帳號:guest(3.12.153.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林士翔
作者(英文):Shi-Xiang Lin
論文名稱:表面修飾的介孔二氧化矽奈米粒子作為過氧化氫傳輸之抗菌作用
論文名稱(英文):Antibacterial Effects of Surface Modified Mesoporous Silica Nanoparticles for Hydrogen Peroxide Delivery
指導教授:李佳洪
指導教授(英文):Chia-Hung Lee
口試委員:劉振倫
鄭建宗
鄧金培
陳奕平
口試委員(英文):Chen-Lun Liu
Chien-Chung Jeng
Jin-Pei Deng
Yi-Ping Chen
學位類別:博士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:810013101
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:88
關鍵詞:含鋁中孔洞奈米矽球抗藥性過氧化氫活性氧化物質幾丁聚醣
關鍵詞(英文):Alumina substituted mesoporous silicaAnti-biotic drug resistanceHydrogen peroxideReactive oxygen speciesChitosan
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
儘管目前那些具有抗藥性的病菌感染影響著我們生活,可能使大眾的生活環境惡化,細菌透過長時間抗生素篩選或改變其DNA序列獲得了抗藥性。由於藥物持續從細胞排出及降解使得藥物治療效果比例降低,導致藥物在所需作用部位的有效濃度降低。通過克服藥物的降解速率及持續在特定部位釋放藥物的釋放機制,奈米劑型藥物發展因此獲得了更多的關注。通過合成吸附過氧化氫的不同矽鋁比例中孔洞奈米矽球來克服抗藥性的問題,更進一步利用幾丁聚醣包覆獲得正電荷的Al-MSN-40@H2O2-chit以增加活性氧類的水平。傅里葉轉換紅外光譜、比表面積與孔隙度分析和掃描式電子顯微鏡等分析研究,支持證實我們的配方成功合成高度可調整表面積及良好型態的奈米粒子。除此之外,帶正電荷奈米粒子的細胞吸收研究令人興奮,攜帶正電荷的製劑強烈的吸引帶負電荷的具抗藥性大腸桿菌。另外,通過評估抑菌環研究及抑制DNA合成研究,顯示我們的製劑已產生出巨大的作用,並通過增加細菌細胞內的活性氧類含量來抑制其生長。除此之外,在HT-29癌細胞中毒理學研究,我們的製劑未顯示任何毒性。總體而言,孔洞結構的劑型解決了該問題,並克服了抗藥性細菌感染。
Despite, the antibiotic drug resistance bacterial infections may worsen the live of public now a day. The bacteria obtained resistance by prolong treatment of antibiotics or change their DNA sequence. The drug therapeutic index was reduced by efflux the drug from cell and involve in the degradation process, which leads amount of drug concentration was less at desired action site. The nanomedicine filed of studies gain more attention and overcome drug degradation rate and release drug at specific site with sustained release mechanism. To overcome the drug resistance problem by synthesized different Si/Al ratio of mesoporous silica (MSNs) and loaded with hydrogen peroxide, further coated with chitosan to gain highly positively charged Al-MSN-40@H2O2-chit employed to increased Reactive oxygen species (ROS) levels. The physicochemical characterization studies, like FTIR, BET, and SEM analysis studies support our formulation was successfully synthesized with high tunable surface area and good morphology. Besides that, positive charge carrying nanoparticle cellular uptake studies revels, the highly positively charged formulation has strongly attracted towards negatively charged drug resistant E. coli bacteria. Further, antimicrobial studies were evaluate by zone inhibition studies and DNA synthesis inhibition studies, which attributes our formulation has been shown tremendous effect and inhibit the growth by increased the ROS levels inside bacterial cells. In addition, toxicological studies were conducted in HT-29 cancer cells, our formulation have not shown any toxicity. Over all, the well architecture formulation was addressed the problem and combat to overcome the drug resistance bacterial infections.
1. 研究目的與動機 1
2. 背景介紹 2
2.1 抗生素 8
2.2 生物膜 10
2.3 過氧化氫 11
2.4 奈米材料 (Nanomaterials) 12
2.5 中孔洞奈米矽球 (Mesoporous silica nanoparticles, MSN) 15
2.6 幾丁聚醣 (Chitosan) 17
3. 實驗方法與材料 18
3.1 化學藥劑來源 18
3.2 細胞及菌株來源和培養 20
3.3 合成Al-MSN 20
3.4 Al-MSN吸附過氧化氫後再包覆幾丁聚醣 21
3.5 場發射掃描式電子顯微鏡 22
3.6 氮氣等溫吸附/脫附量測 (N2 adsorption/desorption isotherm) 23
3.7 雙氧水釋放實驗 25
3.8 定量奈米粒子的過氧化氫吸附量 26
3.9 抗菌活性測試 26
3.10 細胞毒性測試 27
3.11 DNA損害 28
4. 結果 29
4.1 不同矽鋁比的掃描式電子顯微鏡圖 29
4.2 不同矽鋁比的表面積、孔洞體積及孔洞尺寸 30
4.3 不同矽鋁比的FT-IR光譜分析 33
4.4 不同矽鋁比的抗菌能力 35
4.5 固態核磁共振光譜 37
4.6 不同包覆方式的過氧化氫殘留量 38
4.7 不同包覆方式的抗菌效果 40
4.8 包覆前後的表面積、孔洞體積及孔洞尺寸 41
4.9 包覆前後的氮氣吸附脫附分析及孔洞分布情形 42
4.10 包覆幾丁聚醣的FT-IR光譜分析 45
4.11 細胞毒性測試 47
4.12 利用DNA電泳法比較奈米粒子對細菌DNA的損害 48
4.13 Al-MSN-40@H2O2-chit處理後的大腸桿菌SEM分析圖 50
4.14 Al-MSN-40@H2O2-chit處理後的大腸桿菌AFM分析圖 51
4.15 利用螢光顯微鏡觀察奈米粒子與細菌之間的作用 52
4.16 比較Al-MSN-40@H2O2-chit對革蘭氏陽性菌、革蘭氏陰性菌及抗藥菌株的抗菌活性 54
5. 討論 56
6. 結論 65
7. 參考文獻 66
Alpaslan, E., Geilich, B. M., Yazici, H., & Webster, T. J. (2017). pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth. Scientific Reports, 7(1), 45859. doi:10.1038/srep45859
An, J., Luo, Q. Z., Yuan, X. Y., Wang, D. S., & Li, X. Y. (2011). Preparation and Characterization of Silver-Chitosan Nanocomposite Particles with Antimicrobial Activity. Journal of Applied Polymer Science, 120(6), 3180-3189.
Arciola, C. R., Campoccia D Fau - Speziale, P., Speziale P Fau - Montanaro, L., Montanaro L Fau - Costerton, J. W., & Costerton, J. W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. (1878-5905 (Electronic)).
Banerjee, M., Mallick, S., Paul, A., Chattopadhyay, A., & Ghosh, S. S. (2010). Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir, 26(8), 5901-5908. doi:10.1021/la9038528
Bansal, K., Mishra, D., Rosling, A., & Rosenholm, J. (2019). Therapeutic Potential of Polymer-Coated Mesoporous Silica Nanoparticles. Applied Sciences, 10, 289. doi:10.3390/app10010289
Barros, C. H. N., Fulaz, S., Stanisic, D., & Tasic, L. (2018). Biogenic Nanosilver against Multidrug-Resistant Bacteria (MDRB). Antibiotics (Basel), 7(3). doi:10.3390/antibiotics7030069
Bellio, P., Luzi, C., Mancini, A., Cracchiolo, S., Passacantando, M., Di Pietro, L., . . . Celenza, G. (2018). Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860(11), 2428-2435. doi:https://doi.org/10.1016/j.bbamem.2018.07.002
Bharti, C., Nagaich, U., Pal, A. K., & Gulati, N. (2015). Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig, 5(3), 124-133. doi:10.4103/2230-973X.160844
Bhattacharyya, S., Wang, H., & Ducheyne, P. (2012). Polymer-coated mesoporous silica nanoparticles for the controlled release of macromolecules. Acta Biomater, 8(9), 3429-3435. doi:10.1016/j.actbio.2012.06.003
Capeletti, L. B., de Oliveira, L. F., Goncalves Kde, A., de Oliveira, J. F., Saito, A., Kobarg, J., . . . Cardoso, M. B. (2014). Tailored silica-antibiotic nanoparticles: overcoming bacterial resistance with low cytotoxicity. Langmuir, 30(25), 7456-7464. doi:10.1021/la4046435
Chang, K. L., Tai, M. C., & Cheng, F. H. (2001). Kinetics and products of the degradation of chitosan by hydrogen peroxide. J Agric Food Chem, 49(10), 4845-4851. doi:10.1021/jf001469g
Chen, C. C., Do, J. S., & Gu, Y. (2009). Immobilization of HRP in Mesoporous Silica and Its Application for the Construction of Polyaniline Modified Hydrogen Peroxide Biosensor. Sensors (Basel), 9(6), 4635-4648. doi:10.3390/s90604635
Chen, N.-T., Cheng, S.-H., Souris, J. S., Chen, C.-T., Mou, C.-Y., & Lo, L.-W. (2013). Theranostic applications of mesoporous silica nanoparticles and their organic/inorganic hybrids. Journal of Materials Chemistry B, 1(25), 3128-3135. doi:10.1039/C3TB20249F
Cheng, S.-H., Lee, C.-H., Chen, M.-C., Souris, J. S., Tseng, F.-G., Yang, C.-S., . . . Lo, L.-W. (2010). Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy. Journal of Materials Chemistry, 20(29), 6149-6157. doi:10.1039/C0JM00645A
Chiang, C.-Y., Uzoma, I., Moore, R. T., Gilbert, M., Duplantier, A. J., & Panchal, R. G. (2018). Mitigating the Impact of Antibacterial Drug Resistance through Host-Directed Therapies: Current Progress, Outlook, and Challenges. mBio, 9(1), e01932-01917. doi:10.1128/mBio.01932-17
Chirra, S., Siliveri, S., Gangalla, R., Goskula, S., Gujjula, S. R., Adepu, A. K., . . . Narayanan, V. (2019). Synthesis of new multivalent metal ion functionalized mesoporous silica and studies of their enhanced antimicrobial and cytotoxicity activities. J Mater Chem B, 7(45), 7235-7245. doi:10.1039/c9tb01736d
Corriu, R. J. P., Mehdi, A., Reyé, C., & Thieuleux, C. (2004). Direct Synthesis of Functionalized Mesoporous Silica by Non-Ionic Assembly Routes. Quantitative Chemical Transformations within the Materials Leading to Strongly Chelated Transition Metal Ions. Chemistry of Materials, 16(1), 159-166. doi:10.1021/cm034903d
Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318-1322. doi:10.1126/science.284.5418.1318
Das, T., Paino, D., Manoharan, A., Farrell, J., Whiteley, G., Kriel, F. H., . . . Manos, J. (2019). Conditions Under Which Glutathione Disrupts the Biofilms and Improves Antibiotic Efficacy of Both ESKAPE and Non-ESKAPE Species. 10(2000). doi:10.3389/fmicb.2019.02000
Dharmaraja, A. T. (2017). Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem, 60(8), 3221-3240. doi:10.1021/acs.jmedchem.6b01243
Dogra, P., Adolphi, N. L., Wang, Z., Lin, Y. S., Butler, K. S., Durfee, P. N., . . . Brinker, C. J. (2018). Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat Commun, 9(1), 4551. doi:10.1038/s41467-018-06730-z
Dwyer, D. J., Kohanski, M. A., & Collins, J. J. (2009). Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol, 12(5), 482-489. doi:10.1016/j.mib.2009.06.018
Ehlert, N., Badar, M., Christel, A., Lohmeier, S. J., Luessenhop, T., Stieve, M., . . . Behrens, P. (2011). Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants. Journal of Materials Chemistry, 21(3), 752-760. doi:10.1039/C0JM01487G
Fang, F. C. Antimicrobial actions of reactive oxygen species. LID - 10.1128/mBio.00141-11 [doi] LID - e00141-11. (2150-7511 (Electronic)).
Farjadian, F., Roointan, A., Mohammadi-Samani, S., & Hosseini, M. (2019). Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chemical Engineering Journal, 359, 684-705. doi:https://doi.org/10.1016/j.cej.2018.11.156
Fortuni, B., Inose, T., Ricci, M., Fujita, Y., Van Zundert, I., Masuhara, A., . . . Uji, I. H. (2019). Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems. Sci Rep, 9(1), 2666. doi:10.1038/s41598-019-39107-3
Freitas, L. B. d. O., Corgosinho, L. d. M., Faria, J. A. Q. A., dos Santos, V. M., Resende, J. M., Leal, A. S., . . . Sousa, E. M. B. d. (2017). Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous and Mesoporous Materials, 242, 271-283. doi:https://doi.org/10.1016/j.micromeso.2017.01.036
Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts Against Food Pathogens and Spoilage Microorganisms. (1664-302X (Print)).
Gounani, Z., Asadollahi, M. A., Meyer, R. L., & Arpanaei, A. (2018). Loading of polymyxin B onto anionic mesoporous silica nanoparticles retains antibacterial activity and enhances biocompatibility. Int J Pharm, 537(1-2), 148-161. doi:10.1016/j.ijpharm.2017.12.039
Goy, R. C., & Assis, O. B. G. (2014). Antimicrobial analysis of films processed from chitosan and N,N,N-trimethylchitosan. Brazilian Journal of Chemical Engineering, 31, 643-648.
Gupta, A., Mumtaz, S., Li, C. H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev, 48(2), 415-427. doi:10.1039/c7cs00748e
Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322-332. doi:https://doi.org/10.1016/j.ijantimicag.2009.12.011
Hanif, H., Nazir, S., Mazhar, K., Waseem, M., Bano, S., & Rashid, U. (2017). Targeted delivery of mesoporous silica nanoparticles loaded monastrol into cancer cells: an in vitro study. Applied Nanoscience, 7(8), 549-555. doi:10.1007/s13204-017-0593-8
Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents, 35(4), 322-332. doi:10.1016/j.ijantimicag.2009.12.011
Hua, X., Yang, Q., Zhang, W., Dong, Z., Yu, S., Schwarz, S., & Liu, S. (2018). Antibacterial Activity and Mechanism of Action of Aspidinol Against Multi-Drug-Resistant Methicillin-Resistant Staphylococcus aureus. Front Pharmacol, 9, 619. doi:10.3389/fphar.2018.00619
Imlay, J. A., & Linn, S. (1987). Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol, 169(7), 2967-2976. doi:10.1128/jb.169.7.2967-2976.1987
Iturrioz-Rodriguez, N., Correa-Duarte, M. A., & Fanarraga, M. L. (2019). Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles. Int J Nanomedicine, 14, 3389-3401. doi:10.2147/IJN.S198848
Jamshidi, D., & Sazegar, M. R. (2020). Antibacterial Activity of a Novel Biocomposite Chitosan/Graphite Based on Zinc-Grafted Mesoporous Silica Nanoparticles. Int J Nanomedicine, 15, 871-883. doi:10.2147/IJN.S234043
Jiang, L., Lee, H. W., & Loo, S. C. J. (2020). Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Advances, 10(14), 8497-8517. doi:10.1039/C9RA10921H
Jin, S. E., Hwang, W., Lee, H. J., & Jin, H. E. (2017). Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage. Int J Nanomedicine, 12, 8057-8070. doi:10.2147/IJN.S144236
Kadiyala, U., Kotov, N. A., & VanEpps, J. S. (2018). Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. Curr Pharm Des, 24(8), 896-903. doi:10.2174/1381612824666180219130659
Kang, T., Oh, S., Kim, H., & Yi, J. (2005). Facile synthesis of mesoporous silica sublayer with hierarchical pore structure on ceramic membrane using anionic polyelectrolyte. Langmuir, 21(13), 5859-5864. doi:10.1021/la0500070
Kang, X. Q., Shu, G. F., Jiang, S. P., Xu, X. L., Qi, J., Jin, F. Y., . . . Du, Y. Z. (2019). Effective targeted therapy for drug-resistant infection by ICAM-1 antibody-conjugated TPGS modified beta-Ga2O3:Cr(3+) nanoparticles. Theranostics, 9(10), 2739-2753. doi:10.7150/thno.33452
Kao, K.-C., Lee, C.-H., Lin, T.-S., & Mou, C.-Y. (2010). Cytochrome c covalently immobilized on mesoporous silicas as a peroxidase: Orientation effect. Journal of Materials Chemistry, 20(22), 4653-4662. doi:10.1039/B925331A
Khan, S. T., & Al-Khedhairy, A. A. (2017). Chapter 8 - Metals and Metal Oxides: Important Nanomaterials With Antimicrobial Activity. In A. M. Grumezescu (Ed.), Antimicrobial Nanoarchitectonics (pp. 195-222): Elsevier.
Khatoon, N., Alam, H., Khan, A., Raza, K., & Sardar, M. (2019). Ampicillin Silver Nanoformulations against Multidrug resistant bacteria. Sci Rep, 9(1), 6848. doi:10.1038/s41598-019-43309-0
Khosravian, P., Shafiee Ardestani, M., Khoobi, M., Ostad, S. N., Dorkoosh, F. A., Akbari Javar, H., & Amanlou, M. (2016). Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. Onco Targets Ther, 9, 7315-7330. doi:10.2147/OTT.S113815
Kim, T. W., Slowing, II, Chung, P. W., & Lin, V. S. (2011). Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules. ACS Nano, 5(1), 360-366. doi:10.1021/nn101740e
Kobylecki, R. J., & Morgan, B. A. (1979). Chapter 4 Analgetics, Endorphins and the Opioid Receptor. In H.-J. Hess (Ed.), Annual Reports in Medicinal Chemistry (Vol. 14, pp. 31-40): Academic Press.
Kuthati, Y., Kankala, R. K., Busa, P., Lin, S. X., Deng, J. P., Mou, C. Y., & Lee, C. H. (2017). Phototherapeutic spectrum expansion through synergistic effect of mesoporous silica trio-nanohybrids against antibiotic-resistant gram-negative bacterium. J Photochem Photobiol B, 169, 124-133. doi:10.1016/j.jphotobiol.2017.03.003
Kwon, S., Singh, R. K., Perez, R. A., Abou Neel, E. A., Kim, H. W., & Chrzanowski, W. (2013). Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng, 4, 2041731413503357. doi:10.1177/2041731413503357
Lee, C.-H., Cheng, S.-H., Wang, Y.-J., Chen, Y.-C., Chen, N.-T., Souris, J., . . . Lo, L.-W. (2009). Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Advanced Functional Materials, 19(2), 215-222. doi:10.1002/adfm.200800753
Lee, C.-H., Lo, L.-W., Mou, C.-Y., & Yang, C.-S. (2008). Synthesis and Characterization of Positive-Charge Functionalized Mesoporous Silica Nanoparticles for Oral Drug Delivery of an Anti-Inflammatory Drug. Advanced Functional Materials, 18(20), 3283-3292. doi:10.1002/adfm.200800521
Lee, C. H., Cheng, S. H., Huang, I. P., Souris, J. S., Yang, C. S., Mou, C. Y., & Lo, L. W. (2010). Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew Chem Int Ed Engl, 49(44), 8214-8219. doi:10.1002/anie.201002639
Lee, J. E., Lee, N., Kim, T., Kim, J., & Hyeon, T. (2011). Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res, 44(10), 893-902. doi:10.1021/ar2000259
Lee, N. Y., Ko, W. C., & Hsueh, P. R. (2019). Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Front Pharmacol, 10, 1153. doi:10.3389/fphar.2019.01153
Lehman, S. E., Morris, A. S., Mueller, P. S., Salem, A. K., Grassian, V. H., & Larsen, S. C. (2016). Silica nanoparticle-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environmental Science: Nano, 3(1), 56-66. doi:10.1039/C5EN00179J
Li, L.-L., & Wang, H. (2013). Enzyme-Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo. Advanced healthcare materials, 2, 1351-1360. doi:10.1002/adhm.201300051
Li, L., Liu, T., Fu, C., Tan, L., Meng, X., & Liu, H. (2015). Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine: Nanotechnology, Biology and Medicine, 11(8), 1915-1924. doi:https://doi.org/10.1016/j.nano.2015.07.004
Li, X., Robinson, S. M., Gupta, A., Saha, K., Jiang, Z., Moyano, D. F., . . . Rotello, V. M. (2014). Functional Gold Nanoparticles as Potent Antimicrobial Agents against Multi-Drug-Resistant Bacteria. ACS Nano, 8(10), 10682-10686. doi:10.1021/nn5042625
Li, X., Wong, C. H., Ng, T. W., Zhang, C. F., Leung, K. C., & Jin, L. (2016). The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions. Int J Nanomedicine, 11, 2471-2480. doi:10.2147/IJN.S105681
Martínez-Carmona, M., Gun'ko, Y. K., & Vallet-Regí, M. (2018). Mesoporous Silica Materials as Drug Delivery: "The Nightmare" of Bacterial Infection. Pharmaceutics, 10(4), 279. doi:10.3390/pharmaceutics10040279
Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J. I., & Nel, A. E. (2010). Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 4(8), 4539-4550. doi:10.1021/nn100690m
Metlay, J. P., Powers, J. H., Dudley, M. N., Christiansen, K., & Finch, R. G. (2006). Antimicrobial drug resistance, regulation, and research. Emerg Infect Dis, 12(2), 183-190. doi:10.3201/eid1202.050078
Moorthy, M. S., Hoang, G., Manivasagan, P., Mondal, S., Vy Phan, T. T., Kim, H., & Oh, J. (2019). Chitosan oligosaccharide coated mesoporous silica nanoparticles for pH-stimuli responsive drug delivery applications. Journal of Porous Materials, 26(1), 217-226. doi:10.1007/s10934-018-0646-8
Mudakavi, R. J., Raichur, A. M., & Chakravortty, D. (2014). Lipid coated mesoporous silica nanoparticles as an oral delivery system for targeting and treatment of intravacuolar Salmonella infections. RSC Advances, 4(105), 61160-61166. doi:10.1039/C4RA12973C
Munoz-Escobar, A., Ruiz-Baltazar, A. J., & Reyes-Lopez, S. Y. (2019). Novel Route of Synthesis of PCL-CuONPs Composites With Antimicrobial Properties. Dose Response, 17(3), 1559325819869502. doi:10.1177/1559325819869502
Nguyen, G. T., Green, E. R., & Mecsas, J. (2017). Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol, 7, 373. doi:10.3389/fcimb.2017.00373
Nie, W., Dai, X., Li, D., McCoul, D., Gillispie, G. J., Zhang, Y., . . . He, C. (2018). One-Pot Synthesis of Silver Nanoparticle Incorporated Mesoporous Silica Granules for Hemorrhage Control and Antibacterial Treatment. ACS Biomaterials Science & Engineering, 4(10), 3588-3599. doi:10.1021/acsbiomaterials.8b00527
Nikaido, H. (2009). Multidrug resistance in bacteria. Annual review of biochemistry, 78, 119-146. doi:10.1146/annurev.biochem.78.082907.145923
Nino-Martinez, N., Salas Orozco, M. F., Martinez-Castanon, G. A., Torres Mendez, F., & Ruiz, F. (2019). Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles. Int J Mol Sci, 20(11). doi:10.3390/ijms20112808
Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2), 137-152. doi:https://doi.org/10.1016/j.ijantimicag.2016.11.011
Rapp, J. L., Huang, Y., Natella, M., Cai, Y., Lin, V. S., & Pruski, M. (2009). A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts. Solid State Nucl Magn Reson, 35(2), 82-86. doi:10.1016/j.ssnmr.2008.12.004
Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology, 4(3), 482-501. doi:10.3934/microbiol.2018.3.482
Ruddaraju, L. K., Pammi, S. V. N., Guntuku, G. s., Padavala, V. S., & Kolapalli, V. R. M. (2020). A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences, 15(1), 42-59. doi:https://doi.org/10.1016/j.ajps.2019.03.002
Sangfai, T., Dong, F., Tantishaiyakul, V. T., Jandt, K., Lüdecke, C., Boonrat, O., & Hirun, N. (2017). Layer-by-layer gelatin/chitosan polyelectrolyte coated nanoparticles on Ti implants for prevention of implant-associated infections. eXPRESS Polymer Letters, 11, 73-82. doi:10.3144/expresspolymlett.2017.8
Sato, Y., Unno, Y., Miyazaki, C., Ubagai, T., & Ono, Y. (2019). Multidrug-resistant Acinetobacter baumannii resists reactive oxygen species and survives in macrophages. Sci Rep, 9(1), 17462. doi:10.1038/s41598-019-53846-3
Sedigh Ebrahim-Saraie, H., Heidari, H., Rezaei, V., Mortazavi, S. M. J., & Motamedifar, M. (2018). Promising Antibacterial Effect of Copper Oxide Nanoparticles against Several Multidrug Resistant Uropathogens. 24(3), 213-218. doi:10.15171/ps.2018.31
Şen Karaman, D., Manner, S., & Rosenholm, J. M. (2018). Mesoporous silica nanoparticles as diagnostic and therapeutic tools: how can they combat bacterial infection? Ther Deliv, 9(4), 241-244. doi:10.4155/tde-2017-0111
Şen Karaman, D., Sarwar, S., Desai, D., Björk, E. M., Odén, M., Chakrabarti, P., . . . Chakraborti, S. (2016). Shape engineering boosts antibacterial activity of chitosan coated mesoporous silica nanoparticle doped with silver: a mechanistic investigation. Journal of Materials Chemistry B, 4(19), 3292-3304. doi:10.1039/C5TB02526E
Shapiro, R. S. (2015). Antimicrobial-induced DNA damage and genomic instability in microbial pathogens. PLoS Pathog, 11(3), e1004678. doi:10.1371/journal.ppat.1004678
Soto, S. M. (2013). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 4(3), 223-229. doi:10.4161/viru.23724
Tamanna, T., Bulitta, J. B., Landersdorfer, C. B., Cashin, V., & Yu, A. (2015). Stability and controlled antibiotic release from thin films embedded with antibiotic loaded mesoporous silica nanoparticles. RSC Advances, 5(130), 107839-107846. doi:10.1039/C5RA22976F
Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res, 46(3), 792-801. doi:10.1021/ar3000986
Tarn, D., Xue, M., & Zink, J. I. (2013). pH-responsive dual cargo delivery from mesoporous silica nanoparticles with a metal-latched nanogate. Inorg Chem, 52(4), 2044-2049. doi:10.1021/ic3024265
Tenover, F. C. Mechanisms of antimicrobial resistance in bacteria. (0196-6553 (Print)).
Trebosc, J., Wiench, J. W., Huh, S., Lin, V. S., & Pruski, M. (2005). Solid-state NMR study of MCM-41-type mesoporous silica nanoparticles. J Am Chem Soc, 127(9), 3057-3068. doi:10.1021/ja043567e
Valgas, C., Souza, S. M. d., Smânia, E. F. A., & Smânia Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38, 369-380.
Vallet-Regi, M., Colilla, M., Izquierdo-Barba, I., & Manzano, M. (2017). Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules, 23(1). doi:10.3390/molecules23010047
Vallet-Regí, M. A.-O., González, B., & Izquierdo-Barba, I. Nanomaterials as Promising Alternative in the Infection Treatment. LID - 10.3390/ijms20153806 [doi] LID - 3806. (1422-0067 (Electronic)).
Vinu, A., Hossain, K. Z., & Ariga, K. (2005). Recent advances in functionalization of mesoporous silica. J Nanosci Nanotechnol, 5(3), 347-371. doi:10.1166/jnn.2005.089347
Wang, J., Zhu, Y., Bawa, H. K., Ng, G., Wu, Y., Libera, M., . . . Yu, X. (2011). Oxygen-generating nanofiber cell scaffolds with antimicrobial properties. ACS Appl Mater Interfaces, 3(1), 67-73. doi:10.1021/am100862h
Wang, Y., Ding, X., Chen, Y., Guo, M., Zhang, Y., Guo, X., & Gu, H. (2016). Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials, 101, 207-216. doi:10.1016/j.biomaterials.2016.06.004
Watthanaphanit, A., Supaphol, P., Furuike, T., Tokura, S., Tamura, H., & Rujiravanit, R. (2009). Novel chitosan-spotted alginate fibers from wet-spinning of alginate solutions containing emulsified chitosan-citrate complex and their characterization. Biomacromolecules, 10(2), 320-327. doi:10.1021/bm801043d
Wilson, D. N. (2016). The ABC of Ribosome-Related Antibiotic Resistance. mBio, 7(3). doi:10.1128/mBio.00598-16
Wu, J., Li, H., Shi, M., Zhu, Y., Ma, Y., Zhong, Y., . . . Peng, C. (2019). TET1-mediated DNA hydroxymethylation activates inhibitors of the Wnt/beta-catenin signaling pathway to suppress EMT in pancreatic tumor cells. J Exp Clin Cancer Res, 38(1), 348. doi:10.1186/s13046-019-1334-5
Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862-3875. doi:10.1039/C3CS35405A
Yang, J., Lin, G.-S., Mou, C.-Y., & Tung, K.-L. (2020). Mesoporous Silica Thin Membrane with Tunable Pore Size for Ultrahigh Permeation and Precise Molecular Separation. ACS Appl Mater Interfaces, 12(6), 7459-7465. doi:10.1021/acsami.9b21042
Yang, S., Han, X., Yang, Y., Qiao, H., Yu, Z., Liu, Y., . . . Tang, T. (2018). Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection. ACS Appl Mater Interfaces, 10(17), 14299-14311. doi:10.1021/acsami.7b15678
Zaki, S. S., Kheiralla, Z. H., Rushdy, A. A., Betiha, M. A., & Abousittash, H. B. (2017). Embedded Mesoporous Silica Silver Nanoparticles as potential antibacterial agent againstMultidrug-Resistant Bacteria. Journal of Scientific Research in Science, 34(part1), 158-178. doi:10.21608/jsrs.2018.12933
Zelikin, A. N. (2010). Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS Nano, 4(5), 2494-2509. doi:10.1021/nn100634r
Zhang, W., Zheng, N., Chen, L., Xie, L., Cui, M., Li, S., & Xu, L. (2018). Effect of Shape on Mesoporous Silica Nanoparticles for Oral Delivery of Indomethacin. Pharmaceutics, 11(1). doi:10.3390/pharmaceutics11010004
Zhao, G., Chen, Y., He, Y., Chen, F., Gong, Y., Chen, S., . . . Wang, J. (2019). Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic against intestinal bacterial infection. Biomater Sci, 7(6), 2440-2451. doi:10.1039/c9bm00003h
Zhao, Y., Trewyn, B. G., Slowing, II, & Lin, V. S. (2009). Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J Am Chem Soc, 131(24), 8398-8400. doi:10.1021/ja901831u
Zhou, Y., Quan, G., Wu, Q., Zhang, X., Niu, B., Wu, B., . . . Wu, C. (2018). Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B, 8(2), 165-177. doi:10.1016/j.apsb.2018.01.007

(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *