帳號:guest(3.142.252.166)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉冠麟
作者(英文):Kuan-lin Liu
論文名稱:珊瑚細胞脂質含量及組成與低溫冷凍保存之研究
論文名稱(英文):Lipid content and composition of coral cells in relation to cryo-tolerance
指導教授:林家興
指導教授(英文):Chia-Hsin Lin
口試委員:韓僑權
蔡淑君
林家興
口試委員(英文):Chiao-Chuan Han
Su-June Tsai
Chia-Hsin Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:611063018
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:50
關鍵詞:珊瑚細胞脂質含量脂肪酸冷凍保存二段式冷凍保存抗凍劑
關鍵詞(英文):coral celllipid contentfatty acidcryopreservation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:3
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
珊瑚礁是地球上最豐富多樣的海洋生態系統,然而珊瑚礁現面臨全球氣候變化、污染和過度捕撈等威脅。冷凍保存技術可用於保存珊瑚的生物樣本,但珊瑚細胞中脂質含量和組成可能影響冷凍保存的成功率。本研究針對七種不同珊瑚物種如萼形柱珊瑚(Stylophora pistillata)、鈍枝列孔珊瑚(Seriatopora caliendrum)、尖枝鹿角珊瑚(Pocillopora acuta)、巨枝鹿角珊瑚(Pocillopora eydouxi)、疣鹿角珊瑚(Pocillopora verrucosa)、Phymastrea colemani和隱藏角菊珊(Favites abdita)在其脂質如固醇酯(SE; Sterol ester)、蠟酯(WE; Wax ester)、三酸甘油酯(TAG; Triglyceride)、膽固醇(CHO; Cholesterol)、磷脂醯乙醇胺(PE; phosphatidylethanolamines)、磷脂醯膽鹼(PC; Phosphatidylcholine)、溶血磷脂醯膽鹼(LPC; Lysophosphatidylcholine)、總脂質及脂肪酸含量及組成是否與冷凍保存成功與否有相關。本研究於後壁湖出水口採集珊瑚並萃取其細胞後使用二段式降溫技術進行樣品冷凍保存,珊瑚細胞脂質的分析以乾重法、層析色譜法及氣相層析質譜法對總脂質、七大脂質及脂肪酸含量及組成進行測定。本研究結果顯示,七種珊瑚物種細胞冷凍解凍後存活率為S. pistillata 34%、S. caliendrum 37%、P. acuta 50%、P. eydouxi 33%、P. verrucose 31%、P. colemani 64%及F. abdita 59%,另外,不同物種對於抗凍劑的要求和最佳條件存在差異,其中以P. acuta、P. eydouxi、P. verrucosa和F. abdita最適用Dimethyl sulfoxide(DMSO)配合10分鐘的平衡時間作為冷凍保存條件,S. caliendrum在使用DMSO進行冷凍保存時,以20分鐘的平衡時間有較高的低溫耐受性,而Ph. colemani和S. pistillata珊瑚細胞最佳冷凍條件為使用1M Ethylene glycol為抗凍劑且平衡時間10分鐘有最佳的冷凍保存效果。另一方面,在脂質分析結果中,七種珊瑚物種的結構性脂質CHO和極性脂質如PC、PE及LPC含量較能量儲存脂質如SE、WE及TAG高,且相較於其他珊瑚種類,Pocillopora屬的珊瑚如P. eydouxi和P. acuta顯示較高的總脂質含量,並以P. verrucosa為最高,而在七種珊瑚中脂肪酸C16:0、C18:0、C18:4 n3和C22:6 n3含量較高,且多元不飽和脂肪酸最高,其次是飽和脂肪酸,單元不飽和脂肪酸的總含量最低。然而,不論在七大脂質、總脂質及脂肪酸經統計結果顯示與冷凍解凍無顯著差異,推測這可能與不同細胞層級在不同珊瑚物種及生物樣本有所關聯。本研究結果對於保護珊瑚生態系統具有重要的價值,並為未來的珊瑚保育策略提供有益的參考。
Coral reefs are the most diverse and abundant marine ecosystems on earth. However, they are presently facing threats from global climate change, pollution, and overfishing. Cryopreservation technology can be used to conserve and preserve coral's biological cells and tissues. The lipid content and composition of coral cells may influence the successful cryopreservation. Therefore, in this study we examined the lipid content and composition of seven coral species Stylophora pistillat, Seriatopora caliendrum, Pocillopora acuta, Pocillopora eydouxi, Pocillopora verrucosa, Phymastrea colemani, and Favites abdita, whether theirs lipid content and composition, including sterol ester (SE), wax ester (WE), triglyceride (TAG), chol esterol (CHO), phosphatidylethanolamines (PE), phosphatidylcholine (PC), and lysophosphatidylcholine (LPC), were associated with the success of cryopreservation. Samples of the seven coral species were collected from the Houbihu outflow (N21°55.912' E120°44.681'). Coral cells were extracted and cryopreserved using a two-step freezing technique. To determine the lipid content and composition of each species, the coral cells were further subjected to dry weight analysis, thin layer chromatography, and gas chromatography-mass spectrometry. Pearson coefficiency was also used to analyze the statistical correlation between lipid profiles and cryopreservation. The results showed that different species required various freezing conditions. Dimethyl sulfoxide (DMSO) was found to be the most suitable cryoprotectant with 10 minutes of equlibration time for P. acuta, P. eydouxi, P. verrucosa, and F. abdita, while S. caliendrum showed the best low temperature tolerance using DMSO with 20 minutes of equilibration time. The best freezing conditions for Ph. colemani and S. pistillata coral cells were to use 1M Ethylene glycol as cryoprotectant and equilibrate for 10 minutes. The lipid contents of structural lipid (CHO) and polar lipids (LPC, PE and PC) were higher than that of energy storage lipids (SE, WE and TAG) in the seven coral species. The highest total lipid content was found in the Pocilloporidae species P. verrucosa, followed by P. eydouxi and P. acuta. However, Peason coefficiency did not reveal any differences in the total lipids, seven type lipids and fatty acids in relation to low temperature preservation. It is the possibility of a connection to cell or tissue levels with different type of coral species and biomaterials. Our study provids important insights for safeguarding coral ecosystems as well as serving valuable references for future coral conservation efforts.
致謝 I
摘要 III
Abstract V
一、前言 1
二、材料方法 7
2.1 珊瑚目標物種 7
2.2 珊瑚細胞萃取 11
2.3 人工過濾海水配製 12
2.4 存活率測試 12
2.5 二段式冷凍珊瑚細胞 13
2.6 均質化 14
2.7 脂質萃取及總脂質測定 14
2.8 蛋白質定量 14
2.9 層析色譜法(TLC, Thin-Layer Chromatography) 15
2.10 氣相層析質譜法(Gas Chromatography-Mass Spectrometry, GC-MS) 16
2.11 數據統計 17
三、結果 19
3.1二段式冷凍保存 19
3.2脂質層析結果 23
3.3七種珊瑚細胞中七大脂質組成含量 24
3.4脂肪酸結果分析 27
3.5七種珊瑚細胞總脂質含量 29
3.6脂肪酸含量組成與冷凍保存相關性 31
四、討論 33
參考文獻 41
Abedini S, Kaku M, Kawata T, Koseki H, Kojima S, Sumi H, Motokawa M, Fujita T, Ohtani J, Ohwada N, Tanne K. Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. Cryobiology. 2011;62(3):181-187. doi:10.1016/j.cryobiol.2011.03.001
Achituv Y, Ben-Zion M, Mizrahi L. Carbohydrate, lipid, and protein composition of zooxanthellae and animal fractions of the coral Pocillopora damicornis exposed to ammonium enrichment. Pac Sci. 1994;48(3):224-233.
Amstislavsky S, Mokrousova V, Brusentsev E, Okotrub K, Comizzoli P. Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos:a review. Biopreserv Biobank. 2019;17(1):76-83. doi:10.1089/bio.2018.0039.
Baharvand H, Salekdeh GH, Taei A, Mollamohammadi S. An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat Protoc. 2010;5(3):588-594. doi:10.1038/nprot.2009.247
Banni S, Angioni E, Murru E. Vaccenic acid feeding increases tissue levels of conjugated linoleic acid and suppresses development of premalignant lesions in ratjjmammarygland. Nutr Cancer. 2001;41(1-2):91-97. doi:10.1080/01635581.2001.9680617.
Bellwood DR, Hughes TP, Folke C, Nyström M. Confronting the coral reef crisis. Nature. 2004;429(6994),827-833.
Bhojoo U, Chen M, Zou S. Temperature induced lipid membrane restructuring and changes in nanomechanics. Biochim Biophys Acta Biomembr. 2018;1860(3):700-709. doi:10.1016/j.bbamem.
Bischof JC, Diller KR. From nanowarming to thermoregulation: new multiscale applications of bioheat transfer. Annu Rev Biomed Eng. 2018;20:301-327. doi:10.1146/annurev-bioeng-071516-044532
Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci Rep. 2016;6:23619. doi:10.1038/srep23619
Cerolini S, Maldjian A, Pizzi F, Gliozzi TM. Changes in sperm quality and lipid composition during cryopreservation of boar semen. Reproduction. 2001;121(3):395-401.
Chang T, Zhao G. Ice Inhibition for cryopreservation: materials, strategies, and challenges. Adv Sci (Weinh). 2021;8(6):2002425. doi:10.1002/advs.202002425
Chen HK, Kang, HJ, Weis VM. Diel rhythmicity of lipid-body formation in a coral-symbiodiniumjjendosymbiosis. Coral reefs .2012;521-534. doi:10.1007/s00338-011-0868-6
Chen HK, Song SN, Wang LH, Mayfield AB, Chen YJ, Chen WN, Chen CS. A compartmental comparison of major lipid species in a coral-symbiodinium endosymbiosis: evidence that the coral host regulates lipogenesis of its cytosolic lipid bodies. Plos one. 2015;10(7):e0132519. doi:10.1371/journal.pone.0132519
Chong G, Tsai S, Lin C. Factors responsible for successful cryopreservation of algae. J Fish Soc. 2016;43(3);153-162. doi:10.29822/JFST.201609f_43(3).0003
Chong G, Tsai S, Wang LH, Huang CY, C Lin. Cryopreservation of the gorgonian endosymbiont Symbiodinium. Sci Rep. 2016;6:18816. doi:10.1038/srep18816
Cirino L, Tsai S, Wang LH, Chen CS, Hsieh WC, Huang CL, Wen ZH, Lin C. Supplementation of exogenous lipids via liposomes improves coral larvae settlement post-cryopreservation and nano-laser warming. Cryobiology. 2021;98:80-86. doi:10.1016/j.cryobiol.2020.12.004.
Cirino L, Tsai S, Wen ZH, Wang LH, Chen HK, Cheng JO, Lin C. Lipid profiling in chilled coral larvae. Cryobiology. 2021;102:56-67. doi:10.1016/j.cryobiol.
Daly J, Zuchowicz N, Nuñez Lendo CI, Khosla K, Lager C, Henley EM, Bischof J, Kleinhans FW, Lin C, Peters EC, Hagedorn M. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci Rep. 2018;8(1):15714. doi:10.1038/s41598-018-34035-0
D'Angelo C, Angelo D, Denzel A, Vogt A, Mikhail V, Matz, Oswald F, Salih A, Ulrich Nienhaus G, Wiedenmann J. Blue light regulation of host pigment in reef-building corals. Mar Ecol Prog Ser. 2015;522,1-12.
Doney SC. Ocean acidification: the other CO2 problem. Ann Rev Mar Sci. 2009;169-192.
Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):R15-R27. doi:10.1530/REP-13-0251
Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol. 2000;18(2):163-167. doi:10.1038/72608
Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol. 2000;18(2):163-167. doi:10.1038/72608
Feuillassier L, Masanet P, Romans P, Barthélémy D, Engelmann F. Towards a vitrification-based cryopreservation protocol for the coral Pocillopora damicornis: tolerance of tissue balls to 4.5 m cryoprotectant solutions. Cryobiology. 2015;71(2):224-35. doi:10.1016/j.cryobiol.2015.07.004.
Fitt WK, McFarland FK, Warner ME, Chilcoat GC. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr. 2000. doi:10.4319/lo.2000.45.3.0677.
Gao D, Critser JK. Mechanisms of cryoinjury in living cells. ILAR J. 2000;41(4):187-196. doi:10.1093/ilar.41.4.187.
Gates RD, Baghdasarian G, Muscatine L. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull. 1992;182:324-332. doi:10.2307/1542252.
Geng H, Liu X, Shi G, Bai G, Ma J, Chen J, Wu Z, Song Y, Fang H, Wang J. Graphene oxide restricts growth and recrystallization of ice crystals. Angew Chem Int Ed Engl. 2017;56(4):997-1001. doi:10.1002/anie.201609230.
Genio SDi, Wang LH, Meng PJ, Tsai S, Lin C. "Symbio-cryobank": toward the development of a cryogenic archive for the coral reef dinoflagellate symbiont symbiodiniaceae. Biopreserv Biobank. 2021;19(1):91-93. doi:10.1089/bio.2020.0071
George ES. Modifying oocytes and embryos to improve their cryopreservation. Theriogenology. 2006;l65(1):228-235. doi:10.1016/j.theriogenology.
Goh YH, Tsai S, Wan g LH, Lin C. Cryopreservation of oocytes of the Gorgonian coral Junceella fragillis using a controlled, slow-freezing protocol. The 7th International symposium for marine biotechnology. 2016. Taiwan
Goldberg WM. Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian mycetophyllia reesi a coral without tentacles. Tissue Cell. 2002;34:232-245. doi:10.1016/S0040-8166(02)00009-5.
Grottoli AG, Rodrigues LJ, Juarez C. Lipids and stable carbon isotopes in two species of hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol. 2004;145:621-631. doi:10.1007/s00227-004-1337-3
Gurruchaga H, Saenz del Burgo L, Hernandez RM, Orive G, Selden C, Fuller B, Ciriza J, Pedraz JL. Advances in the slow freezing cryopreservation of microencapsulated cells. Journal of Controlled Release. 2018;281:119-138. doi:10.1016/j.jconrel.2018.05.016
Hagedorn M, Spindler R. The reality use and potential for cryopreservation of coral reefs. Adv Exp Med Biol. 2014;753:317-329. doi:10.1007/978-1-4939-0820-2_13
Hagve TA. Effects of unsaturated fatty acids on cell membrane functions. Scand J Cli Lab Invest Suppl. 2011;48:5,381-388. doi:10.1080/00365518809085746
Harii S, Nadaoka K, Yamamoto M, Iwao K. Temporal changes in settlement, lipid content and lipid composition of larvae of the spawning hermatypic coral Acropora tenuis. Mar Ecol Prog Ser. 2007;346:89-96. doi:10.3354/meps07114
Harland AD, Davies PS, Fixter LM. Lipid content of some caribbean corals in relation to depth and light. Mar Biol. 1992;113:357-361. doi:10.1007/BF00349159
Harland AD, Navarro JC, Davies SP. Lipids of some caribbean and red sea corals: total lipid, wax esters, triglycerides and fatty acids. Mar Biol. 1993;117:113-117. doi:10.1007/BF00346432
Harriott VJ. Coral lipids and environmental stress. Environ Monit Assess. 1993;25:131-139. doi:10.1007/BF00549134
Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the core microbiome in corals’ Microbial Soup. Trends Microbiol. 2017;25;125-140. doi:10.1016/j.tim.2016.11.003.
Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME. Coral reefs under rapid climate change and ocean acidification. Science. 2017;318(5857):1737-1742.
Hornberger K, Yu G, McKenna D, Hubel A. Cryopreservation of hematopoietic stem cells: emerging assays, cryoprotectant agents, and technology to improve outcomes. Transfus Med Hemother. 2019;46(3):188-196. doi:10.1159/000496068
Huebinger J, Han HM, Hofnagel O, Vetter IR, Bastiaens PI, Grabenbauer M. Direct measurement of water states in cryopreserved cells reveals tolerance toward Ice crystallization. Biophys J. 2016;110(4):840-849. doi:10.1016/j.bpj.2015.09.029
Imbs AB, Yakovleva IM, Pham LQ. Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia sp. Fish Sci. 2010;76:375-380. doi:10.1007/s12562-009-0213-y
Imbs, A.B. Fatty acids and other lipids of corals: composition, distribution, and biosynthesis. Russ J Mar Biol. 2013;39:153-168. doi:10.1134/S1063074013030061
Jang TH, Park SC, Yang JH. Cryopreservation and its clinical applications. Integr Med Res. 2017;6(1):12-18. doi:10.1016/j.imr.2016.12.001
Karako-Lampert S, Zoccola D, Salmon-Divon M, Katzenellenbogen M, Tambutté S, Bertucci A. Transcriptome analysis of the scleractinian coral Stylophora pistillata. Plos one. 2014;9(2),e88615.
Fabricius KE. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change. 2010;1(3):165-169.
Li BS. Fatty acid compositions in the host tissues and zooxanthellae of soft corals Sinularia and Sarcophyton in dongsha atoll. 2016;33-42. Department of oceanography national sun yat-sen university. Master thesis.
Li HH, Lu JL, Lo HE, Tsai S, Lin C. Effect of Cryopreservation on proteins from the ubiquitous marine dinoflagellate Breviolum sp. (family symbiodiniaceae). Plants. 2021. doi:10.3390/plants10091731
Lin C and Tsai S. Factors affecting cryopreservation of cells. Platax. 2009;6;93-106
Lin C and Tsai S. The effect of cryopreservation on DNA damage, gene expression and protein abundance in vertebrate. Ital J Anim Sci. 2011;11:119-122.
Lin C, Kuo FW, Chavanich S, Viyakarn V. Membrane lipid phase transition behavior of oocytes from three gorgonian corals in relation to chilling injury. Plos one. 2014;9(3):e92812. doi:10.1371/journal.pone.0092812
Lin C, Lin CC, Kuo FW, Tsai S. Wild coral oocytes are more amenable to low temperature preservation than cultured counterparts. Mar Environ Res. 2023;183:105831. doi:10.1016/j.marenvres.
Lin C, Thongpoo P, Juri C, Wang LH, Meng PJ, Kuo FW, Tsai S. Cryopreservation of a thermotolerant lineage of the coral reef dinoflagellate symbiodinium. Biopreserv Biobank. 2019;17(6):520-529. doi:10.1089/bio.2019.0019.
Lin C, Tsai S. Fifteen years of coral cryopreservation. Platax. 2020;53-75. doi:10.29926/platax.202012_17.0004.
Lin C, Tsai S. The effect of chilling and cryoprotectants on hard coral (Echinopora spp.) oocytes during short-term low temperature preservation. Theriogenology. 2012;77(6)1257-1261. doi:10.1016/j.theriogenology.2011.09.021.
Lin C, Wang LH, Fan TY, Kuo FW. Lipid content and composition during the oocyte development of two Gorgonian coral species in relation to low temperature preservation. Plos one. 2011;7(7):e38689. doi:10.1371/journal.pone.0038689
Lin C, Wang LH, Meng PJ, Chen CS, Tsai S. Lipid content and composition of oocytes from five coral species: potential implications for future cryopreservation efforts. Plos one. 2013;8(2):e57823. doi:10.1371/journal.pone.0057823
Lin C, Zhang T, Kuo FW, Tsai S. Gorgonian coral (Junceella juncea and Junceella fragilis) oocyte chilling sensitivity in the context of adenosine triphosphate response (ATP). Cryoletters. 2011;32(2):141-147.
Lin C, Zhang T, Rawson DM. Cryopreservation of zebrafish (Danio rerio) blastomeres by controlled slow cooling. Cryoletters. 2009;30(2);132-141
Lin C, Zhuo JM, Chong G, Wang LH, Meng PJ, Tsai S. The effects of aquarium culture on coral oocyte ultrastructure. Sci Rep. 2018;11;8(1),15159. doi:10.1038/s41598-018-33341-x
Lin CC, Li HH, Tsai S, Lin C. Tissue cryopreservation and cryobanking: establishment of a cryogenic resource for coral reefs. Biopreserv Biobank. 2022;20(4):409-411. doi:10.1089/bio.2021.0089
Lin M, Cao H, Li J. Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater. 2023;155:35-56. doi:10.1016/j.actbio.2022.10.056
Lovelock JE, Bishop MW. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature. 1959;183(4672):1394-1395.doi:10.1038/1831394a0
Lovelock JE. The denaturation of lipid-protein complexes as a cause of damage by freezing. Proc R Soc Lond B Biol Sci. 1957;147(929):427-433. doi:10.1098/rspb.1957.0062
Maldjian A, Pizzi F, Gliozzi T, Cerolini S, Penny P, Noble R. Changes in sperm quality and lipid composition during cryopreservation of boar semen. Theriogenology. 2005;63(2):411-421. doi:10.1016/j.theriogenology.
Mandal R, Badyakar D, Chakrabarty J. Role of membrane lipid fatty acids in sperm cryopreservation. Andrology. 2014;190542:9. doi:10.1155/2014/190542.
Martínez-Castillo V, Rodríguez-Troncoso AP, Santiago-Valentín JD. The influence of urban pressures on coral physiology on marginal coral reefs of the mexican pacific. Coral reefs. 2020;39:625-637. doi:10.1007/s00338-020-01957-z
Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol. 1963;47(2):347-369. doi:10.1085/jgp.47.2.347
Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 1977;14(3):251-272. doi:10.1016/0011-2240(77)90175-4
Morris GJ, Acton E. Controlled ice nucleation in cryopreservation--a review. Cryobiology. 2013;66(2):85-92. doi:10.1016/j.cryobiol.2012.11.007
Narida A, Tsai S, Hsieh WC, Wen ZH, Wang LH, Huang CL, Lin C. First successful production of adult corals derived from cryopreserved larvae. Front Mar Sci. 2023. doi:10.3389/fmars.2023.1172102
Narida A, Tsai S, Huang CY, Wen ZH, Lin C. The effects of cryopreservation on the cell ultrastructure in aquatic organisms. Biopreserv Biobank. 2023;21(1):23-30. doi:10.1089/bio.2021.0132.
Nielsen DA, Petrou K. Lipid stores reveal the state of the coral-algae symbiosis at the single-cell level. Isme Commun. 2023;3. doi:10.1038/s43705-023-00234-8
Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H. Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera . Coral reefs 22. 2003;83-85. doi:10.1007/s00338-003-0279-4
Olijve LL, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci USA. 2016;113(14):3740-5. doi:10.1073/pnas.1524109113.
Otero L, Rodríguez AC, Pérez-Mateos M, Sanz PD. Effects of magnetic fields on freezing: application to biological products. Compr Rev Food Sci Food Saf. 2016;15(3):646-667. doi:10.1111/1541-4337.12202
Paredes E, Heres P, Anjos C, Cabrita E. Cryopreservation of marine invertebrates: from sperm to complex larval stages. Methods Mol Biol. 2021;2180:413-425. doi:10.1007/978-1-0716-0783-1-18
Patton JS, Abraham S, Benson AA. Lipogenesis in the intact coral pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar Biol. 1977;44,235-247. doi: 10.1007/BF00387705.
Pegg DE. Cryopreservation and freeze-drying protocols. Methods Mol Biol. 2007;368. doi:10.1007/978-1-59745-362-2-3
Pegg DE. Principles of cryopreservation. Methods Mol Biol. 2015;1257:3-19. doi:10.1007/978-1-4939-2193-5_1
Pegg DE. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology. 2020;93:3-11. doi:10.1016/j.cryobiol.
Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666. doi:10.1038/164666a0
Qin Z, Yu K, Chen S, Chen B, Yao Q, Yu X, Pan N, Wei X. Significant changes in bacterial communities associated with corals ingestion by crown-of-thorns starfish: an important factor affecting the coral's health. Microorganisms. 2022;10(2):207. doi:10.3390/microorganisms10020207.
Rana S, Giordano M, Tsai S, Lin C. Cryopreservation of the green microalga tetraselmis suecica with a controlled, slow-cooling technique. Platax. 2021. doi:10.29926/platax.202112_18.0002
Rivest EB, Hofmann GE. Effects of temperature and pCO2 on lipid use and biological parameters of planulae of Pocillopora damicornis. J Exp Mar Bio Ecol. 2015;473:43-52. doi:10.1016/j.jembe.2015.07.015.
Saunders SM, Radford B, Bourke SA, Thiele Z, Bech T, Mardon J. A rapid method for determining lipid fraction ratios of hard corals under varying sediment and light regimes. Environ Chem. 2005;2:331-336. doi:10.1071/EN05043
Seidel GE. Modifying oocytes and embryos to improve their cryopreservation. Theriogenology. 2006;65(1):228-235. doi:10.1016/j.theriogenology.
Sleigh MA, Blake JR, Liron N. The propulsion of mucus by cilia. Am Rev Respir Dis. 1988;137:726-741. doi:10.1164/ajrccm/137.3.726.
Song YS, Moon S, Hulli L, Hasan SK, Kayaalp E, Demirci U. Microfluidics for cryopreservation. Lab Chip. 2009;9(13):1874-1881. doi:10.1039/b823062e
Thongpoo P, Tsai S, Lin C. Assessing the impacts of cryopreservation on the mitochondria of a thermotolerant Symbiodinium lineage: Implications for reef coral conservation. Cryobiology. 2019;89:96-99. doi:10.1016/j.cryobiol.
Toh EC, Liu KL, Tsai S, Lin C. Cryopreservation and cryobanking of cells from 100 coral species. Cells. 2022;11(17):2668. doi:10.3390/cells11172668.
Tsai S, Chong G, PJ Meng, C Lin. Sugars as supplemental cryoprotectants for marine organisms. Fish Aquac J. 2017. doi:10.1111/raq.12195
Tsai S, Kuit V, Lin ZG, Lin C. Application of a functional marker for the effect of cryoprotectant agents on gorgonian coral (Junceella juncea and J. fragilis) sperm sacs. Cryoletters. 2014;35(1):1-7.
Tsai S, Liu WC, Lin C. An efficient approach for cryopreservation of the king grouper (Epinephelus lanceolatus) spermatozoa. Platax. 2010;7:56-66. doi:10.29926/PLATAX.201012.0005
Tsai S, Spikings E, Hwang C, Lin C. Effects of the slow cooling during cryopreservation on the survival and morphology of taiwan shoveljaw carp (Varicorhinus barbatulus) spermatozoa. Aquat Living Resour. 2010;23(1),119-124. doi:10.1051/alr/2009055
Tsai S, Spikings E, Kuo F, Lin N, Lin C. Use of an adenosine triphosphate assay, and simultaneous staining with fluorescein diacetate and propidium iodide, to evaluate the effects of cryoprotectants on hard coral (Echinopora spp.) oocytes. Theriogenology. 2009;73:605-611. doi:10.1016/j.theriogenology.
Tsai S, Yang V, Lin C. Comparison of the cryo-tolerance of vitrified gorgonian oocytes. Sci Rep. 2016;6;23290. doi:10.1038/srep23290
Tsai S, Yen W, Chavanich S, Viyakarn V, Lin C. Development of cryopreservation techniques for gorgonian (Junceella juncea) oocytes through vitrification. Plos one. 2015. doi:10.1371/journal.pone.0123409
Van Meer G. Lipid traffic in animal cells. Annu Rev Cell Biol. 1989;5:247-275. doi:10.1146/annurev.cb.05.110189.001335
Viyakarn V, Chavanich S, Chong G, Tsai S, Lin C. Cryopreservation of sperm from the coral Acropora humilis. Cryobiology. 2018;80:130-138. doi:10.1016/j.cryobiol.2017.10.007
Walther TC, Farese RV Jr. The life of lipid droplets. Biochim Biophys Acta. 2009;1791(6):459-466. doi:10.1016/j.bbalip.2008.10.009
Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:1260-1272. doi:10.1016/j.bbalip.2017.07.006
White IG. Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fertil Dev. 1993;5(6):639-58. doi:10.1071/rd9930639.
Wilkinson C, Fay P. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature. 1979;279:527-529. doi:10.1038/279527a0
Xu Y, Rong Q, Zhao T, Mingjie Liu. Anti-Freezing multiphase gel materials: Bioinspired design strategies and applications. Giant. 2020;2:100014. doi:10.1016/j.giant.2020.100014.
Yamashiro H, Oku H, Higa H, Chinen I, Sakai K. Composition of lipids fatty acids and sterols in Okinawan corals. Comp Biochem Physiol B Biochem Mol Biol. 1999;122:(4):397-407. doi:10.1016/S0305-0491(99)00014-0.
Yang F, Shaw RA, Gurganus CW, Chong SK, Yap YK. Ice nucleation at the contact line triggered by transient electrowetting fields. Appl Phys Lett. 2015;107(26):264101. doi:10.1063/1.4938749
Yèagle PL. Lipid regulation of cell membrane structure and function. The FasebJournal. 1989;3:1833-1842. doi:10.1096/fasebj.3.7.2469614
Zachariah S, Kumari P, Das SK. Psychrobacter Pocilloporae sp. isolated from a coral Pocillopora eydouxi. Int J Syst Evol Microbiol. 2016;66(12):5091-5098. doi:10.1099/ijsem.0.001476
Zhang N, Li W, Chen C, Zuo J. Molecular dynamics simulation of aggregation in dimethyl sulfoxide-water binary mixture. Comput Theor Chem. 2013;Vol.1017,P126-135. doi:10.1016/j.comptc.
Zhang N, Weizhong Li, Chen C, Zuo J. Molecular dynamics simulation of aggregation in dimethyl sulfoxide-water binary mixture. Computational and Theoretical Chemistry. 2013,1017:126-135. doi:10.1016/j.comptc.2013.05.018.
Zhao G, Fu J. Microfluidics for cryopreservation. Biotechnol Adv. 2017;35(2):323-336. doi:10.1016/j.biotechadv.2017.01.006
Zuchowicz N, Daly J, Lager C, Williamson O, Hagedorn M. Freezing on the beach: a robust coral sperm cryopreservation design. Cryobiology. 2021;101:135-139. doi:10.1016/j.cryobiol. 2021.04.005
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *