帳號:guest(3.16.130.155)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳思穎
作者(英文):Si-Ying Chen
論文名稱:The theoretical study on electronic spectra of dinuclear gold(I) complexes and ionization energies of phosphanes
論文名稱(英文):The theoretical study on electronic spectra of dinuclear gold(I) complexes and ionization energies of phosphanes
指導教授:張秀華
指導教授(英文):Hsiu-Hwa Chang
口試委員:張秀華
林志彪
梁剛荐
楊雪慧
曾炳墝
口試委員(英文):Hsiu-Hwa Chang
Ivan J. B. Lin
Max K. Leong
Hsueh-Hui Yang
Biing-Chiau Tzeng
學位類別:博士
校院名稱:國立東華大學
系所名稱:化學系
學號:810012002
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:172
關鍵詞(英文):NHCdinuclear gold(I) complexesionization energies
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
Newly synthesized three polymorphic double salts of [Au(NHC)2][AuI2] (NHC = 1-methyl-3-pyridyl-imidazol-2-ylidene) display interesting photoluminescence properties. The ion pair nature of this Au (I) double salt facilitates the aurophilic interaction and warrants the electronic transition between the [AuI2]- centred HOMOs to the [Au(NHC)2]+ centred LUMO as supported by DFT calculations. With different Au...Au distances and orientations of the two pyridyl groups, three polymorphs display emissions of green, red, and dual emission of green and red. Conversions among them could be achieved via solvent, vapor, or mechanical stimulations. TD-DFT and DFT calculations are carried out to give insight to the phenomena.
The luminescence of dinuclear Au(I) (aza-18-crown-6)dithiocarbamate crystals in nine solvents (solvates = toluene, acetonitrile, anisole, THF, acetone, DMSO, m-xylene, DMF, and t-butylbenzene・H2O) were studied by ab initio electronic structure calculations. The luminescence energies and the HOMOs and LUMOs of the S0 states of one, two, and three Au2 complexes are predicted. The two Au2 complexes and three Au2 complexes units of 2・solvates show an obvious red-shifted luminescence verse intermolecular Au(I)…Au(I) distances. Furthermore, the all singlet ground states HOMOs are the Au atoms domain, and the LUMOs belong to SCN unit.
The adiabatic ionization energies of PH3 to P8H10 are predicted with ab initio electronic structure calculations. The optimized ground state geometries, vibrational frequencies, and IR intensities are obtained with density functional theory (DFT) calculations. For PH3 and P2H4, our calculation results of the ionization energies are agreement with the experimental results. The relative energies of isomers clearly shows that the energy of branched chain isomers is lower than unstable straight-chain isomers, and energy difference becomes more pronounced as the molecules become larger. With higher-order phosphanes, the ionization energy can be expected to be no difference.
Chapter 1. Theoretical study on absorption and emission spectra of neutral Au(NHC)X (X=Cl, Br, and I) and Au-NHC double salts [Au(NHC)2]+[AuI2]-
1. Introduction 1
2. Theoretical methods 5
3. Results and Discussion 6
3.1 Neutral Au(NHC)X (X = Cl, Br, and I) 6
3.2 {cis-[Au(NHC)2]+[AuI2]-} (3g) and {trans-[Au(NHC)2]+[AuI2]-} (3r) 7
3.3 Computational of [Au(NHC)X]2 (X = Cl, Br, and I) and Au(I) double salts [Au(NHC)2]+[AuX2]- (X = Cl, Br, and I) 9
3.4 Compared with other Au(I) complexes 10
4. Conclusions 11
References 12
Table I. 18
Table II. 26
Table III. 28
Table IV. 29
Table V. 30
Table VI. 31
Table VII. 35
Table VIII. 39
Figure 1. 40
Figure 2. 41
Figure 3. 42
Figure 4. 43
Figure 5. 44
Figure 6. 45
Figure 7. 46
Figure 8. 47
Figure 9. 48
Figure 10. 49
Figure 11. 50
Chapter 2. Theoretical study on luminescence energies of dinuclear gold(I) (Aza-18-crown-6)dithiocarbamate compounds in different solvents
1. Introduction 51
2. Theoretical methods 55
3. Results and Discussion 56
3.1 One Au2 complex units of 2・solvates 56
3.2 Two Au2 complex units of 2・solvates 57
3.3 Three Au2 complex units of 2・solvates 58
4. Conclusions 60
References 61
Table 1. 64
Figure 1. 70
Figure 2. 72
Chart 1. 121
Chart 2. 123
Chapter 3. Theoretical study on ionization energies of phosphanes
1. Introduction 125
2. Theoretical methods 128
2.1 Ab initio electronic structure calculations 128
2.2 Density functional theory (DFT) 128
2.3 Coupled-cluster Singles and doubles (CCSD) 129
3. Results and Discussion 131
3.1 The neutral and ionic species of PnHn+2 (n = 1-3) 131
3.2 The neutral and ionic species of PnHn+2 (n = 4-8) 133
4. Conclusions 137
References 138
Table I. 140
Table II. 142
Figure 1. 143
Figure 2. 144
Figure 3. 145
Figure 4. 146
Figure 5. 148
Figure 6. 152
Chapter 1
1. (a) M. C. Gimeno and R. Visbal, Chem. Soc. Rev. 43, 3551 (2014). (b) E. E. Langdon-Jones and S. J. A. Pope, Chem.Commun. 50, 10343 (2014). (c) R. Zhong, A. C. Lindhorst, F. J. Groche, and F. E. Kühn, Chem. Rev. 117, 1970 (2017). (d) C. A. Smith, M. R. Narouz, P. A. Lummis, I. Singh, A. Nazemi, C. H. Li, and C. M. Crudden, Chem. Rev. 119, 4986 (2019).
2. H. J. Kleiner and H. W. Wanzlick, Angew. Chem. 73, 493 (1961).
3. H. W. Wanzlick, Angew. Chem., Int. Ed. Engl. 1, 75 (1962).
4. H. J. Kleiner, F. Esser, and H. W. Wanzlick, Chem. Ber. 96, 1208 (1963).
5. K. Öfele, J. Organomet. Chem. 12, 42, (1968).
6. H. J. Schönherr and H. W. Wanzlick, Angew. Chem., Int. Ed. Engl. 7, 141 (1968) ; Angew. Chem. 80, 154 (1968).
7. M. Kline, R. L. Harlow, and A. J. Arduengo III, J. Am. Chem. Soc. 113, 361 (1991).
8. K. Öfele, D. Mihalios, W. A. Herrmann, E. Herdtweck, M. Elison, J. Mink, and W. Scherer, J. Organomet. Chem. 459, 177 (1993).
9. C. Köcher and W. A. Herrmann, Angew. Chem. Int. Ed. 36, 2162 (1997).
10. G. Frenking and C. Boehme, Organometallics, 17, 5801 (1998).
11. D. Bourissou, F. P. Gabbaï, G. Bertrand, and O. Guerret, Chem. Rev. 100, 39 (2000).
12. R. H. Grubbs and T. M. Trnka, Acc. Chem. Res. 34, 18 (2001).
13. W. A. Herrmann, Angew. Chem. Int. Ed. 41, 1290 (2002).
14. G. A. Grasa, A. C. Hillier, M. S. Viciu, C. Yang, H. M. Lee, and S. P. Nolan, J. Organomet. Chem. 653, 69 (2002).
15. J. P. Morgan, J. A. Love, R. H. Grubbs, and T. M. Trnka, Angew. Chem. Int. Ed. 41, 4035 (2002).
16. R. H. Grubbs and T. L. Choi, Angew. Chem. Int. Ed. 42, 1743 (2003).
17. (a) C. H. Hu and M.T. Lee, Organometallics 23, 976 (2004). (b) S. P. Nolan and N. M. Scott, Eur. J. Inorg. Chem. 2005, 1815 (2005).
18. C. A. Tessier, W. J. Youngs, C. L. Cannon, M. J. Panzner, , and K. M. Hindi, Chem. Rev. 109, 3859 (2009).
19. A. J. Arduengo III, D. A. Dixon, H. V. R. Dias, R. L. Harlow, T. F. Koetzle and W. T. Klooster, J. Am. Chem. Soc. 116, 6812 (1994).
20. K. K. Kumashiro, A. J. Arduengo III, W. P. Power, D. A. Dixon, C. Lee, and K. W. Zilm, J. Am. Chem. Soc. 116, 6361 (1994).
21. R. West, A. J. Arduengo III, M. Denk, H. Chen, N. L. Jones, H. Bock, D. A. Dixon, W. A. Herrmann, J. C. Green, N. L. Jones, and M. Wagner, J. Am. Chem. Soc. 116, 6641 (1994).
22. G. Frenking and C. Böhme, J. Am. Chem. Soc. 118, 2039 (1996).
23. O. Guerret, S. Solé, H. Gornitzka, M. Teichert, G. Trinquier, and G. Bertrand, J. Am. Chem. Soc. 119, 6668 (1997).
24. O. Guerret, H. Gornitzka, S. Solé, G. Bertrand, and G. Trinquier, J. Organomet. Chem. 600, 112 (2000).
25. J. Fabian, W. Schaefer, A. Krebs, and D. Schönemann, J. Org. Chem. 65, 8940 (2000).
26. T. Balensiefer and D. Enders, Acc. Chem. Res. 37, 534 (2004).
27. F. Davidson, A. J. Arduengo III, H. V. R. Dias, J. C. Calabrese, and H. V. R. Dias, Inorg. Chem, 32, 1541 (1993).
28. F. Davidson, A. J. Arduengo, III, J. C. Calabrese, and S. F. Gamper, J. Am. Chem. Soc. 116, 4391 (1994).
29. G. R. J. Artus, J. Fischer, M. Elison, C. Köcher, and W. A. Herrmann, Angew. Chem., Int. Ed. Engl. 34, 2371 (1995).
30. M. Regitz, Angew. Chem., Int. Ed. Engl. 35, 725 (1996).
31. W. A. Herrmann, G. Gerstberger, and M. Spiegler, Organometallics 16, 2209 (1997).
32. L. J. Goossen, W. A. Herrmann, C. Köcher, and G. R. J. Artus, Organometallics 16, 2472 (1997).
33. I. J. B. Lin and H. M. J. Wang, Organometallics 17, 972 (1998).
34. N. M. Scott, P. de Frémont, E. D. Stevens, O. C. Lightbody, T. Ramnial, C. L. B. Macdonald, C. D. Abernethy, J. A. C. Clyburne, and S. P. Nolan, Organometallics 24, 6301 (2005).
35. L. M. Pérez, H. L. Su, J. H. Reibenspies, S. J. Lee, D. E. Bergbreiter, and H. S. Bazzi, Organometallics 31, 4063 (2012).
36. S. Roland and E. Caytan, Organometallics 33, 2115 (2014).
37. S. P. Nolan, A. Collado, A. R. Martin, A. Gomez-Suarez, and A. M. Z. Slawin, Chem. Commun. 49, 5541 (2013).
38. A. Laguna, M. C. Gimeno, and R. Visbal, Chem. Commun. 49, 5642 (2013).
39. (a) P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004). (b) E. C. C. Cheng and V. W. W. Yam, Chem. Soc. Rev. 37, 1806 (2008).
40. (a) N. Marion and S. P. Nolan, Chem. Soc. Rev. 37, 1776 (2008). (b) S. Ibáñez, M. Poyatos, and E. Peris, Organometallics 36, 1447 (2017). (c) R. Ye, S. C. Fakra, A. V. Zhukhovitskiy, R. V. Kazantsev, B. B. Wickemeyer, F. D. Toste, and G. A. Somorjai, J. Am. Chem. Soc. 140, 4144 (2018).
41. (a) C. M. Crudden, J. H. Horton, I. I. Ebralidze, O. V. Zenkina, A. B. McLean, B. Drevniok, Z. She, H. B. Kraatz, N. J. Mosey, T. Seki, E. C. Keske, J. D. Leake, A. Rousina-Webb, and G. Wu, Nat Chem 6, 409 (2014). (b) J. Crespo, Y. Guari, A. Ibarra, J. Larionova, T. Lasanta, D. Laurencin, J. M. Lopez-de-Luzuriaga, M. Monge, M. E. Olmos, and S. Richeter, Dalton Trans. 43, 15713 (2014). (c) X. Ling, S. Roland, and M. P. Pileni, Chem. Mater. 27, 414 (2015). (d) C. M. Crudden, J. H. Horton, M. R. Narouz, Z. Li, C. A. Smith, K. Munro, C. R. Larrea, B. Drevniok, B. Thanabalasingam, C. J. Baddeley, A. B. McLean, O. V.
Zenkina, I. I. Ebralidze, Z. She, H. B. Kraatz, N. J. Mosey, L. N. Saunders, and A. Yagi, Nat. Commun. 7, 1 (2016). (e) A. Bakker, A. Timmer, E. Kolodzeiski, M. Freitag, H. Y. Gao, H. Mönig, S. Amirjalayer, F. Glorius, and H. Fuchs, J. Am. Chem. Soc. 140, 11889 (2018).
42. (a) E. Andris, P. C. Andrikopoulos, J. Schulz, J. Turek, A. Růžička, J. Roithová, and L. Rulíšek, J. Am. Chem. Soc. 140, 2316 (2018). (b) J. P. Fackler, Inorg. Chem. 41, 6959 (2002). (c) H. Schmidbaur and A. Schier, Chem. Soc. Rev. 41, 370 (2012). (d) H. Schmidbaur and A. Schier, Chem. Soc. Rev. 37, 1931 (2008). (e) A.
A. Penney, V. V. Sizov, E. V. Grachova, D. V. Krupenya, V. V. Gurzhiy, G. L. Starova, and S. P. Tunik, Inorg. Chem. 55, 4720 (2016). (f) Q. Liu, M. Xie, X. Y. Chang, Q. Gao, Y. Chen, and W. Lu, Chem. Commun. 54, 12844 (2018).
43. (a) S. Cronje, L. Lindeque, and H. G. Raubenheimer, J. Organomet. Chem. 511, 177 (1996). (b) S. Cronje and H. G. Raubenheimer, J. Organomet. Chem. 617-618, 170 (2001).
44. R. Jothibasu, H. V. Huynh, and H. Sivaram, Organometallics 31, 1195 (2012).
45. H. V. Huynh, J. C. Bernhammer, and S. Guo, Dalton Trans 44, 15157 (2015).
46. J. A. Pople, P. v. R. Schleyer, L. Radom, and W. J. Hehre, AB INITIO MOLECULAR ORBITAL THEORY, New York: Wiley c1986.
47. (a) A. D. Becke, J. Chem. Phys. 98, 5648 (1993). (b) R. G. Parr , W. Yang, and W. Yang, C. Lee, Phys. Rev. B 37, 785 (1988).
48. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
49. (a) W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 270 (1985). (b) P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 284 (1985). (c) W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 299 (1985).
50. (a) W. Kohn and P. Honengerg, Phys. Rev. B 136, B864 (1964). (b) L. J. Sham and W. Kohn, Phys. Rev. A 140, A1133 (1965).
51. (a) T. H. Dunning Jr., J. Chem. Phys. 53, 2823 (1970). (b) T. H. Dunning Jr., J. Chem. Phys. 55, 716 (1971). (c) S. F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950). (d) S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
52. (a) R. E. Stratmann, M. J. Frisch, and G. E. Scuseria, J. Chem. Phys. 109, 8218 (1998). (b) R. Ahlrichs and R. Bauernschmitt, Chem. Phys. Lett. 256, 454 (1996). (c) C. Jamorski, M. E. Casida, D. R. Salahub, and K. C. Casida, J. Chem. Phys. 108, 4439 (1998).
53. M. J. Frisch, GAUSSIAN 16, Revision B.01, Gaussian, Inc., Wallingford, CT, (2016).
54. (a) A. A. Penney, G. L. Starova, E. V. Grachova, V. V. Sizov, M. A. Kinzhalov, and S. P. Tunik, Inorg. Chem. 56, 14771 (2017). (b) J. Schneider, Y. A. Lee, J. Pérez, W. W. Brennessel, C. Flaschenriem, and R. Eisenberg, Inorg. Chem. 47, 957 (2008). (c) R. K. Arvapally, P. Sinha, S. R. Hettiarachchi, N. L. Coker, C. E. Bedel, H. H. Patterson, R. C. Elder, A. K. Wilson, and M. A. Omary, J. Phys. Chem. C 111, 10689 (2007). (d) N. L. Coker, J. A. K. Bauer, and R. C. Elder, J.
Am. Chem. Soc. 126, 12 (2004). (e) R. L. White-Morris, M. M. Olmstead, A. L. Balch, O. Elbjeirami, and M. A. Omary, Inorg. Chem. 42, 6741 (2003). (f) O. Elbjeirami, M. A. Omary, M. Stenderb, and A. L. Balch, Dalton Trans. 20, 3173 (2004). (g) B. C. Tzeng and A. Chao, Chem. Eur. J. 21, 2083 (2015). (h) C. Y. Lin, J. W. Hung, S. Y. Chen, G. H. Lee, A. H. H. Chang, and B. C. Tzeng, Inorg. Chem. 60, 2694 (2021). (i) Q. Liu, X. Y. Chang, M. Xie, Q. Gao, W. Lu, and Y. Chen, Chem. Commun. 54, 12844 (2018). (j) T. Seki, K. Sakurada, M. Muromoto, and H. Ito, Chem. Sci. 6, 1491 (2015). (k) Z. Assefa, B. G. McBurnett, R. J.
Staples, J. P. Fackler, Jr., B. Assmann, K. Angermaier, and H. Schmidbaur, Inorg. Chem. 34, 75 (1995). (l) T. Seki, Y. Takamatsu, and H Ito, J. Am. Chem. Soc. 138, 6252 (2016).
Chapter 2
1. R. J. Puddephatt, The Chemistry of Gold, Elsevier: Amsterdam (1978).
2. F. Scherbaum, B. Huber, C. Krüger, A. Grohmann, and H. Schmidbaur, Angew. Chem. Int. Ed. 27, 1544 (1988).
3. A. Bondi, J. Phys. Chem. 68, 441 (1964).
4. (a) H. Schmidbaur, G. Müller, and W. Graf, Angew. Chem., Int. Ed. Engl. 27, 417 (1988). (b) D. E. Harwell, C. B. Knobler, F. A. L. Anet, M. D. Mortimer, and M. F. Hawthorne, J. Am. Chem. Soc. 118, 2679 (1996).
5. (a) C. M. Che, V. W. W. Yam, H. L. Kwong, and K. C. Cho, J. Chem. Soc. Chem. Commun. 885 (1989). (b) C. King, J. C. Wang, M. N. I. Khan, and J. P. Fackler, Jr., Inorg. Chem. 28, 2145 (1989). (c) L. H. Gade, Angew. Chem. Int. Ed. Engl. 36, 1171 (1997); Angew. Chem. 109, 1219 (1997). (d) W. F. Fu, K. C. Chan, V. M. Miskowski, and C. M. Che, Angew. Chem. Int. Ed. 38, 2783 (1999); Angew. Chem. 111, 2953 (1999).
6. (a) D. E. Ellis, N. Rçsch, A. Gçrling, and H. Schmidbaur, Angew. Chem. Int. Ed. Engl. 28, 1357 (1989); Angew. Chem. 101, 1410 (1989). (b) P. Pyykkö and Y. Zhao, Chem. Phys. Lett. 177, 103 (1991). (c) P. Pyykkö, J. Li, and N. Runeberg, Chem. Phys. Lett. 218, 133 (1994). (d) P. Pyykkö and Y. Zhao, Angew. Chem. Int. Ed. Engl. 34, 2069 (1995); Angew. Chem. 107, 2045 (1995). (e) P. Pyykkö, Chem. Rev. 97, 597 (1997). (f) J. K. Burdett, O. Eisenstein, and W. B. Schweizer, Inorg.
Chem. 33, 3261 (1994).
7. (a) E. Y. Fung, M. M. Olmstead, J. C. Vickery, and A. L. Balch, Angew. Chem. Int. Ed. Engl. 36, 1179 (1997); Angew. Chem. 109, 1227 (1997). (b) E. Y. Fung, J. C. Vickery, M. M. Olmstead, and A. L. Balch, Coord. Chem. Rev. 171, 151 (1998). (c) D. M. P. Mingos, J. Yau, S. Menzer, and D. J. Williams, Angew. Chem. Int. Ed. Engl. 34, 1894 (1995); Angew. Chem. 107, 2045 (1995). (d) D. M. P. Mingos, J. Chem. Soc. Dalton Trans. 5, 561 (1996).
8. R. J. Puddephatt, Coord. Chem. Rev. 216, 313 (2001) ; Chem. Soc. Rev. 37, 2012 (2008).
9. (a) K. K. W. Lo and V. W. W. Yam, Chem. Soc. Rev. 28, 323 (1999). (b) V. W. W. Yam and E. C. C. Cheng, Angew. Chem. Int. Ed. 39, 4240 (2000); Angew. Chem. 112, 4410 (2000). (c) V. W. W. Yam and E. C. C. Cheng, Gold Bull. 34, 20 (2001). (d) V. W. W. Yam and E. C. C. Cheng, Top. Curr. Chem. 281, 269 (2007). (e) V. W. W. Yam and E. C. C. Cheng, Chem. Soc. Rev. 37, 1806 (2008).
10. (a) B. C. Tzeng, K. K. Cheung, C. M. Che, C. K. Chan, and S. M. Peng, Chem. Commun. 135 (1997). (b) B. C. Tzeng, Y. C. Huang, H. T. Yeh, G. H. Lee, H. Y. Chao, and S. M. Peng, Inorg. Chem. 42, 6008 (2003).
11. W. B. Connick, M. A. Mansour, H. J. Gysling, R. J. Lachicotte, and R. Eisenberg, J. Am. Chem. Soc. 120, 1329 (1998).
12. H. Ito, N. Oshima, T. Saito, S. Ishizaka, N. Kitamura, Y. Hinatsu, K. Tsuge, M. Wakeshima, M. Sawamura, and M. Kato, J. Am. Chem. Soc. 130, 10044 (2008).
13. (a) Y. H. Wu, J. Ni, X. Zhang, L. Y. Zhang, B. Li, and Z. N. Chen, Inorg. Chem. 48, 10202 (2009). (b) J. Ni, X. Zhang, N. Qiu, Y. H. Wu, L. Y. Zhang, J. Zhang, and Z. N. Chen, Inorg. Chem. 50, 9090 (2011). (c) X. Zhang, J. Y. Wang, J. Ni, L. Y. Zhang, and Z. N. Chen, Inorg. Chem. 51, 5569 (2012). (d) J. Ni, X. Zhang, Y. H. Wu, L. Y. Zhang, and Z. N. Chen, Chem. Eur. J. 17, 1171 (2011).
14. H. Schmidbaur, Gold: Progress in Chemistry, Biochemistry and Technology, John Wiley & Sons, Chichester, (1999).
15. (a) C. K. Mirabelli, J. Klingbeil, M. T. Coffer, and C. F. Shaw, J. Am. Chem. Soc. 110, 729 (1988). (b) M. T. Coffer, C. F. Shaw, M. K. Eidsness, J. W. Watkins, and R. C. Elder, Inorg. Chem. 25, 333 (1986). (c) A. A. Isab and P. J. Sadler, J. Chem. Soc., Dalton Trans. 1, 135 (1982).
16. T. Groenewald and W. S. Rapson, Gold Usage, Academic Press: London (1978).
17. G. M. Whitesides and C. D. Bain, Angew. Chem., Int. Ed. Engl. 28, 506 (1989).
18. S. M. Peng, W. H. Liu, G. H. Lee, J. H. Liao, and B. C. Tzeng, Cryst. Growth Des. 4, 573 (2004).
19. P. Espinet, M. Bardají, and A. Arias, Inorg. Chem. 47, 1597 (2008).
20. B. C. Tzeng and A. Chao, Chem. Eur. J. 21, 2083 (2015).
21. C. Y. Lin, J. W. Hung, S. Y. Chen, G. H. Lee, A. H. H. Chang, and B. C. Tzeng, Inorg. Chem. 60, 2694 (2021).
22. (a) A. D. Becke, J. Chem. Phys. 96, 2155 (1992) ; J. Chem. Phys. 97, 9173 (1992) ; J. Chem. Phys. 98, 5648 (1993). (b) C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
23. W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 299 (1985).
24. M. J. Frisch, (Gaussian, Inc., Wallingford CT, 2016) GAUSSIAN 16, Revision B.01
Chapter 3
1. I. Langmuir, Proc. Natl. Acad. Sci. U. S. A. 5, 252 (1919).
2. (a) A. V. Wilson, D. S. Parker, T. Labrador, R. I. Kaiser, and A. M. Mebel, J. Am. Chem. Soc. 134, 13896 (2012). (b) D. S. Parker, A. M. Mebel, and R. I. Kaiser, Chem. Soc. Rev. 43, 2701 (2014).
3. (a) C. L. Berthollet, Mem. Acad. Sci. 99, 319 (1785). (b) P. Gengembre, Hist. Mem. Acad. Roy. Sci. 10, 651 (1785).
4. P. Thenard, Acad. Sci. Paris 18, 652 (1844).
5. C. A. L. de Bruyn, Recl. Trav. Chim. Pays-Bas 14, 85 (1895).
6. Y. Kim, J. W. Gilje, and K. Seff, J. Am. Chem. Soc. 99, 7057 (1977).
7. T. Fujii, C. P. Selvin, M. Sablier and K. Iwase, J. Phys. Chem. A 106, 3102 (2002).
8. M. Baudler and K. Glinka, Chem. Rev. 94, 1273 (1994).
9. M. Baudler and L. Schmidt, Naturwissenschaften 44, 488 (1957).
10. (a) M. Baudler, H. Ständeke, M. Borgardt, and H. Strabel, Naturwissenschaften 52, 345 (1965). (b) M. Baudler, H. Ständeke, M. Borgardt, H. Strabel, and J. Dobbers, Naturwissenschaften 53, 106 (1966).
11. (a) T. P. Fehlner, J. Am. Chem. Soc. 88, 1819 (1966). (b) T. P. Fehlner, J. Am. Chem. Soc. 88, 2613 (1966). (c) T. P. Fehlner, J. Am. Chem. Soc. 90, 6062 (1968).
12. M. Baudler, Angew. Chem., Int. Ed. Engl. 21, 492 (1982).
13. (a) M. Baudler, Pure Appl. Chem. 52, 755 (1980). (b) M. Baudler, ACS Symp. Ser. 171, 261 (1981). (c) M. Baudler, U. M.Krause, J. Hahn, and R. Riekehof-Bdhmer, Z. Anorg. Allg. Chem. 543, 35 (1986). (d) J. Hahn, R. Riekehof-Bdhmer, and M. Baudler, Z. Anorg. Allg. Chem. 546, 7 (1987).
14. M. Baudler and K. Glinka, Chem. Rev. 94, 1273 (1994).
15. A. M. Turner, M. J. Abplanalp, S. Y. Chen, Y. T. Chen, A. H. H. Chang, and R. I. Kaiser, Phys. Chem. Chem. Phys. 17, 27281 (2015).
16. A. D. Becke, J. Chem. Phys. 96, 2155 (1992).
17. A. D. Becke, J. Chem. Phys. 97, 9173 (1992).
18. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
19. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785 (1988).
20. G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
21. C. Hampel, K. A. Peterson, and H. J. Werner, Chem. Phys. Lett. 190, 1 (1992).
22. P. J. Knowles , C. Hampel and H. J. Werner , J. Chem. Phys. 99, 5219 (1993).
23. M. J. Deegan and P. J. Knowles, Chem. Phys. Lett. 227, 321 (1994).
24. M. J. Frisch, GAUSSIAN 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
25. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
26. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
27. I. N. Levine, Quantum Chemistry, p567 (2004).
28. J. Čízek, J. Chem. Phys. 45, 4256 (1966) ;Adv. Chem. Phys. 14, 35 (1969).
29. J. Čížek and J. Paldus, Phys. Scr. 21, 251 (1980).
30. R. J. Bartlett, J. Chem. Phys. 93, 1697 (1989)
31. J. A. Pople, M. Head‐Gordon, and K. Raghavachari, J. Chem. Phys. 90, 4635 (1989).
32. J. Berkowitz, L. Curtiss, S. Gibson, J. Greene, G. Hillhouse, and J. Pople, J. Chem. Phys. 84, 375 (1986).
33. (a) F. J. Ding and L. F. Zhang, Theochem 369, 167 (1996). (b) J. Durig, Z. Shen, and W. Zhao, Theochem 375, 95 (1996).
34. S. Elbel, H. Tom Dieck, G. Becker, and W. Ensslin, Inorg. Chem. 15, 1235 (1976).
(此全文20241024後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *