帳號:guest(3.145.100.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:丁逸龍
作者(英文):Yi-Lung Ding
論文名稱:使用Pharmacophore Ensemble/Support Vector Machine (PhE/SVM)模型來預測Breast Cancer Resistance Protein (BCRP/ABCG2)的抑制
論文名稱(英文):Use of an In Silico Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) Model to Predict the Inhibition of Breast Cancer Resistance Protein (BCRP/ABCG2)
指導教授:梁剛荐
指導教授(英文):Max K. Leong
口試委員:翁慶豐
張秀華
蘇玟珉
楊雪慧
梁剛荐
口試委員(英文):Ching-Feng Weng
H. H. Chang
Wen-Min Su
Hsueh-Hui Yang
Max K. Leong
學位類別:博士
校院名稱:國立東華大學
系所名稱:化學系
學號:810112003
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:75
關鍵詞:乳腺癌抗性蛋白 (BCRP)Pharmacophore支援向量機 (SVM)pharmacophore ensemble/support vector machine (PhE/SVM)
關鍵詞(英文):Breast cancer resistance protein (BCRP)PharmacophoreSupport vector machine (SVM)Pharmacophore ensemble/Support vector machine (PhE/SVM)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
乳腺癌抗性蛋白 (BCRP/ABCG2) 是ABC轉運蛋白家族的成員之一,總共有七個亞科: 從 ABCA到 ABCG。這些轉運蛋白可以將物質運送到細胞膜外。在這些轉運蛋白中,P-glycoprotein, BCRP, 和 multidrug resistance-associated protein 1與多藥耐藥相關。而且P-glycoprotein, BCRP與藥物在大腦中的滲透性中也起著重要的作用。因此,建立理論模型是必要的,並使用模型來預測這兩種轉運蛋白的抑制作用。此外,與P-glycoprotein 抑制的模型相比,BCRP抑制的已發表模型較少。本研究使用pharmacophore ensemble/support vector machine (PhE/SVM)方法建立了一個計算機預測模型,用來預測BCRP的混雜特徵。PhE/SVM模型在training set (r2 = 0.82, = 0.73, n = 22), 和test set (q2 = 0.75-0.89, n = 97), 和outlier set (q2 = 0.72-0.91, n = 16) 的表現是準確的,並且通過了所有的嚴格標準。此外,在HIV蛋白酶抑制劑的模擬測試中也是預測準確。因此,這種PhE/SVM 模型可用於預測BCRP抑制,該模型還可以評估BCRP配體的結構多樣性和不同方向。
Breast cancer resistance protein (BCRP/ABCG2) is a member of the ATP-binding cassette transporter family. This superfamily has seven subfamilies: ABCA to ABCG. These transporters can transport substances and xenobiotics to extracellular. Among these transporters, P-glycoprotein, BCRP, and multidrug resistance-associated protein 1 are associated with multidrug resistance. Both P-glycoprotein and BCRP also play major roles in the permeability of drugs in the brain. Therefore, building theoretical models is necessary and use models to predict the inhibition of both of these transporters. Furthermore, there are fewer published prediction models for BCRP inhibition than for P-glycoprotein inhibition. This study built an in silico predictive model using a pharmacophore ensemble/support vector machine (PhE/SVM) to evaluate the promiscuous characteristics of BCRP. The prediction performance of the PhE/SVM model in the training set (r2 = 0.82, = 0.73, n = 22), test set (q2 = 0.75-0.89, n = 97), and outlier set (q2 = 0.72-0.91, n = 16) were accurate and passed all stringent criteria. In addition, the mock test prediction with HIV protease inhibitors was also accurate. Consequently, this in silico PhE/SVM model can be used to predict BCRP inhibition. The model can also evaluate the structural diversity and different orientations of the BCRP ligand.
誌謝 ii
摘要 iii
Abstract iv
CONTENTS v
ABBREVIATIONS 1
Introduction 3
Method 6
Data collection 6
Pharmacophore development 6
SVM calculations 7
Validations 8
Results 11
PhE 11
PhE/SVM 13
Robustness evaluation 14
Predictive validations 15
Mock test 16
Discussion 17
Conclusion 20
Table S1 These molecules are collected in this study, the molecule detail are names, SMILES strings, observed and predicted pIC50 values in Hypo A, Hypo B, Hypo C, PhE/SVM, data partitions, and references 46
References 68
1. Peña-Solórzano, D.; Stark, S. A.; König, B.; Sierra, C. A.; Ochoa-Puentes, C., ABCG2/BCRP: Specific and Nonspecific Modulators. Med. Res. Rev. 2017, 37 (5), 987-1050.
2. Klaassen, C. D.; Aleksunes, L. M., Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation. Pharmacological reviews 2010, 62 (1), 1-96.
3. Polgar, O.; Robey, R. W.; Bates, S. E., ABCG2: structure, function and role in drug response. Expert Opinion on Drug Metabolism & Toxicology 2008, 4 (1), 1-15.
4. Szakács, G.; Váradi, A.; Özvegy-Laczka, C.; Sarkadi, B., The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov. Today 2008, 13 (9-10), 379-393.
5. Vähäkangas, K.; Myllynen, P., Drug transporters in the human blood-placental barrier. Br. J. Pharmacol. 2009, 158 (3), 665-678.
6. Schinkel, A. H.; Jonker, J. W., Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. ADVANCED DRUG DELIVERY REVIEWS 2003, 55 (1), 3-29.
7. Chang, G., Multidrug resistance ABC transporters. FEBS Lett. 2003, 555 (1), 102-105.
8. Reyes, C. L.; Chang, G., Structure of the ABC Transporter MsbA in Complex with ADP·Vanadate and Lipopolysaccharide. Science 2005, 308 (5724), 1028-1031.
9. Allikmets, R.; Schriml, L. M.; Hutchinson, A.; Romano-Spica, V.; Dean, M., A Human Placenta-specific ATP-Binding Cassette Gene (ABCP) on Chromosome 4q22 That Is Involved in Multidrug Resistance. Cancer Res. 1998, 58 (23), 5337-5339.
10. Mao, Q., Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS Journal 2005, 7 (1), E118-E133.
11. Chen, C.; Lee, M.-H.; Weng, C.-F.; Leong, M. K., Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme. Molecules 2018, 23 (7), 1820.
12. Dash, R. P.; Jayachandra Babu, R.; Srinivas, N. R., Therapeutic Potential and Utility of Elacridar with Respect to P-glycoprotein Inhibition: An Insight from the Published In Vitro, Preclinical and Clinical Studies. Eur. J. Drug Metabol. Pharmacokinet. 2017, 42 (6), 915-933.
13. Schinkel, A. H., P-Glycoprotein, a gatekeeper in the blood–brain barrier. ADVANCED DRUG DELIVERY REVIEWS 1999, 36 (2), 179-194.
14. Cherigo, L.; Lopez, D.; Martinez-Luis, S., Marine Natural Products as Breast Cancer Resistance Protein Inhibitors. Mar. Drugs 2015, 13 (4), 2010-2029.
15. Toyoda, Y.; Takada, T.; Suzuki, H., Inhibitors of Human ABCG2: From Technical Background to Recent Updates With Clinical Implications. Front. Pharmacol. 2019, 10 (208).
16. Wang, H.; Zhou, L.; Gupta, A.; Vethanayagam, R. R.; Zhang, Y.; Unadkat, J. D.; Mao, Q., Regulation of BCRP/ABCG2 expression by progesterone and 17β-estradiol in human placental BeWo cells. Am. J. Physiol. Endocrinol. Metab. 2006, 290 (5), E798-E807.
17. Litman, T.; Druley, T. E.; Stein, W. D.; Bates, S. E., From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cellular and Molecular Life Sciences 2001, 58 (7), 931-959.
18. Hou, X.; Huang, F.; Carboni, J. M.; Flatten, K.; Asmann, Y. W.; Ten Eyck, C.; Nakanishi, T.; Tibodeau, J. D.; Ross, D. D.; Gottardis, M. M.; Erlichman, C.; Kaufmann, S. H.; Haluska, P., Drug Efflux by Breast Cancer Resistance Protein Is a Mechanism of Resistance to the Benzimidazole Insulin-Like Growth Factor Receptor/Insulin Receptor Inhibitor, BMS-536924. Molecular Cancer Therapeutics 2011, 10 (1), 117-125.
19. Shi, Z.; Tiwari, A. K.; Shukla, S.; Robey, R. W.; Singh, S.; Kim, I.-W.; Bates, S. E.; Peng, X.; Abraham, I.; Ambudkar, S. V.; Talele, T. T.; Fu, L.-W.; Chen, Z.-S., Sildenafil Reverses ABCB1- and ABCG2-Mediated Chemotherapeutic Drug Resistance. Cancer Res. 2011, 71 (8), 3029.
20. Muenster, U.; Grieshop, B.; Ickenroth, K.; Gnoth, M. J., Characterization of Substrates and Inhibitors for the In Vitro Assessment of Bcrp Mediated Drug–Drug Interactions. Pharm. Res. 2008, 25 (10), 2320-2326.
21. Tomlinson, B.; Hu, M.; Lee, V. W. Y.; Lui, S. S. H.; Chu, T. T. W.; Poon, E. W. M.; Ko, G. T. C.; Baum, L.; Tam, L. S.; Li, E. K., ABCG2 Polymorphism Is Associated With the Low-Density Lipoprotein Cholesterol Response to Rosuvastatin. Clin. Pharmacol. Ther. 2010, 87 (5), 558-562.
22. Hu, M.; Tomlinson, B., Evaluation of the pharmacokinetics and drug interactions of the two recently developed statins, rosuvastatin and pitavastatin. Expert Opinion on Drug Metabolism & Toxicology 2014, 10 (1), 51-65.
23. Hu, M.; To, K. K.; Mak, V. W.; Tomlinson, B., The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opinion on Drug Metabolism & Toxicology 2011, 7 (1), 49-62.
24. Declèves, X.; Jacob, A.; Yousif, S.; Shawahna, R.; Potin, S.; Scherrmann, J.-M., Interplay of Drug Metabolizing CYP450 Enzymes and ABC Transporters in the Blood-Brain Barrier. Curr. Drug Metab. 2011, 12 (8), 732-741.
25. Ciardiello, F.; Tortora, G., EGFR Antagonists in Cancer Treatment. N. Engl. J. Med. 2008, 358 (11), 1160-1174.
26. Siegel, R.; Naishadham, D.; Jemal, A., Cancer statistics for Hispanics/Latinos, 2012. CA-A CANCER JOURNAL FOR CLINICIANS 2012, 62 (5), 283-298.
27. Gerstner, E. R.; Fine, R. L., Increased Permeability of the Blood-Brain Barrier to Chemotherapy in Metastatic Brain Tumors: Establishing a Treatment Paradigm. J. Clin. Oncol. 2007, 25 (16), 2306-2312.
28. Elmeliegy, M. A.; Carcaboso, A. M.; Tagen, M.; Bai, F.; Stewart, C. F., Role of ATP-Binding Cassette and Solute Carrier Transporters in Erlotinib CNS Penetration and Intracellular Accumulation. Clinical Cancer Research 2011, 17 (1), 89-99.
29. El Kamar, F. G.; Jindal, K.; Grossbard, M. L.; Mizrachi, H. H.; Kozuch, P. S., Pancreatic carcinoma with brain metastases: case report and literature review. Dig. Liver Dis. 2004, 36 (5), 355-360.
30. Oh, Y.; Taylor, S.; Bekele, B. N.; Debnam, J. M.; Allen, P. K.; Suki, D.; Sawaya, R.; Komaki, R.; Stewart, D. J.; Karp, D. D., Number of metastatic sites is a strong predictor of survival in patients with nonsmall cell lung cancer with or without brain metastases. Cancer 2009, 115 (13), 2930-2938.
31. Agarwal, S.; Hartz, A. M. S.; Elmquist, W. F.; Bauer, B., Breast Cancer Resistance Protein and P-Glycoprotein in Brain Cancer: Two Gatekeepers Team Up. Curr. Pharm. Design 2011, 17 (26), 2793-2802.
32. Huse, J. T.; Holland, E. C., Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer 2010, 10 (5), 319-331.
33. Lin, J. H.; Yamazaki, M., Role of P-Glycoprotein in Pharmacokinetics: Clinical Implications. Clin. Pharmacokinet. 2003, 42 (1), 59-98.
34. Schnepf, R.; Zolk, O., Effect of the ATP-binding cassette transporter ABCG2 on pharmacokinetics: experimental findings and clinical implications. Expert Opinion on Drug Metabolism & Toxicology 2013, 9 (3), 287-306.
35. Shukla, S.; Wu, C.-P.; Ambudkar, S. V., Development of inhibitors of ATP-binding cassette drug transporters – present status and challenges. Expert Opinion on Drug Metabolism & Toxicology 2008, 4 (2), 205-223.
36. Szakács, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M., Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5 (3), 219-234.
37. Poguntke, M.; Hazai, E.; Fromm, M. F.; Zolk, O., Drug transport by breast cancer resistance protein. Expert Opinion on Drug Metabolism & Toxicology 2010, 6 (11), 1363-1384.
38. Lagorce, D.; Reynes, C.; Camproux, A.-C.; Miteva, M. A.; Sperandio, O.; Villoutreix, B. O., In Silico ADME/Tox Predictions. In ADMET for Medicinal Chemists: A Practical Guide, Tsaioun, K.; Kates, S. A., Eds. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2011; pp 29-124.
39. Sim, H.-M.; Lee, C.-Y.; Ee, P. L. R.; Go, M.-L., Dimethoxyaurones: Potent inhibitors of ABCG2 (breast cancer resistance protein). EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES 2008, 35 (4), 293-306.
40. Pan, Y.; Chothe, P. P.; Swaan, P. W., Identification of Novel BCRP Inhibitors by Virtual Screening. MOLECULAR PHARMACEUTICS 2013, 10 (4), 1236-1248.
41. Wei, Y.; Ma, Y.; Zhao, Q.; Ren, Z.; Li, Y.; Hou, T.; Peng, H., New Use for an Old Drug: Inhibiting ABCG2 with Sorafenib. Molecular Cancer Therapeutics 2012, 11 (8), 1693-1702.
42. Sim, H. M.; Loh, K. Y.; Yeo, W. K.; Lee, C. Y.; Go, M. L., Aurones as Modulators of ABCG2 and ABCB1: Synthesis and Structure–Activity Relationships. ChemMedChem 2011, 6 (4), 713-724.
43. Cramer, J.; Kopp, S.; Bates, S. E.; Chiba, P.; Ecker, G. F., Multispecificity of Drug Transporters: Probing Inhibitor Selectivity for the Human Drug Efflux Transporters ABCB1 and ABCG2. ChemMedChem 2007, 2 (12), 1783-1788.
44. Chang, C.; Ekins, S.; Bahadduri, P.; Swaan, P. W., Pharmacophore-based discovery of ligands for drug transporters. ADVANCED DRUG DELIVERY REVIEWS 2006, 58 (12-13), 1431-1450.
45. Matsson, P.; Englund, G.; Ahlin, G.; Bergström, C. A. S.; Norinder, U.; Artursson, P., A Global Drug Inhibition Pattern for the Human ATP-Binding Cassette Transporter Breast Cancer Resistance Protein (ABCG2). J. Pharmacol. Exp. Ther. 2007, 323 (1), 19-30.
46. Ishikawa, T.; Hirano, H.; Saito, H.; Sano, K.; Ikegami, Y.; Yamaotsu, N.; Hirono, S., Quantitative Structure-Activity Relationship (QSAR) Analysis to Predict Drug-Drug Interactions of ABC Transporter ABCG2. Mini Rev. Med. Chem. 2012, 12 (6), 505-514.
47. Gandhi, Y.; Morris, M., Structure–Activity Relationships and Quantitative Structure–Activity Relationships for Breast Cancer Resistance Protein (ABCG2). AAPS Journal 2009, 11 (3), 541-552.
48. Nicolle, E.; Boumendjel, A.; Macalou, S.; Genoux, E.; Ahmed-Belkacem, A.; Carrupt, P. A.; Di Pietro, A., QSAR analysis and molecular modeling of ABCG2-specific inhibitors. ADVANCED DRUG DELIVERY REVIEWS 2009, 61 (1), 34-46.
49. Gandhi, Y. A.; Morris, M. E., Structure–Activity Relationships and Quantitative Structure–Activity Relationships for Breast Cancer Resistance Protein (ABCG2). AAPS Journal 2009, 11 (3), 541.
50. Tan, K. P.; Wang, B.; Yang, M.; Boutros, P. C.; MacAulay, J.; Xu, H.; Chuang, A. I.; Kosuge, K.; Yamamoto, M.; Takahashi, S.; Wu, A. M. L.; Ross, D. D.; Harper, P. A.; Ito, S., Aryl Hydrocarbon Receptor Is a Transcriptional Activator of the Human Breast Cancer Resistance Protein (BCRP/ABCG2). Mol. Pharmacol. 2010, 78 (2), 175.
51. Ecker, G. F.; Stockner, T.; Chiba, P., Computational models for prediction of interactions with ABC-transporters. Drug Discov. Today 2008, 13 (7-8), 311-317.
52. Leong, M. K., A Novel Approach Using Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) for Prediction of hERG Liability. Chem. Res. Toxicol. 2007, 20 (2), 217-226.
53. Lexa, K. W.; Carlson, H. A., Protein flexibility in docking and surface mapping. Q. Rev. Biophys. 2012, 45 (3), 301-343.
54. Leong, M. K.; Chen, Y.-M.; Chen, H.-B.; Chen, P.-H., Development of a New Predictive Model for Interactions with Human Cytochrome P450 2A6 Using Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) Approach. Pharm. Res. 2009, 26 (4), 987-1000.
55. Leong, M. K.; Chen, T.-H., Prediction of Cytochrome P450 2B6-Substrate Interactions Using Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) Approach. Med. Chem. 2008, 4 (4), 396-406.
56. Leong, M. K.; Chen, H.-B.; Shih, Y.-H., Prediction of Promiscuous P-Glycoprotein Inhibition Using a Novel Machine Learning Scheme. PLoS One 2012, 7 (3), e33829.
57. Chen, C.-N.; Shih, Y.-H.; Ding, Y.-L.; Leong, M. K., Predicting Activation of the Promiscuous Human Pregnane X Receptor by Pharmacophore Ensemble/Support Vector Machine Approach. Chem. Res. Toxicol. 2011, 24 (10), 1765-1778.
58. Juvale, K.; Pape, V. F. S.; Wiese, M., Investigation of chalcones and benzochalcones as inhibitors of breast cancer resistance protein. Bioorg. Med. Chem. 2012, 20 (1), 346-355.
59. Juvale, K.; Wiese, M., 4-Substituted-2-phenylquinazolines as inhibitors of BCRP. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS 2012, 22 (21), 6766-6769.
60. Pick, A.; Müller, H.; Pajeva, I. K.; Weigt, M.; Mayer, R.; Haenisch, B.; Bönisch, H.; Müller, C. E.; Wiese, M., Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorg. Med. Chem. 2011, 19 (6), 2090-2102.
61. Pick, A.; Müller, H.; Wiese, M., Structure-activity relationships of new inhibitors of breast cancer resistance protein (ABCG2). Bioorg. Med. Chem. 2008, 16 (17), 8224-36.
62. Pick, A.; Müller, H.; Wiese, M., Novel lead for potent inhibitors of breast cancer resistance protein (BCRP). BIOORGANIC & MEDICINAL CHEMISTRY LETTERS 2009, 20 (1), 180-183.
63. Chang, G.; Guida, W. C.; Still, W. C., An internal-coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 1989, 111 (12), 4379-4386.
64. Kolossváry, I.; Guida, W. C., Low Mode Search. An Efficient, Automated Computational Method for Conformational Analysis:  Application to Cyclic and Acyclic Alkanes and Cyclic Peptides. J. Am. Chem. Soc. 1996, 118 (21), 5011-5019.
65. Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T., Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990, 112 (16), 6127-6129.
66. Halgren, T. A., Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17 (5‐6), 490-519.
67. Li H, S. J.; R, H., HypoGen: An Automated System for Generating 3D Predictive Pharmacophore Models. In Pharmacophore Perception, Development, and Use in Drug Design, OF., G., Ed. La Jolla: California: International University Line., 2000; pp 171-189.
68. Evans, D. A.; Doman, T. N.; Thorner, D. A.; Bodkin, M. J., 3D QSAR Methods:  Phase and Catalyst Compared. Journal of Chemical Information and Modeling 2007, 47 (3), 1248-1257.
69. Leong, M. K.; Lin, S.-W.; Chen, H.-B.; Tsai, F.-Y., Predicting Mutagenicity of Aromatic Amines by Various Machine Learning Approaches. Toxicol. Sci. 2010, 116 (2), 498-513.
70. Breiman, L.; Spector, P., Submodel Selection and Evaluation in Regression. The X-Random Case. International Statistical Review / Revue Internationale de Statistique 1992, 60 (3), 291-319.
71. Chirico, N.; Gramatica, P., Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. Journal of Chemical Information and Modeling 2012, 52 (8), 2044-2058.
72. Chirico, N.; Gramatica, P., Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient. Journal of Chemical Information and Modeling 2011, 51 (9), 2320-2335.
73. Lin, L. I. K., Assay Validation Using the Concordance Correlation Coefficient. Biometrics 1992, 48 (2), 599-604.
74. Lin, L. I., A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45 (1), 255-268.
75. Consonni, V.; Ballabio, D.; Todeschini, R., Comments on the Definition of the Q2 Parameter for QSAR Validation. Journal of Chemical Information and Modeling 2009, 49 (7), 1669-1678.
76. Schüürmann, G.; Ebert, R.-U.; Chen, J.; Wang, B.; Kühne, R., External Validation and Prediction Employing the Predictive Squared Correlation Coefficient — Test Set Activity Mean vs Training Set Activity Mean. Journal of Chemical Information and Modeling 2008, 48 (11), 2140-2145.
77. Ojha, P. K.; Mitra, I.; Das, R. N.; Roy, K., Further exploring rm2 metrics for validation of QSPR models. Chemometrics and Intelligent Laboratory Systems 2011, 107 (1), 194-205.
78. Roy, P. P.; Roy, K., On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR & Combinatorial Science 2008, 27 (3), 302-313.
79. Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y.-D.; Lee, K.-H.; Tropsha, A., Rational selection of training and test sets for the development of validated QSAR models. Journal of Computer-Aided Molecular Design 2003, 17 (2), 241-253.
80. Roy, K.; Mitra, I.; Kar, S.; Ojha, P. K.; Das, R. N.; Kabir, H., Comparative Studies on Some Metrics for External Validation of QSPR Models. Journal of Chemical Information and Modeling 2012, 52 (2), 396-408.
81. Casalegno, M.; Sello, G.; Benfenati, E., Definition and Detection of Outliers in Chemical Space. Journal of Chemical Information and Modeling 2008, 48 (8), 1592-1601.
82. J-L., R.; R., v. D.; L.C., B.; L., R., Chemical space as a source for new drugs. Medicinal chemistry communications 2010, 1, 30-38.
83. Gnanadesikan, R.; Kettenring, J. R., Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data. Biometrics 1972, 28 (1), 81-124.
84. Gupta, A.; Zhang, Y.; Unadkat, J. D.; Mao, Q., HIV Protease Inhibitors Are Inhibitors but Not Substrates of the Human Breast Cancer Resistance Protein (BCRP/ABCG2). J. Pharmacol. Exp. Ther. 2004, 310 (1), 334-341.
85. Weiss, J.; Rose, J.; Storch, C. H.; Ketabi-Kiyanvash, N.; Sauer, A.; Haefeli, W. E.; Efferth, T., Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J. Antimicrob. Chemother. 2007, 59 (2), 238-245.
86. De Clercq, E., Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents 2009, 33 (4), 307-320.
87. Zaccara, G.; Lattanzi, S.; Cincotta, M.; Russo, E., Drug treatments in patients with cardiac diseases and epilepsy. Acta Neurol. Scand. 2020, 142 (1), 37-49.
88. Cataldo, V. D.; Gibbons, D. L.; Pérez-Soler, R.; Quintás-Cardama, A., Treatment of Non–Small-Cell Lung Cancer with Erlotinib or Gefitinib. N. Engl. J. Med. 2011, 364 (10), 947-955.
89. Maliepaard, M.; van Gastelen, M. A.; Tohgo, A.; Hausheer, F. H.; van Waardenburg, R. C. A. M.; de Jong, L. A.; Pluim, D.; Beijnen, J. H.; Schellens, J. H. M., Circumvention of Breast Cancer Resistance Protein (BCRP)-mediated Resistance to Camptothecins in Vitro Using Non-Substrate Drugs or the BCRP Inhibitor GF120918. Clinical Cancer Research 2001, 7 (4), 935-941.
90. Fan, X.; Bai, J.; Zhao, S.; Hu, M.; Sun, Y.; Wang, B.; Ji, M.; Jin, J.; Wang, X.; Hu, J.; Li, Y., Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein (BCRP): From library screening to biological evaluation to structure-activity relationship. Toxicol. Vitro 2019, 61, 104642.
91. Watkins, R. E.; Wisely, G. B.; Moore, L. B.; Collins, J. L.; Lambert, M. H.; Williams, S. P.; Willson, T. M.; Kliewer, S. A.; Redinbo, M. R., The Human Nuclear Xenobiotic Receptor PXR: Structural Determinants of Directed Promiscuity. Science 2001, 292 (5525), 2329.
92. Nicolle, E.; Boumendjel, A.; Macalou, S.; Genoux, E.; Ahmed-Belkacem, A.; Carrupt, P. A.; Di Pietro, A., QSAR analysis and molecular modeling of ABCG2-specific inhibitors. ADVANCED DRUG DELIVERY REVIEWS 2009, 1 (31), 34-46.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用Pharmacophore Ensemble/Support Vector Machine方法預測ABCG2抑制劑結合親和力
2. 使用Hierarchical Support Vector Regression發展Quantiative Structure Activity Relationship模型預測芳香族硝基化合物的致突變
3. 使用Support Vector Machine發展 SVM-Pose/SVM-Score Ensemble Docking 應用於預測N-methyl-D-aspartate的生物 活性
4. 利用Hierarchical Support Vector Machine方法預測血腦障蔽的穿透能力
5. 利用Pharmacophore Ensemble/Support Vector Machine方法預測Estrogen Receptor Alpha結合親和力
6. 利用不同的MachineLearning的方法去預測血腦障壁的穿透能力
7. 利用不同MachineLearningApproaches預測芳香族胺在沙門氏菌TA100中致癌/致突變的機率
8. 利用PharmacophoreEnsemble/SupportVectorMachineApproach預測人類多重藥物傳送蛋白P-Glycoprotein的抑制活性
9. 利用PharmacophoreEnsemble/SupportVectorMachine方法預測人類PregnaneXReceptor的活性化
10. 利用階層式支持向量回歸法預測人體多藥轉運醣蛋白介導的外排率
11. 使用Hierarchical Support Vector Regression方法預測血腦屏障的滲透表面積乘積
12. 利用階層式支持向量回歸法預測空腸的滲透率
13. 利用Hierarchical Support Vector Regression預測正辛醇 - 水分配係數
14. In Silico Prediction of n-Octanol–Water Partition Coefficient by Various Data Fusion Methods
15. In Silico Prediction of Caco-2 Permeability by Quantitative Structure Activity Relationship Modeling Based on Hierarchical Support Vector Regression
 
* *