帳號:guest(3.15.198.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:游世龍
作者(英文):Shih-Lung Yu
論文名稱:鐵氧氮化物奈米材料的光學與磁學特性研究
論文名稱(英文):Optical and Magnetic Properties of FeON Nanomaterials
指導教授:吳勝允
指導教授(英文):Sheng-Yun Wu
口試委員:黃玉林
陳孟炬
口試委員(英文):Yue-Lin Huang
Meng-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:611114209
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:65
關鍵詞:鐵氧氮化物光學特性磁學特性
關鍵詞(英文):FeONOptical PropertiesMagnetic Properties
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
鐵氧化物和鐵氮化物混合系統是藉由合成氮化鐵(FN)的退火所研究出來的。系統的研究了樣品的物理及化學特性。根據觀察,FN在氧化時的多相變,是因為氧化溫度所造成的。ε-Fe3N 和 α-Fe2O3 奈米顆粒的形成可以藉由XRD研究得到證明。利用超導量子干涉儀的磁力計可以發現,磁滯曲線可以得知樣品隨著氮原子的減少而減少超順磁特性。對於溫度的磁化分佈表示觀察到的氮化鐵相的鐵磁特性可歸因於由氮數量和晶格中的限制引起電子自旋態的重新分佈。
Mixed iron oxide and iron nitride systems were investigated by annealing synthetic iron nitride (FN). The physical and chemical properties of the samples were studied systematically. According to the observation, the multiphase transformation of FN during oxidation is caused by the oxidation temperature. The formation of ε-Fe3N and α-Fe2O3 nanoparticles can be confirmed by XRD studies. Using the magnetometer of the superconducting quantum interferometer, it can be found that the hysteresis curve can tell that the superparamagnetic properties of the sample decrease with the reduction of nitrogen atoms. The magnetization distribution versus temperature indicates that the observed ferromagnetic properties of the iron nitride phase are attributable to the redistribution of electron spin states caused by the nitrogen amount and confinement in the lattice.
致謝 1
摘要 3
第一章:研究介紹 9
1-1研究目的: 9
1-2文獻回顧: 9
1-3簡介: 14
第二章 樣品製作 15
2-1氮化鐵(FN)製備實驗參數 15
第三章 儀器介紹與原理簡介 17
3-1.1顯微拉曼光譜儀 17
3-1.2超導量子干涉儀(SQUID-VSM) 24
3-1.3熱場發射掃描式電子顯微鏡(FE-SEM) 28
3-1.4 SETARAM熱分析儀(TG-DTA) 32
3-1.5 X射線繞射儀(XRD) 34
3-1.6 X射線光電子能譜學 (XPS) 37
第四章 數據分析: 41
4-1 TG-DTA分析: 41
4-2 XRD分析: 43
4-3 Raman分析: 45
4-4 XPS分析: 50
4-5 FE-SEM分析: 56
4-5 PL分析: 57
4-6 SQUID分析: 58
第五章 結論: 61
參考資料: 62

(1) Nakajima, H.; Ohashi, Y.; Shiiki, K. Effect of N atom and lattice constant onelectronic structures and magnetic properties of Fe16N2 calculated by band structure calculation based on local-density approximation. Journal of Magnetism and Magnetic Materials 1997, 167(3),259-263, DOI: https://doi.org/10.1016/S0304-8853(96)00638-5.
(2) Rohith Vinod, K.; Saravanan, P.; Sakar, M.; Balakumar, S. Insights into the nitridation of zero-valent iron nanoparticles for the facile synthesis of iron nitride nanoparticles. RSC Advances 2016, 6 (51), 45850-45857, DOI: 10.1039/C6RA04935D.
(3) Sakuma, A. Self-consistent calculations for the electronic structures of iron nitrides, Fe3N, Fe4N and Fe16N2. Journal of Magnetism and Magnetic Materials 1991, 102 (1), 127-134, DOI: https://doi.org/10.1016/0304-8853(91)90277-H.
(4) Yamashita, S.; Masubuchi, Y.; Nakazawa, Y.; Okayama, T.; Tsuchiya, M.; Kikkawa, S. Crystal structure and magnetic properties of “α′′-Fe16N2” containing residual α-Fe prepared by low-temperature ammonia nitridation. Journal of Solid State Chemistry 2012, 194, 76-79, DOI: https://doi.org/10.1016/j.jssc.2012.07.025.
(5) Brumovský, M.; Oborná, J.; Micić, V.; Malina, O.; Kašlík, J.; Tunega, D.; Kolos, M.; Hofmann, T.; Karlický, F.; Filip, J. Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene. Environmental Science & Technology 2022, 56 (7), 4425-4436, DOI: 10.1021/acs.est.1c08282.
(6) Zheng, M.; Chen, X.; Cheng, R.; Li, N.; Sun, J.; Wang, X.; Zhang, T. Catalytic decomposition of hydrazine on iron nitride catalysts. Catalysis Communications 2006, 7 (3), 187-191, DOI: https://doi.org/10.1016/j.catcom.2005.10.009.
(7) Toth, L. Transition metal carbides and nitrides, Elsevier: 2014.
(8) Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S. S.; Lai, Y. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. Journal of Materials Chemistry A 2016, 4 (18), 6772-6801, DOI: 10.1039/C5TA09323F.
(9) Sakar, M.; Mithun Prakash, R.; Do, T.-O. Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms Catalysts [Online], 2019.
(10) Kheradmand, A.; Wainwright, A.; Wang, L.; Jiang, Y. Anchoring Iron Oxides on Carbon Nitride Nanotubes for Improved Photocatalytic Hydrogen Production. Energy & Fuels 2021, 35 (1), 868-876, DOI: 10.1021/acs.energyfuels.0c03901.
(11) Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488 (7411), 294-303, DOI: 10.1038/nature11475.
(12) Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R. S. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chemical Reviews 2017, 117 (3), 1445-1514, DOI: 10.1021/acs.chemrev.6b00396.
(13) Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chemical Reviews 2016, 116 (12), 7159-7329, DOI: 10.1021/acs.chemrev.6b00075.
(14) Basanth S. Kalanoor, Hyungtak Seo, Shankara S. Kalanur., Materials Science for Energy Technologies, 1, 49-62, 2018.
(15) Ravikumar, M. P.; Bharathkumar, S.; Urupalli, B.; Murikinati, M. K.; Muthukonda Venkatakrishnan, S.; Mohan, S. Insights into the Photocatalytic Memory Effect of Magneto-Plasmonic Ag–Fe3O4@TiO2 Ternary Nanocomposites for Dye Degradation and H2 Production under Light and Dark Conditions. Energy & Fuels 2022, 36 (19), 11503-11514, DOI: 10.1021/acs.energyfuels.2c01563.
(16) Jing, D.; Guo, L.; Zhao, L.; Zhang, X.; Liu, H.; Li, M.; Shen, S.; Liu, G.; Hu, X.; Zhang, X.; Zhang, K.; Ma, L.; Guo, P. International Journal of Hydrogen Energy 2010, 35, 7087.
(17) K, R. V.; Saravanan, P.; Sakar, M.; Vinod, V. T. P.; Cernik, M.; Balakumar, S. Large scale synthesis and formation mechanism of highly magnetic and stable iron nitride (ε-Fe3N) nanoparticles. RSC Advances 2015, 5 (69), 56045-56048, DOI: 10.1039/C5RA07566A.
(18) Wang, C., Wang, X., Xu, B.-Q., Zhao, J., Mai, B., Peng, P., … Fu, J. (2004). Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. Journal of Photochemistry and Photobiology A: Chemistry, 168(1-2), 47–52. doi:10.1016/j.jphotochem.2004.05.014
(19) Yinxiao Du, M. L. E. I. H. Y. Facile Solid-State Synthesis Route to Metal Nitride Nanoparticles. Journal of Materials Sciences and Technology 2009, 24 (05), 737-741.
(20) O’Sullivan, S. E.; Sun, S.-K.; Lawson, S. M.; Stennett, M. C.; Chen, F.; Masubuchi, Y.; Corkhill, C. L.; Hyatt, N. C. Low-Temperature Nitridation of Fe3O4 by Reaction with NaNH2. Inorganic Chemistry 2021, 60 (4), 2553-2562, DOI: 10.1021/acs.inorgchem.0c03452.
(21) Grafouté, M.; Petitjean, C.; Rousselot, C.; Pierson, J. F.; Grenèche, J. M. Structural properties of iron oxynitride films obtained by reactive magnetron sputtering. Journal of Physics:Condensed Matter2007,19(22),226207,DOI:10.1088/0953-8984/19/22/226207.
(22) Maeda, K. CO2 reduction using oxynitrides and nitrides under visible light. Progress inSolidStateChemistry2018,51,52-62,DOI:https://doi.org/10.1016/j.progsolidstchem.2017.11.003.
(此全文20280729後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *