帳號:guest(3.145.81.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:張皓
論文名稱:Sn0.6Cr0.1Ge0.3Te及Sn0.6Mn0.1Ge0.3Te固溶體的磁記憶效應與磁熱效應研究
論文名稱(英文):Magnetic Memory and Magnetocaloric Effect of Sn0.6Cr0.1Ge0.3Te and Sn0.6Mn0.1Ge0.3Te
指導教授:吳勝允
指導教授(英文):Sheng-Yun Wu
口試委員:陳孟炬
黃玉林
口試委員(英文):Meng-Chu Chen
Yue-Lin Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:611114205
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:65
關鍵詞:合金磁性磁卡效應磁記憶效應
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
本研究通過密封管固相反應合成Sn0.6Cr0.1Ge0.3Te及Sn0.6Mn0.1Ge0.3Te固溶體,並研究其磁熱效應及磁記憶效應。
Sn0.6Cr0.1Ge0.3Te在室溫表現出順磁性,在居里溫度Tc=182K以下表現出鐵磁性,並且在阻塞溫度TB=133K以下觀察到Super Spin-Glass狀態。在Spin-Glass狀態下可以觀察到磁記憶效應,並計算了在各種外加磁場下的磁熵變化量(-ΔSM)及最大相對冷卻效率。在60 kOe外加磁場下,在居里溫度附近有最大磁熵變-ΔSM=0.1073J/kg-k、最大相對致冷效率RCP(S)=7.52J/kg。
Sn0.6Mn0.1Ge0.3Te在室溫下表現出順磁性,在居里溫度Tc=27K處發生鐵磁相變,磁性轉變為鐵磁性,低溫下不存在Spin-Glass狀態及磁記憶效應。計算各種外加磁場下的磁熵變化量(-ΔSM)及最大相對冷卻效率。在60 kOe外加磁場下,在居里溫度附近有最大磁熵變-ΔSM=1.501 J/kg-k、最大相對致冷效率RCP(S)=42.06 J/kg。Sn0.6Mn0.1Ge0.3Te在低溫下表現的致冷效率使其有望在未來實際應用於磁致冷領域。
This study investigates the magnetic memory and magnetocaloric effects of Sn0.6Cr0.1Ge0.3Te (SCGT) solid solution synthesized by a sealed tube solid-state reaction.
Sn0.6Cr0.1Ge0.3Te exhibits paramagnetism at room temperature, ferromagnetism below the Curie temperature Tc=182K, and a Super Spin-Glass structure is observed below the blocking temperature TB=133K. The magnetic memory effect can be observed in the Spin-Glass state, and the change of magnetic entropy (-ΔSM) and the maximum relative cooling efficiency under various external magnetic fields are calculated. Under the external magnetic field of 60 kOe, there is a maximum magnetic entropy change -ΔSM=0.1073J/kg-k and a maximum relative cooling efficiency RCP=7.52J/kg near the Curie temperature.
Sn0.6Mn0.1Ge0.3Te exhibits paramagnetism at room temperature, and a ferromagnetic phase transition occurs at the Curie temperature Tc=27K, and the magnetism changes to ferromagnetism. There is no Spin-Glass state and magnetic memory effect at low temperature. Calculate the magnetic entropy change (-ΔSM) and the maximum relative cooling efficiency under various external magnetic fields. Under the external magnetic field of 60 kOe, there is a maximum magnetic entropy change -ΔSM=1.501 J/kg-k and a maximum relative refrigeration efficiency RCP=42.06 J/kg near the Curie temperature. The refrigeration efficiency of Sn0.6Mn0.1Ge0.3Te at low temperature makes it hopeful that it will be practically applied in the field of magnetic refrigeration in the future.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 導論與文獻回顧 1
第二章 實驗原理與方法 3
2.1磁性基礎原理 3
2.1.1磁性的產生 3
2.1.2磁性的分類 4
2.2磁熱效應 6
2.2.1等溫磁熵變及絕熱溫度變化的計算 6
2.2.2相對冷卻功率及制冷量的計算 7
2.3儀器原理 8
2.3.1熱場發射掃描式電子顯微鏡(Thermal Field Emission Scanning Electron Microscope, FE-SEM) 8
2.3.2能量分散光譜儀(Energy-dispersive X-ray spectroscopy, EDS) 9
2.3.3拉曼光譜儀(Raman spectroscopy) 10
2.3.4 X射線繞射儀(X-ray diffractometer, XRD) 11
2.3.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 12
2.3.6超導量子干涉儀(Superconducting QUantum Interference Devices, SQUID) 13
2.4樣品製備 15
第三章 實驗數據與分析 16
3.1 SEM以及EDS量測 16
3.2 X光繞射光譜分析 20
3.3 拉曼光譜分析 23
3.4 X射線光電子能譜分析 26
3.5磁性分析 32
3.5.1磁化強度-溫度 32
3.5.2磁化強度-磁場 35
3.5.3磁熱效應(Magnetocaloric effect, MCE) 37
3.5.4磁記憶效應(Magnetic memory effect) 42
3.5.5等溫剩餘磁化(isothermal rement moment, IRM) 45
3.5.6磁矩弛豫 46
第四章 結論 47
參考文獻 49

1. Banik, Ananya, Subhajit Roychowdhury, and Kanishka Biswas. "The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials." Chemical Communications 54.50 (2018): 6573-6590.
2. Wiedemeier, H., and P. A. Siemers. "The thermal expansion of GeS and GeTe." Zeitschrift für anorganische und allgemeine Chemie 431.1 (1977): 299-304.
3. Abrikosov, N. Kh, Aleksandr Moiseevich Wasserman, and L. V. Poretskaya. "Investigation of the SnTe–GeTe system." Doklady Akademii Nauk. Vol. 123. No. 2. Russian Academy of Sciences, 1958.
4. Racka, K., et al. "Anomalous Hall Effect in Sn 1− x− y Mn x Eu y Te and Sn 1− x− y Mn x Er y Te Mixed Crystals." Journal of superconductivity 16 (2003): 289-291.
5. Nadolny, A. J., et al. "Carrier induced ferromagnetism in epitaxial Sn1− xMnxTe layers." Journal of magnetism and magnetic materials 248.1 (2002): 134-141.
6. Escorne, M., and A. Mauger. "Magnetic order effects on electric susceptibility hole mass of Sn1-x MnxTe." Journal de Physique 40.4 (1979): 347-354.
7. Fukuma, Y., et al. "Film growth of Ge1− xMnxTe using ionized-cluster beam technique." Physica E: Low-dimensional Systems and Nanostructures 10.1-3 (2001): 273-277.
8. Li, Ling-Wei. "Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals." Chinese Physics B 25.3 (2016): 037502.
9. Banik, Ananya, et al. "Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn 1− x Ge x Te." Energy & Environmental Science 12.2 (2019): 589-595.
10. HE, Jun, et al. Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method. Journal of Materials Chemistry A, 2015, 3.39: 19974-19979.
11. Berchenko, N., et al. "Surface oxidation of SnTe topological crystalline insulator." Applied Surface Science 452 (2018): 134-140.
12. Wang, Hongchao, et al. "Enhancement of the thermoelectric performance of bulk SnTe alloys via the synergistic effect of band structure modification and chemical bond softening." Journal of Materials Chemistry A 5.27 (2017): 14165-14173.
13. An, Changhua, et al. "Solution-phase synthesis of monodispersed SnTe nanocrystallites at room temperature." Inorganic Chemistry Communications 6.2 (2003): 181-184.
14. Puthirath Balan, Aravind, et al. "Magnetic properties and photocatalytic applications of 2D sheets of nonlayered manganese telluride by liquid exfoliation." ACS Applied Nano Materials 1.11 (2018): 6427-6434.
15. O’Neill, Sean W., and Todd D. Krauss. "Synthetic Mechanisms in the Formation of SnTe Nanocrystals." Journal of the American Chemical Society 144.14 (2022): 6251-6260.
16. Wang, Y. Y., K. F. Cai, and X. Yao. "Facile synthesis and characterization of SnTe films." Applied surface science 258.2 (2011): 919-922.
17. Fantini, A., et al. "N-doped GeTe as performance booster for embedded phase-change memories." 2010 International Electron Devices Meeting. IEEE, 2010.
18. Meng, Lingjia, et al. "Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition." Nature Communications 12.1 (2021): 809.
19. Iwanowski, R. J., M. H. Heinonen, and E. Janik. “X-ray photoelectron spectra of zinc-blende MnTe.” Chemical physics letters 387.1-3 (2004): 110-115.
20. Iwanowski, R. J., M. H. Heinonen, and B. Witkowska. “X-ray photoelectron study of NiAs-type MnTe.” Journal of alloys and compounds 491.1-2 (2010): 13-17.
21. Ye, Kun, et al. "Broadband Polarization‐Sensitive Photodetection of Magnetic Semiconducting MnTe Nanoribbons." Small (2023): 2300246.
22. Neudachina, V. S., et al. "XPS study of SnTe (1 0 0) oxidation by molecular oxygen." Surface science 584.1 (2005): 77-82.
23. Majeed, Abdul, et al. "Structural elucidation and magnetic behavior evaluation of rare earth (La, Nd, Gd, Tb, Dy) doped BaCoNi-X hexagonal nano-sized ferrites." Journal of magnetism and magnetic materials 408 (2016): 147-151.
24. Phan, Manh-Huong, and Seong-Cho Yu. "Review of the magnetocaloric effect in manganite materials." Journal of Magnetism and Magnetic Materials 308.2 (2007): 325-340.
25. Dhahri, Ah, E. Dhahri, and E. K. Hlil. "Large magnetocaloric effect in manganese perovskite La 0.67− x Bi x Ba 0.33 MnO 3 near room temperature." RSC advances 9.10 (2019): 5530-5539.
26. Zhang, Xuexi, et al. "Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations." Scientific reports 8.1 (2018): 8235.
27. Griffith, L. D., et al. "Material-based figure of merit for caloric materials." Journal of Applied Physics 123.3 (2018).
28. Mathieu, Roland, Matthias Hudl, and Per Nordblad. "Memory and rejuvenation in a spin glass." Europhysics letters 90.6 (2010): 67003.
29. Dey, K., et al. "Magnetoelectric coupling, ferroelectricity, and magnetic memory effect in double perovskite La3Ni2NbO9." ACS Applied Materials & Interfaces 8.20 (2016): 12901-12907.
(此全文20280729後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *