment. Journal of Experimental Marine Biology and Ecology, 420-421, 26-32.
Vignon, M., & Morat, F. (2010). Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series, 411, 231-241.
Wagner, G. N., McKinley, R. S., Bjørn, P. A., & Finstad, B. (2003). Physiological impact of sea lice on swimming performance of Atlantic salmon. Journal of Fish Biology, 62(5), 1000-1009.
Wainwright, P. C. (1988). Morphology and Ecology: Functional Basis of Feeding Constraints in Caribbean Labrid Fishes. Ecology, 69(3), 635-645.
Walker, J. A. (2010). An integrative model of evolutionary covariance: a symposium on body shape in fishes. Integrative and Comparative Biology, 50(6), 1051-1056.
Wang, H. Y., Shen, S. F., Chen, Y. S., Kiang, Y. K., & Heino, M. (2020). Life histories determine divergent population trends for fishes under climate warming. Nature Communications, 11(1), 4088.
Wenger, A. S., Whinney, J., Taylor, B., & Kroon, F. (2016). The impact of individual and combined abiotic factors on daily otolith growth in a coral reef fish. Scientific Reports, 6, 28875.
Wickham, H. (2011). ggplot2. Wiley interdisciplinary reviews: computational statistics, 3(2), 180-185.
沈世傑, 李信徹, 邵廣昭, 陳哲聰, 陳春暉, 莫顯蕎, & 曾晴賢. (1993). 臺灣魚類誌. 國立台灣大學動物系.
(此全文20240808後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *