帳號:guest(3.12.136.3)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:芮祥瑜
作者(英文):Hsiang-Yu Jui
論文名稱:硫化物/氧化鋅奈米線異質接面之光電極應用於光電化學產氫之研究
論文名稱(英文):Sulfide / ZnO Nanowires Heterojunction Photoanode for Photoelectrochemicacl H2 Generation
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:蔡志宏
陳盈竹
口試委員(英文):Chih-Hung Tsai
Ying-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:611125015
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:58
關鍵詞:光電化學產氫氧化鋅硫化銀摻雜銦硫化鉍水熱法連續離子層吸附反應法
關鍵詞(英文):PhotoelectrochemistryHydrogen evolutionZinc oxideIndium-doped silver sulfideBismuth sulfidesHydrothemal methodSILAR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
本研究探討了通過連續離子層吸附和反應(SILAR)法製備的硫化銀摻雜銦在氧化鋅納米柱之上形成了一種新型的異質結構光陽極的形貌、晶體和光電化學性能。在本實驗中,首先利用一種簡單且低成本的水熱法在FTO基板上合成了氧化鋅奈米柱,再通過SILAR法在氧化鋅奈米柱上沉積不同的圈數的硫化銀摻雜銦。並根據材料分析,確認實驗成功製備出摻雜銦的硫化銀/氧化鋅奈米柱的結構。在此結構中,氧化鋅奈米柱的高表面積作為載體,增加了硫化銀摻雜銦的載子,提高了氫氣產生的效率。得到優化後的光陽極能隙寬度約為1.03 eV,將氧化鋅的吸收邊界拓寬到近紅外光。光電化學轉換研究表明,在0.35 M的硫化鈉和0.5 M的亞硫酸鈉混合溶液中用100 mW/cm2的模擬太陽光照射下,9圈沉積的光電極在-0.6 V(vs Ag/AgCl)下光電流密度為7.7 mA/cm2,此結果是相當有研究潛力的結果。
而第二部分同樣是將硫化鉍透過SILAR法沉積奈米顆粒在性價比高的氧化鋅上,並透過熱退火使結構穩定。硫化鉍/氧化鋅的能隙寬度大約有1.6 eV,可驅使水分解反應,使反應過程中,由光陽極產出氧氣。在光電化學量測中可以看到,在0.5 M的硫酸鈉電解液中施加0.6 V(vs Ag/AgCl)時電壓的光電流密度約有7.6 mA/cm2,且利用溶氧機量測,量測出法拉第效應高達98.32%,通過這一系列實驗,證實了在氧化鋅上沉積硫化物形成新型異質結構能成為相當有前景的光電極材料。
This study investigates a novel heterostructured photoanode consisting of indium-doped silver sulfide deposited on zinc oxide nanorods using the successive ionic layer adsorption and reaction (SILAR) method. In the experiment, zinc oxide nanorods were synthesized on a fluorine-doped tin oxide (FTO) substrate using a simple and low-cost hydrothermal method. Subsequently, different SILAR cycles were employed to deposit indium-doped silver sulfide onto the zinc oxide nanorods. Material analysis confirmed the successful fabrication of the indium-doped silver sulfide/zinc oxide nanorod structure. The high surface area of the zinc oxide nanorods serves as a carrier, enhancing the charge carrier concentration of the indium-doped silver sulfide and improving the efficiency of hydrogen generation. The optimized photoanode exhibits a bandgap width of approximately 1.03 eV, extending the absorption edge of zinc oxide into the near-infrared range. Photovoltaic conversion studies revealed that under simulated solar illumination of 100 mW/cm2 in a mixed solution of 0.35 M sodium sulfide and 0.5 M sodium bisulfite, the photoelectrode with nine SILAR cycles achieved a photocurrent density of 7.7 mA/cm2 at -0.6 V (vs Ag/AgCl). These results demonstrate significant research potential.

The second part of the study involves the SILAR deposition of bismuth sulfide nanoparticles onto cost-effective zinc oxide, followed by thermal annealing to stabilize the structure. The bismuth sulfide/zinc oxide heterostructure exhibits a bandgap width of approximately 1.6 eV, enabling water splitting reactions and the production of oxygen at the photoanode. The photoelectrochemical measurements show that at an applied voltage of 0.6 V (vs Ag/AgCl) in a 0.5 M sulfuric acid electrolyte, the photoelectrode achieves a photocurrent density of approximately 7.6 mA/cm2. Moreover, oxygen evolution was measured using an oxygen meter, yielding a high Faradaic efficiency of 98.32%. Through this series of experiments, it has been confirmed that the deposition of sulfides on zinc oxide to form a novel heterostructure holds great promise as a photoelectrode material.
謝誌 i
摘要 ii
Abstract iii
目錄 v
圖目錄 ix
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 太陽能 2
1-3 空氣質量 4
1-4 氫能 5
第二章 理論基礎與文獻回顧 6
2-1 電化學 6
2-1-1 光電化學 6
2-1-2 電化學系統 6
2-1-3 半導體能隙寬度 7
2-1-4 水裂解 8
2-1-5 光電化學產氫 8
2-2 文獻回顧 9
2-2-1 氧化鋅 (ZnO) 9
2-2-2 硫化銀 (Ag2S) 10
2-2-3 摻雜銦 (In doped) 10
2-2-4 硫化鉍 (Bi2S3) 10
2-3 研究動機 11
2-3-1 In-doped Ag2S/ZnO異質結構應用於光電化學產氫 11
2-3-2 Bi2S3/ZnO異質結構應用於光電化學水分解 11
第三章 實驗方法與步驟 12
3-1 氧化鋅奈米柱製備 12
3-1-1 基板清洗 12
3-1-2 放置氧化鋅晶種在FTO基板 13
3-1-3 水熱法-氧化鋅奈米陣列結構 13
3-2 硫化銀摻雜銦/氧化鋅製備 14
3-2-1 連續離子層吸附法-硫化銀摻雜銦 14
3-3 硫化鉍/氧化鋅製備 15
3-3-1 連續離子層吸附法-硫化鉍 15
3-3-2 熱處理-硫化鉍 16
3-4 材料分析 16
3-4-1 場發射掃描式電子顯微鏡 16
3-4-2 穿透穿透式電子顯微鏡 17
3-4-3 X-ray 繞射儀 18
3-4-4 X射線光電子能譜儀 18
3-4-5 紫外線-可見光光譜儀 19
3-5 光電化學分析 20
3-5-1 線性伏安法 20
3-5-2 入射光子-電子轉換效率 21
3-5-3 莫特蕭特基量測 21
3-5-4 電化學交流阻抗頻譜分析 22
3-5-5 氣相層析儀 23
第四章 結果與討論 24
4-1 硫化銀摻雜銦/氧化鋅異質結構應用於光電化學產氫 24
4-1-1 硫化銀摻雜銦/氧化鋅異質結構SEM分析 24
4-1-2 硫化銀摻雜銦/氧化鋅異質結構XRD分析 27
4-1-3 硫化銀摻雜銦/氧化鋅異質結構XPS分析 28
4-1-4 硫化銀摻雜銦/氧化鋅異質結構Abs分析 29
4-1-5 硫化銀摻雜銦/氧化鋅異質結構LSV分析 31
4-1-6 硫化銀摻雜銦/氧化鋅異質結構IPCE分析 33
4-1-7 硫化銀摻雜銦/氧化鋅異質結構EIS分析 34
4-1-8 硫化銀摻雜銦/氧化鋅異質結構Mott-Schottky分析 35
4-1-9 硫化銀摻雜銦/氧化鋅異質結構氫氣產出分析 37
4-1-10 總結 39
4-2 硫化鉍/氧化鋅異質結構應用於光電化學產氫 41
4-2-1 硫化鉍/氧化鋅異質結構SEM分析 41
4-2-2 硫化鉍/氧化鋅異質結構TEM分析 43
4-2-3 硫化鉍/氧化鋅異質結構XRD分析 44
4-2-4 硫化鉍/氧化鋅異質結構XPS分析 45
4-2-5 硫化鉍/氧化鋅異質結構Abs分析 46
4-2-6 硫化鉍/氧化鋅異質結構LSV分析 47
4-2-7 硫化鉍/氧化鋅異質結構IPCE分析 48
4-2-8 硫化鉍/氧化鋅異質結構Mott-Schottky分析 49
4-2-9 硫化鉍/氧化鋅異質結構溶氧量分析 50
4-2-10 在不同濃度的電解液下之分析 52
4-2-11 總結 53
第五章 結論與未來展望 55
第六章 參考資料 56
[1] C. J. Quarton , O. Tlili , L. Welder , C. Mansilla , H. Blanco , H. Heinrichs , J. Leaver , N. J. Samsatli , P. Lucchese , M. Robinius and S. Samsatli ,The curious case of the conflicting roles of hydrogen in global energy scenarios. Sustainable Energy Fuels, 2020, 4 , 80 —95
[2] DING Yihui, 2019. Effect of Solar Activity on Earth's Climate and Weather. Meteorological Monthly, 45(3): 297-304.
[3] 中央氣象局數位科普網-輻射冷卻究竟在輻射什麼?
https://pweb.cwb.gov.tw/PopularScience/index.php/weather/269-%E4%BB%80%E9%BA%BC%E6%98%AF%E8%BC%BB%E5%B0%84%E5%86%B7%E5%8D%BB%E6%95%88%E6%87%89101
[4] Laser Focus World
https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun
[5] Ajay kumar Adepu, N. Venkatathri,Development of Porous Titanosilicate - Based hybrid Nanocomposites for Photocatalytic Applications under UV and Solar light irradiation,2018
[6] Liang-zhi Kou; Wan-lin Guo; Chun Li,Piezoelectricity of ZnO and its nanostructures, IEEE, 05-08 December 2008
[7] Murphy, A. B.,Barnes, P. R. F.,Randeniya, L. K.,Plumb, I. C.,Grey, I. E.,Horne, M. D.,Glasscock, J. A.,Efficiency of solar water splitting using semiconductor ,electrodesINTERNATIONAL JOURNAL OF HYDROGEN ENERGY,13,14, 1999-2017
[8] M G. Walter, E L. Warren, J R. McKone, S W. Boettcher, Q Mi, E A. Santori,N S. Lewis,Solar Water Splitting Cells, Chem. Rev. 2010, 110, 11, 6446–6473
[9] Liang-zhi Kou; Wan-lin Guo; Chun Li,PIEZOELECTRICITY OF ZNO AND ITS NANOSTRUCTURES
[10] R. Zamiri, H. A. Ahanga, A. Zakaria, G. Zamiri, M.Shabani,B. Singh and J M F Ferreira ,The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared, Chem Cent J. 2015; 9: 28.
[11] U.M. ChougaleS.H. HanM.C. RathV.J. Fulari,Synthesis, characterization and surface deformation study of nanocrystalline Ag2Se thin films,May 2013Materials Physics and Mechanics 17(1):47-58
[12] Ruxia Han, Jinrong Peng, Yao Xiao, Ying Hao, Yanpeng Jia, Zhiyong Qian,Ag2S nanoparticles as an emerging single-component theranostic agent
[13] 羅聖全,研發奈米科技的基本工具之一 電子顯微鏡介紹-SEM&TEM
https://www.materialsnet.com.tw/DocDnld.aspx?id=4322
https://www.materialsnet.com.tw/DocDnld.aspx?id=4323
[14] Basics and Recent Advances in Two-dimensional X-ray Diffraction, Bob He, Bruker AXS, 2014,0415
[15] Wikipedia-X-ray photoelectron spectroscopy
[16] R. D. Shannon,Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A Volume32, Issue5 (September 1976) 751-767
[17] S.-J. Chang, B.-G. Duan, C.-W. Liu, C.-H. Hsiao, S.-J. Young and C.-S. Huang, UV Enhanced Indium-Doped ZnO Nanorod Field Emitter, IEEE Trans. Electron Devices 60, 3901 (2013).
[18] R. Zamiri, H. Abbastabar Ahangar, A. Zakaria, G. Zamiri, M. Shabani, B. Singh,J.M. Ferreira, The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared, Chem. Cent. J. 9 (2015) 28.
[19] Akamatsu, K; Takei, S; Mizuhata, M; Kajinami, A ; Deki, S; Takeoka, S ; Fujii, M; Hayashi, S; Yamamoto, K,Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles,THIN SOLID FILMS ,(2000)
[20] M.A. Hassan, J.H. Kang, M.A. Johar, J.S. Ha, S.W. Ryu, High-performance ZnS/ GaN heterostructure photoanode for photoelectrochemical water splitting applications, Acta Mater. 146 (2018) 171–175
[21] Yilmaz, C., & Unal, U. (2015). Applied Surface Science, 350, 87–93.
[22] Chen, C., Xie, Y., Ali, G., Yoo, S., & Cho, S. (2011). Nanoscale Research Letters, 6 (1), 462.
[23] Holi, A. M., Zainal, Z., Ayal, A. K., Chang, S.-K., Lim, H. N., Talib, Z. A., & Yap, C.-C. (2019). Optik, 184, 473–479.
[24] Sarit K., Venkata K., Shihai Z, Kaushik M,The dielectric and charge-discharge performance study of carbon nitride supported bismuth sulfide nanoparticles, Volume 733, 16 October 2019, 136674
[25] Rabin,N.N.; Morshed,J.; Akhter, H.; Islam, M.S.; Hossain, M.A.; Elias, M.; Alam, M.M.; Karim, M.R.; Hasnat, M.A.; Uddin, M.N.; et al. Surface Modification of the ZnO Nanoparticles with γ-Aminopropyltriethoxysilane and Study of Their Photocatalytic Activity, Optical Properties and Antibacterial Activities. Int. J. Chem. React. Eng. 2016, 14, 785–794.
[26] Patil, SA,Hwang, YT,Jadhav, VV,Kim, KH, Kim, HS,Solution processed growth and photoelectrochemistry of Bi2S3 nanorods thin film,JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY,2018,332,174-181
[27] Huang, GZ,Zhang, J,Jiang, F,Zhang, Z,Zeng, JH,Qi, X,Shen, ZJ ,Wang, HB,Kong, Z,Xi, JH,Ji, ZG,Excellent photoelectrochemical activity of Bi2S3 nanorod/TiO2 nanoplate composites with dominant {001} facets,JOURNAL OF SOLID STATE CHEMISTRY,2020,281,121041
[28] Yang, YC,Li, C,Liu, FA,Yao, Y,Liu, J,Huang, W, Li, ZL,Urchin-like Bi(OH)SO4 center dot H2O fabricated by anodization and its conversion into flower-like Bi2S3 via anion exchange,ELECTROCHEMISTRY COMMUNICATIONS ,2012,
21,18-21
[29] Ying-Chu Chen,Hsiang-Yu Jui,Yichen Feng,Yu-Kuei Hsu,High–Performance Bi2S3/ZnO Photoanode Enabled by Interfacial Engineering with Oxyanion for Efficient Photoelectrochemical Water Oxidation
(此全文20250828後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *