帳號:guest(3.15.223.27)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:郭仁傑
作者(英文):REN-JIE GUO
論文名稱:纖維素生質環氧樹脂複合材封裝太陽能電池之特性與偏光污染探究
論文名稱(英文):Characteristics and Polarization Pollution of Solar Cells Encapsulated by Cellulose Biomass Epoxy Resin Composite
指導教授:白益豪
指導教授(英文):Yi-Hao Pai
口試委員:高至誠
林嘉德
口試委員(英文):Zhi-Cheng Gao
Jia-De Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:611125003
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:67
關鍵詞:偏光汙染纖維素基環氧樹脂太陽能電池
關鍵詞(英文):polarized light pollutioncellulose-based epoxy resinsolar cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
根據台灣 2050 淨零排放路徑及策略報告書指出,最大化的再生能源於短中期策略(~2030年)為優先建置技術已成熟的太陽光電、風力發電。有鑒於此,廣設太陽能發電廠成為近幾年在地面與屋頂常見的景象。然而太陽能板有機會將入射的自然光(非偏振光) 反射並轉變出具有偏振特性的光。而昆蟲利用環境的偏振光來進行定位與飛行,如果廣設太陽能光電場是否可能會對於授粉類昆蟲或棲地環境帶來影響成為近幾年探究的議題。其中,發展新穎的太陽能電池的前板封裝材來消除環境中的偏光汙染現象是可行的做法之一。
本研究使用纖維素基環氧樹脂類仿生材料來嘗試替代太陽電池表面的前板封裝材-玻璃,期許可以降低因太陽能板反射出所產生的光偏振現象以及應用於太陽電池上的潛力。纖維素基環氧樹脂是具有高透明度之木質材料,其原理是將木材透過水熱技術將木製樣品內之木質素溶解並漂白,再加入環氧樹脂形成複合材,藉此轉變木材的特性如光學性質或機械性質。纖維素基環氧樹脂由積分球穿透光譜分析儀的量測結果可發現其穿透率與霧度均大於80%,且除了擁有良好的耐冰雹衝撞能力外,同時也具輕量化與低低熱傳導率(0.23 W/m.k)等優點。此外,當水熱處理時間增加(72hr增加到144hr)偏振分光比從1.50±0.03下降到1.31±0.05,代表去偏振(depolarization)能力提升,可歸因於材料內部不規則纖維排列使偏振光在內部進行不同方向的反射與穿透導致。而將纖維素基環氧樹脂封裝的電池在入射角40°所產生的偏振分光比(100.91±24.77)遠低於使用玻璃封裝的電池所產生的偏振分光比(208.38±31.64)。因此,使用纖維素基環氧樹脂的確可以有效降低使用玻璃背板的太陽能電池所產生的線偏振光。
最後在矽基太陽能電池的封裝測試方面,我們在150°C壓力100 kpa下進行熱壓,完成將纖維素基環氧樹脂封裝於矽基太陽能電池元件。在照光強度為8.7mW/cm2的模擬光源測試下,可獲得1 W/cm2的發電量,能源轉換效率11.49%,FF為70.42%,非常接近以玻璃作為前板封裝材的太陽能電池元件(能源轉換效率14.04%;F.F.為75.16)。此外,研究也發現,因纖維素基環氧樹脂具有光激發光之特性,能將紫外光吸收並放出可見光,藉此提升單位面積的光通量,有助於太陽能電池吸收轉換成電能。
According to the Taiwan 2050 Net Zero Emissions Pathway and Strategy Report, the prioritized approach in the short to medium term strategy (around 2030) is to maximize the utilization of mature technologies, such as solar photovoltaic and wind power, within the realm of renewable energy. As a result, the widespread establishment of solar power plants has become a common sight on both the ground and rooftops in recent years. However, there's a possibility that solar panels might reflect and transform incident natural light (non-polarized light) into light with polarization characteristics. Insects, on the other hand, use the polarization of light in their environment for navigation and flight. This has led to an exploration in recent years regarding the potential impact of extensive solar photovoltaic installations on pollinating insects and their habitat environments. Among the potential solutions, developing innovative front-panel encapsulation materials for solar cells to mitigate environmental polarization pollution stands out as a feasible approach.
This study utilizes cellulose-based epoxy resin biomimetic materials as a potential alternative to replace the glass front-panel encapsulation material on solar panels. The aim is to reduce the light polarization phenomenon caused by the reflection of solar panels and explore the potential application of this material in solar cells. Cellulose-based epoxy resin is a wood-based material with high transparency. The process involves dissolving and bleaching lignin within wood samples through hydrothermal techniques, followed by the addition of epoxy resin to create a composite material. This transforms the characteristics of wood, such as optical or mechanical properties.
The measurements from an integrating sphere spectrophotometer indicate that cellulose-based epoxy resin has a transparency and haze both exceeding 80%. Apart from exhibiting excellent hail impact resistance, it also possesses advantages like lightweight and low thermal conductivity (0.23 W/m·K). In addition, increasing the hydrothermal treatment time (from 72 hours to 144 hours) leads to a decrease in the polarization split ratio from 1.50±0.03 to 1.31±0.05. This decrease signifies an improvement in depolarization ability, attributed to irregular fiber alignment within the material causing polarization light to undergo various directions of reflection and transmission within the material.
Furthermore, solar cells encapsulated with cellulose-based epoxy resin exhibit a much lower polarization split ratio (100.91±24.77) at an incident angle of 40° compared to solar cells encapsulated with glass (208.38±31.64). Hence, the use of cellulose-based epoxy resin indeed effectively reduces the linear polarization generated by solar cells using glass back panels.
Finally, in terms of the encapsulation testing for silicon-based solar cells, we conducted heat pressing at 150°C and 100 kPa pressure to successfully encapsulate the cellulose-based epoxy resin onto the silicon-based solar cell components. Under simulated light with an intensity of 8.7 mW/cm², a power output of 1 W/cm² and an energy conversion efficiency of 11.49% were achieved, with a fill factor (FF) of 70.42%. These values are very close to those of solar cell components that use glass as the front-panel encapsulation material (energy conversion efficiency of 14.04% and FF of 75.16%). Furthermore, the study also found that cellulose-based epoxy resin exhibits photoluminescent characteristics, absorbing ultraviolet light and emitting visible light. This property enhances the light flux per unit area, contributing to the absorption and conversion of solar energy into electricity by the solar cells.
致謝 I
中文摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章 :緒論 1
1-1前言 1
1-2纖維素基環氧樹脂性質 2
1-3太陽能電池的偏光汙染 4
1-4動機與研究目的 5
第二章 :文獻回顧 6
2-1天空偏振性與昆蟲偏光定位 6
2-2纖維素基環氧樹脂的物理性質 10
2-3太陽能電池能源轉換原理與偏光汙染 14
第三章 :研究設備與研究方法 17
3-1.天空偏振性 17
3-2纖維素基環氧樹脂的製備與光學特性及機械性質 19
3-2-1纖維素基環氧樹脂製備方法與掃描式電子顯微鏡下表面結構 19
3-2-1-1纖維素基環氧樹脂製備流程與參數 19
3-2-1-2纖維素基環氧樹脂在掃描式電子顯微鏡下表面結構 21
3-2-2 不同熱處理時間下纖維素基環氧樹脂光學性質 22
3-2-2-1霧度與全光穿透率 22
3-2-2-2穿透光譜 23
3-2-2-3偏振分光比(PER) 24
3-2-2-4纖維素基環氧樹脂的光致發光效應 28
3-2-3玻璃與纖維素基環氧樹脂機械性質比較 29
3-2-3-1維氏硬度試驗(HV) 29
3-2-3-2 冰雹試驗 30
3-3太陽能電池封裝與效率 32
3-3-1太陽能電池封裝各項參數與架構 32
3-3-2太陽能電池效率量測方法與架構 33
3-3-3溫度對太陽能電池效率的影響 34
第四章 :結果與討論 35
4-1. 天空與太陽能模組偏振性差異 35
4-2纖維素基環氧樹脂的表面差異與不同光學性質及機械性質比較 36
4-2-1 不同熱處理時間下纖維素基環氧樹脂表面結構差異 36
4-2-2 不同熱處理時間下纖維素基環氧樹脂光學性質 39
4-2-3 纖維素基環氧樹脂與玻璃之間IEC法規認證與硬度量測 50
4-3太陽能電池 52
4-3-1 使用纖維素基環氧樹脂與玻璃封裝太陽能電池效率比較 52
4-3-2 不同溫度對纖維素基環氧與玻璃封裝太陽能電池效率的影響 55
第五章 :總結論 59
未來展望 61
參考文獻 62
[1] E. Kabira, P. Kumarb, S. Kumarc, A. A. Adelodund, K-H. Kime, “Solar energy: Potential and future prospects.” Renewable and Sustainable Energy Reviews. 2018, 82, 894-900.
[2] D. C. Fraleigh, J. B. Heitmann, B. A. Robertson, “Ultraviolet polarized light pollution and evolutionary traps for aquatic insects.” Animal Behaviour. 2021, 180, 239-247.
[3] Á. Egri, D. Száz, Á. Pereszlényi, B. Bernáthc, G. Kriska, “Quantifying the polarised light pollution of an asphalt road: an ecological trap for the stonefly, Perla abdominalis.” Aquatic Insects. ,2019, 40, 3, 257-269.
[4] D. Durmus, J. Wang, S. Good, B. Basom, “The Effect of Electric Bridge Lighting at Night on Mayfly Activity.” Energies. 2021, 14, 10, 2934.
[5] B. Fritz, G. Horva´th, R. Hu¨nig, A. Pereszle´nyi, A. Egri, M. Guttmann, M. Schneider, U. Lemmer, G. Kriska, Guillaume Gomard, “Bioreplicated coatings for photovoltaic solar panels nearly eliminate light pollution that harms polarotactic insects.” PLOS ONE. 2020, 15 ,12, e0243296.
[6] G. Horváth, D. Varjú, “Polarization Pattern of Freshwater Habitats Recorded by Video Polarimetry in Red, Green and Blue Spectral Ranges and its Relevance for Water Detection by Aquatic Insects.” Experimental Biology. 1997, 200, 7, 1155-1163.
[7] N. Kobayashi, R. Okada, M. Sakura, “Orientation to polarized light in tethered flying honeybees.” Journal of Experimental Biology. 2020, 223, 23, jeb228254.
[8] C. Evangelista, P. Kraft, M. Dacke, T. Labhart, M. V. Srinivasan, “Honeybee navigation: critically examining the role of the polarization compass.” Philosophical Transactions of the Royal Socciety B. 369, 1636, 20130037.
[9] B. P. Jelle, A. Hynd, A. Gustavsen, D. Arasteh, H. Goudey, R. Hart, “Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities.” Solar Energy Materials & Solar Cells. 2012, 96, 1-28.
[10] Y. Li, Q. Fu, S. Yu, Min Yan, L. Berglund, “Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance.” Biomacromolecules. 2016, 17, 1358−1364.
[11] Y. Li, Q. Fu, R. Rojas, M. Yan, M. Lawoko, L. Berglund, “Lignin-Retaining Transparent Wood.” ChemSusChem. 2017, 10, 3445-3451
[12] M. Zhu, T. Li, C. S. Davis, Y. Yao, J. Dai, Y. Wang, F. AlQatari, J. W. Gilman, L. Hu, “Transparent and haze wood composites for highly efficient broadband light management in solar cells.” Nano Energy. 2016, 26, 332-339.
[13] E. Vasileva, H. Chen, Y. Li, I. Sychugov, M. Yan, L. Berglund, S. Popov, “Light Scattering by Structurally Anisotropic Media: A Benchmark with Transparent Wood.” Advanced Optical Materials. 2018, 6, 1800999.
[14] J. Wu, Y. Wua, F. Yang, C. Tang, Q. Huang, J. Zhang, ” Impact of delignification on morphological, optical and mechanical properties of transparent wood.” Composites Part A. 2019, 117, 324–331.
[15] E. Vasileva, A Baitenov, H. Chen, Y. Li, I. Sychugiv, M. Yan, L. Berglund, S. Popov, ”Effect of transparent wood on the polarization degree of light.” Optics Letters. 44, 12, 2962-2965.
[16] M. Höglund, J. Garemark, M. Nero, T. Willhammar, S. Popov, L. A. Berglund, “Facile Processing of Transparent Wood Nanocomposites with Structural Color from Plasmonic Nanoparticles.” Chemistry of Materials. 2021, 33, 3736-3745.
[17] Y. Li, E. Vasileva, I. Sychugov, S. Popov, L. Berglund, “Optically Transparent Wood: Recent Progress, Opportunities, and Challenges.” Advanced Optical Materials. 2019, 6, 1800059.
[18] J. Qin, X Li, Y. Shao, K. Shi, X. Zhao, T. Feng, Y. Hu,”Optimization of delignification process for efficient preparation of transparent wood with high strength and high transmittance.” Vacuum. 2018, 158, 158–165.
[19] Y. Li, X. Yang, Q. Fu, R. Rojas, M. Yan, L. Berglund, “Towards centimeter thick transparent wood through interface manipulation.” Journal of Materials Chemistry A. 2018, 6, 1094–1101.
[20] S. Fink, “Transparent Wood — A New Approach in the Functional Study of wood structure.” Holzforschung. 1992, 46, 403-408.
[21] R. Mi, C. Chen, T. Keplinger, Y. Pei, S. He, D. Liu, J. Li, J. Dai, E. Hitz, B. Yang, I. Burgert, L. Hu, “Scalable aesthetic transparent wood for energy efficient buildings.” Nature Communications. 2020, 11, 3836
[22] M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D Henderson, L. Hu, ” Highly Anisotropic, Highly Transparent Wood Composites.” Advanced Materials. 2016, 28, 5181-5187
[23] G. Jacucci, L. Schertel, Y. Zhang, H. Yang, S. Vignolini, “Light Management with Natural Materials: From Whiteness to Transparency.” Advanced Materials. 2021, 33, 2001215.
[24] Y. Li, M. Cheng, E. Jungstedt, B. Xu, L. Sun, L. Berglund, “Optically Transparent Wood Substrate for Perovskite Solar Cells.” ACS Sustainable Chemistry Engineering. 2019, 7, 6061−6067.
[25] D. Száz, D. Mihályi, A. Farkas, Á. Egri, A. Barta, G. Kriska, B. Robertson, G. Horváth, “Polarized light pollution of matte solar panels: anti-reflective photovoltaics reduce polarized light pollution but benefit only some aquatic insects.” Journal of Insect Conservation. 2016, 20, 663-675.
[26] B. E. Jundi, K. Pfeiffer, S. Heinze, U. Homberg, “Integration of polarization and chromatic cues in the insect sky compass.” Journal of Comparative Physiology A. 2014, 200, 575-589.
[27] G. Horváth, “Reflection-polarization patterns at flat water surfaces and their relevance for insect polarization vision.” Journal of Theoretical Biology. 1995, 175, 27-37
[28] A. Meglic, M. Ilic, P. Piriha, A. Skorjanc, M. F. Wehling, M. Krefta, G. Belusic, “Horsefly object-directed polarotaxis is mediated by a stochastically distributed ommatidial subtype in the ventral retina.” PNAS. 2019, 116, 43, 21843-21853.
[29] R. Schwind, “Polarization vision in water insects and insects living on a moist substrate,” Journal of Comparative Physiology A. 1991, 169, 531-540.
[30] A. Barta, G. Horv a´th, “Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV.” Journal of Theoretical Biology. 2004, 226, 429-437.
[31] D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter.” Physical Review E. 1994, 49, 2, 1767-1770.
[32] M. Blahó, Á. Egri, A. Barta, G. Antoni, G. Kriska, G. Horváth, “How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics.” Veterinary Parasitology. 2012, 189, 353–365
[33] G. Kriska, B. Berna´th, R. Farkas, G. Horva´th, “Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae).” Journal of Insect Physiology. 2009, 55, 1167–1173.
[34] T. Chung, Y. Lee, S-P. Yang, K. Kim, B-H. Kang, K-H. Jeong, “Mining the Smartness of Insect Ultrastructures for Advanced Imaging and Illumination.” Advanced Functional Materials. 2018, 28, 1705912.
[35] T. Labhart, E. P. Meyer, “Neural mechanisms in insect navigation: polarization compass and odometer.” Current Opinion in Neurobiology. 2002, 12:707-714.
[36] S.B. Karman, S. Z. M. Diah, I. C. Gebeshuber, “Bio-Inspired Polarized Skylight-Based Navigation Sensors: A Review.” Sensors. 2012, 12, 14232-14261.
[37] J. Liu, J. Yang, Y. Wang, J. Tang, C. Shen, “Global positioning method based on polarized light compass system.” Review of Scientific Instruments. 2018, 89, 054503.
[38] M. Sarkar, D. S. S. Bello, C. V. Hoof, A. Theuwissen, “I Integrated polarization analyzing CMOS Image sensor for autonomus navigation using polarized light.” IEEE. 2010, 5, 224-229.
[39] T. Seta¨la¨, A. Shevchenko, M. Kaivola, “Degree of polarization for optical near fields.” PHYSICAL REVIEW E. 2002, 66, 016615.
[40] D. Száz, D. Mihályi, A. Farkas, Á. Egri, A. Barta, G. Kriska, Br Robertson, G. Horváth, “Polarized light pollution of matte solar panels: anti-reflective photovoltaics reduce polarized light pollution but benefit only some aquatic insects.” Journal of Insect Conservation. 2016, 20, 663-675.
[41] J. Tang, Y. Wang, D. Zhao, X. Guo, J. Zhao, C. Shen, J. Liu, “Application of polarized light compass system on solar position calculation.” Optik. 2019, 187, 135–147.
[42] D. Zhao, Y. Liu, X. Wu, H. Dong, C. Wang, J. Tang, C. Shen, J. Liu, “Attitude-Induced error modeling and compensation with GRU networks for the polarization compass during UAV orientation.” Measurement. 2022, 190, 110734.
[43] Y. Li, Q. Fu, X. Yang, L. Berglund, “Transparent wood for functional and structural applications.” Philosophical Transactions A. 2018, 376, 2112, 20170182
[44] W. Fang, Z. Fang, P. Zhou, F. Chang, Y. Hong, X. Zhang, H. Peng, Y. Xiao, “Evidence for Lignin Oxidation by the Giant Panda Fecal Microbiome.” PLOS One. 2012, 7, 11, e50312.
[45] S. Zhu, S. K. Biswas, Z. Qiu, Y. Yue, Q. Fu, F. Jiang, J. Han, “Transparent wood-based functional materials via a top-down approach.” Progress in Materials Science. 2023, 132, 101025.
[46] H. Chen, A. Baitenov, Y. Li, E. Vasileva, S. Popov, I Sychugov, M. Yan, L. Berglund, “Thickness Dependence of Optical Transmittance of Transparent Wood: Chemical Modification Effects.” ACS Applied Materials & Interfaces. 2019, 11, 35451-35457
[47] P. Singh, N.M. Ravindra, “Temperature dependence of solar cell performance—an analysis.” Solar Energy Materials & Solar Cells. 2012, 101, 36-45.
[48] S. Haghanifar, P. Lu, M. I. Kayes, S. Tan, K-J. Kim, T. Gao, P. Ohodnicki, P. W. Leu” Self-cleaning, high transmission, near unity haze OTS/silica nanostructured glass.” Journal of Materials Chemistry C. 2018, 6, 9191-9199.
[49] 謝鴻志,以布魯斯特角入射法量測透明物質的二維折射率分佈及其成像,
國立交通大學光電工程系所論文,2006
[50] J. Renau, P. K. Cheo, H. G. Cooper, “Depolarization of linearly polarized EM waves backscattered from rough metals and inhomogeneous dielectrics.” Journal of the Optical Society of America. 1967, 57, 4, 459-466.
[51] K. Radotic´ a, A. Kalauzi, D. Djikanovic´, M. Jeremic´, R. M. Leblanc, Z. G. Cerovic, “Component analysis of the fluorescence spectra of a lignin model compound.” Journal of Photochemistry and Photobiology B: Biology. 2006, 83, 1-10.
[52] T. C. Chang, S. T. Chang, “Photostabilization mechanisms of the main wood photostabilizers from the heartwood extract in Acacia confusa: okanin and melanoxetin.” Wood Science and Technology. 2019, 53, 335–348.
[53] V. Křesálek, M. Mikuličová, “Luminescence spectroscopy as a tool for testing of cure kinetics of epoxy resins.” Polymer Testing. 2020, 86, 106496.
[54] T. S. PORTO, R. C. ROPERTO, S. T. TEICH, F. F. FADDOUL, F. A. P. RIZZANTE, S. d. T. PORTO-NETO, E. A. d. CAMPOS,” Brittleness index and its relationship with materials mechanical properties: Influence on the machinability of CAD/CAM materials.” Brazilian Oral Research. 2019, 33, e026
[55] Y.-C. Su “Fundamentals of Bleaching for Kraft Pulp and Changes of Bleaching Sequence.” 漿紙技術. 2014 ,18 No.3.
(此全文20240812後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *