帳號:guest(18.227.81.130)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳嬑璇
作者(英文):Yi-Shiuan Chen
論文名稱:日本腦炎病毒非編碼 sfRNA生合成及參與細胞存活機制之研究
論文名稱(英文):Mechanism study of the noncoding sfRNA formation from Japanese encephalitis virus and its function involved in cell survival
指導教授:張瑞宜
指導教授(英文):Ruey-Yi Chang
口試委員:岳嶽
林國知
錢嘉琳
張瑞宜
林光慧
口試委員(英文):Andrew Yueh
Kuo-Chih Lin
Chia-Lin Chyan
Ruey-Yi Chang
Guang-Huey Lin
學位類別:博士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:810113101
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:85
關鍵詞:日本腦炎病毒非編碼RNA黃質病毒屬病毒次基因體RNA核酸外切酶XRN1抗細胞凋亡
關鍵詞(英文):Japanese encephalitis virusnoncoding RNAsfRNAexoribonuclease XRN1anti-apoptosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
日本腦炎病毒(Japanese encephalitis virus,簡稱JEV),屬於蚊子傳播的黃質病毒(Flavivirus),為引起病毒性腦炎之主要病因。所有蚊媒黃質病毒在感染細胞後會產生一段非編碼次基因體RNA (subgenomic RNA,簡稱sfRNA),其序列為病毒基因體3’-端未轉譯區(untranslated region,簡稱UTR)中高度保守的序列。在其它黃質病毒的研究顯示sfRNA是經由細胞中的核酸外切酶XRN1 (5’-to-3’ exoribonuclease XRN1)降解病毒基因體後的產物,並在對抗宿主抗病毒反應中扮演重要的角色。然而JEV感染產生sfRNA的機制及其如何幫助病毒躲避宿主的抗病毒機制尚不清楚。雖然利用活體外降解病毒基因體3’-末端800個核苷酸可以產生 sfRNA,但在活體內將細胞中XRN1基因剔除(knockout)不影響sfRNA的生成。利用定點突變證明,病毒複製酶(RNA-dependent RNA polymerase,簡稱RdRp)的活性及3’-UTR中stemloop II (SLII)的結構決定sfRNA的生合成。利用活體外病毒複製酶反應實驗(in vitro RdRp assay)證明,RdRp蛋白質會結合在負股 nt 10431-10566 RNA模板可能為sfRNA啟動子的位置,並可做出RNA產物。綜合以上結果顯示JEV sfRNA可能是先經由轉錄作用生成,再由XRN1或其它核酸外切酶修飾而成。此外,利用轉染方式過量表現sfRNA於JEV感染的細胞會減少細胞病癥(cytopathic effect,簡稱 CPE)、降低細胞週期中sub-G1期之DNA含量、減少病毒感染引起細胞內粒腺體膜電位下降的產生、促使抗細胞凋亡之蛋白激酶Akt磷酸化、抑制多ADP核糖聚合酶(PARP)的切割等多種細胞凋亡因子的指標。此外,過量表現sfRNA時,病毒蛋白質NS5的表現量及病毒力價皆有顯著下降,且干擾素調控因子-3磷酸化的表現量與sfRNA含量成反比。這些結果顯示,sfRNA會降低JEV感染誘發之細胞凋亡訊息路徑,以及具有調控病毒複製能力,進而延緩JEV感染造成的細胞死亡。本研究是首次證明日本腦炎病毒sfRNA生成並非由XRN1降解病毒基因體而來,且sfRNA具有自我調控之能力,其在病毒及宿主間可能扮演重要之調節角色。
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus and is a major cause of viral encephalitis. All mosquito-borne flaviviruses accumulate an abundant noncoding subgenomic RNA (sfRNA) representing the highly conserved region of the 3’ untranslated region (UTR) in infected cells. It has been reported that sfRNA of other flaviviruses resulted from stalling of host 5’-to-3’ exoribonuclease XRN1 at the highly structured RNA of the 3’ UTR and it plays a role against host antiviral responses. However, the formation mechanism and biological function of JEV sfRNA remains largely unclear. Although XRN1 digestion of a 3’-terminal 800-nt RNA could stall at a position to generate the sfRNA in vitro, we found that knocking out XRN1 had no effect on the accumulation of sfRNA in JEV-infected cells. Mutagenesis studies revealed that the stemloop II (SLII) at the 3’ UTR and functional RNA-dependent RNA polymerase (RdRp) are required for the formation of sfRNA. Templates representing the putative promoter region exhibit promoter activity suggesting that the JEV sfRNA could be transcribed initially and then be trimmed by XRN1. Furthermore, transfecting excess amounts of sfRNA into JEV-infected cells reduced the virus-induced cytopathic effect, decreased the sub-G1/DNA content, rescued the mitochondrial membrane potential changes, increased the level of phosphorylated Akt, blocked the cleavage of poly ADP ribose polymerase (PARP), and downregulated viral translation and virus titers. Taken together, these results indicate that the sfRNA has the ability to rescue virus-induced apoptosis. The extent of interferon regulatory factor-3 (IRF-3) phosphorylation is inversely correlated with the presence of the sfRNA by comparison recombinant viruses with or without the sfRNA. This is the first report demonstrated that JEV sfRNA is dispensable by XRN1 degradation. Accumulation of the sfRNA plays a role to modulate apoptosis of infected cells and prolongs cell survival.
PART I
The conserved stem-loop II structure at the 3’ untranslated region of Japanese encephalitis virus genome is required for the formation of subgenomic flaviviral RNA 1
I.1 INTRODUCTION 3
I.2 MATERIALS AND METHODS 7
1. Cells and virus 7
2. Plasmids and site-directed mutagenesis 7
3. XRN1 RNA interference, Western, and Northern analyses 9
4. Nuclease assays 10
5. Transfection 11
6. Plaque assay 11
7. Electrophoretic mobility shift assay (EMSA) 12
8. In vitro RdRp assay 13
I.3 RESULTS 15
1. Abundant amounts of the JEV sfRNA accumulated in XRN1-depletion cells 15
2. The stem-loop II (SLII) structure is required for the formation of the sfRNA 17
3. Viral replication is essential for abundant accumulation of the JEV sfRNA 20
4. Viral RdRp binds to the putative promoter and synthesizes RNA products 20
I.4 DISCUSSION 23

PART II
Accumulation of the sfRNA in Japanese encephalitis virus-infected cells inhibits apoptosis and prolongs cell survival 31
II.1 INTRODUCTION 33
II.2 MATERIALS AND METHODS 39
1. Cells and viruses 39
2. RNA transfection 39
3. Flow cytometry assay 40
4. Detection of apoptotic cells 40
5. Anti-Fas antibody induced apoptosis 41
6. Western blot analysis 41
II.3 RESULTS 43
1. Transfection of sfRNA reduces JEV-induced apoptosis 43
2. sfRNA stabilizes the mitochondrial membrane potential in JEV-infected cells 44
3. sfRNA reduces the PARP cleavage and upregulates Akt phosphorylation in JEV-infected cells 44
4. Transfecting of sfRNA promotes phosphorylation of Akt but does not protect cells from Fas-dependent apoptosis 46
5. Transfection of sfRNA downregulates viral translation and virus titers 47
6. sfRNA is involved in regulation of antiviral responses 48
II.4 DISCUSSION 51
REFERENCES 59
TABLES AND FIGURES 67
1. Unni SK, Ruzek D, Chhatbar C, Mishra R, Johri MK, Singh SK. 2011. Japanese encephalitis virus: from genome to infectome. Microbes and infection 13:312-321.
2. Villordo SM, Carballeda JM, Filomatori CV, Gamarnik AV. 2016. RNA Structure Duplications and Flavivirus Host Adaptation. Trends in microbiology 24:270-283.
3. Yu L, Nomaguchi M, Padmanabhan R, Markoff L. 2008. Specific requirements for elements of the 5' and 3' terminal regions in flavivirus RNA synthesis and viral replication. Virology 374:170-185.
4. Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE. 2017. The 5' and 3' Untranslated Regions of the Flaviviral Genome. Viruses 9:137.
5. Yun SI, Choi YJ, Song BH, Lee YM. 2009. 3' cis-acting elements that contribute to the competence and efficiency of Japanese encephalitis virus genome replication: functional importance of sequence duplications, deletions, and substitutions. Journal of virology 83:7909-7930.
6. Liu R, Yue L, Li X, Yu X, Zhao H, Jiang Z, Qin E, Qin C. 2010. Identification and characterization of small sub-genomic RNAs in dengue 1-4 virus-infected cell cultures and tissues. Biochemical and biophysical research communications 391:1099-1103.
7. Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X, Yang Y, Shi PY, Nix JC, Beckham JD, Kieft JS. 2016. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354:1148-1152.
8. Pijlman GP, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu WJ, Palmenberg AC, Shi PY, Hall RA, Khromykh AA. 2008. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell host & microbe 4:579-591.
9. Lin KC, Chang HL, Chang RY. 2004. Accumulation of a 3'-terminal genome fragment in Japanese encephalitis virus-infected mammalian and mosquito cells. Journal of virology 78:5133-5138.
10. Cumberworth SL, Clark JJ, Kohl A, Donald CL. 2017. Inhibition of type I interferon induction and signalling by mosquito-borne flaviviruses. Cellular microbiology 19:e12737.
11. Goertz GP, Abbo SR, Fros JJ, Pijlman GP. 2017. Functional RNA during Zika virus infection. Virus research (In press).
12. Fan YH, Nadar M, Chen CC, Weng CC, Lin YT, Chang RY. 2011. Small noncoding RNA modulates Japanese encephalitis virus replication and translation in trans. Virology journal 8:492.
13. Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J. 2012. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. Rna 18:2029-2040.
14. Moon SL, Blackinton JG, Anderson JR, Dozier MK, Dodd BJ, Keene JD, Wilusz CJ, Bradrick SS, Wilusz J. 2015. XRN1 stalling in the 5' UTR of Hepatitis C virus and Bovine Viral Diarrhea virus is associated with dysregulated host mRNA stability. PLoS pathogens 11:e1004708.
15. Chang RY, Hsu TW, Chen YL, Liu SF, Tsai YJ, Lin YT, Chen YS, Fan YH. 2013. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Veterinary microbiology 166:11-21.
16. Schuessler A, Funk A, Lazear HM, Cooper DA, Torres S, Daffis S, Jha BK, Kumagai Y, Takeuchi O, Hertzog P, Silverman R, Akira S, Barton DJ, Diamond MS, Khromykh AA. 2012. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. Journal of virology 86:5708-5718.
17. Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, Ong EZ, Tan HC, Sessions OM, Ward AM, Gubler DJ, Harris E, Garcia-Blanco MA, Ooi EE. 2015. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350:217-221.
18. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP. 2012. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. Journal of virology 86:13486-13500.
19. Moon SL, Dodd BJ, Brackney DE, Wilusz CJ, Ebel GD, Wilusz J. 2015. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology 485:322-329.
20. Liu Y, Liu H, Zou J, Zhang B, Yuan Z. 2014. Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology 448:15-25.
21. Goertz GP, Fros JJ, Miesen P, Vogels CB, van der Bent ML, Geertsema C, Koenraadt CJ, van Rij RP, van Oers MM, Pijlman GP. 2016. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes. Journal of virology 90:10145-10159.
22. Pompon J, Manuel M, Ng GK, Wong B, Shan C, Manokaran G, Soto-Acosta R, Bradrick SS, Ooi EE, Misse D, Shi PY, Garcia-Blanco MA. 2017. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS pathogens 13:e1006535.
23. Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, Kieft JS. 2014. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344:307-310.
24. Silva PA, Pereira CF, Dalebout TJ, Spaan WJ, Bredenbeek PJ. 2010. An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. Journal of virology 84:11395-11406.
25. Funk A, Truong K, Nagasaki T, Torres S, Floden N, Balmori Melian E, Edmonds J, Dong H, Shi PY, Khromykh AA. 2010. RNA structures required for production of subgenomic flavivirus RNA. Journal of virology 84:11407-11417.
26. Chapman EG, Moon SL, Wilusz J, Kieft JS. 2014. RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA. eLife 3:e01892.
27. Gillespie LK, Hoenen A, Morgan G, Mackenzie JM. 2010. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. Journal of virology 84:10438-10447.
28. van Hemert MJ, van den Worm SH, Knoops K, Mommaas AM, Gorbalenya AE, Snijder EJ. 2008. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS pathogens 4:e1000054.
29. Uchil PD, Satchidanandam V. 2003. Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. The Journal of biological chemistry 278:24388-24398.
30. Liu R, Moss B. 2016. Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants. Journal of virology 90:7864-7879.
31. Chang RY, Hofmann MA, Sethna PB, Brian DA. 1994. A cis-acting function for the coronavirus leader in defective interfering RNA replication. Journal of virology 68:8223-8231.
32. Pu SY, Wu RH, Tsai MH, Yang CC, Chang CM, Yueh A. 2014. A novel approach to propagate flavivirus infectious cDNA clones in bacteria by introducing tandem repeat sequences upstream of virus genome. The Journal of general virology 95:1493-1503.
33. Tsai KN, Tsang SF, Huang CH, Chang RY. 2007. Defective interfering RNAs of Japanese encephalitis virus found in mosquito cells and correlation with persistent infection. Virus research 124:139-150.
34. Villordo SM, Gamarnik AV. 2009. Genome cyclization as strategy for flavivirus RNA replication. Virus research 139:230-239.
35. Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. 2006. A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. Genes & development 20:2238-2249.
36. Li XF, Jiang T, Yu XD, Deng YQ, Zhao H, Zhu QY, Qin ED, Qin CF. 2010. RNA elements within the 5' untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication. The Journal of general virology 91:1218-1223.
37. Kieft JS, Rabe JL, Chapman EG. 2016. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: Conservation, folding, and host adaptation. RNA Biol 12:1169-1177.
38. Clarke BD, Roby JA, Slonchak A, Khromykh AA. 2015. Functional non-coding RNAs derived from the flavivirus 3' untranslated region. Virus research 206:53-61.
39. Roby JA, Pijlman GP, Wilusz J, Khromykh AA. 2014. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses 6:404-427.
40. Kim YG, Yoo JS, Kim JH, Kim CM, Oh JW. 2007. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase. BMC molecular biology 8:59.
41. Li W, Wong SM. 2006. Analyses of subgenomic promoters of Hibiscus chlorotic ringspot virus and demonstration of 5' untranslated region and 3'-terminal sequences functioning as subgenomic promoters. Journal of virology 80:3395-3405.
42. Filomatori CV, Carballeda JM, Villordo SM, Aguirre S, Pallares HM, Maestre AM, Sanchez-Vargas I, Blair CD, Fabri C, Morales MA, Fernandez-Sesma A, Gamarnik AV. 2017. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLoS pathogens 13:e1006265.
43. Gebhard LG, Filomatori CV, Gamarnik AV. 2011. Functional RNA elements in the dengue virus genome. Viruses 3:1739-1756.
44. Dong H, Zhang B, Shi PY. 2008. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. Virology 381:123-135.
45. Filomatori CV, Iglesias NG, Villordo SM, Alvarez DE, Gamarnik AV. 2011. RNA sequences and structures required for the recruitment and activity of the dengue virus polymerase. The Journal of biological chemistry 286:6929-6939.
46. Maeda A, Maeda J, Takagi H, Kurane I. 2008. Detection of small RNAs containing the 5'- and the 3'-end sequences of viral genome during West Nile virus replication. Virology 371:130-138.
47. Okamoto T, Suzuki T, Kusakabe S, Tokunaga M, Hirano J, Miyata Y, Matsuura Y. 2017. Regulation of Apoptosis during Flavivirus Infection. Viruses 9.
48. Thomson BJ. 2001. Viruses and apoptosis. International journal of experimental pathology 82:65-76.
49. Ghosh Roy S, Sadigh B, Datan E, Lockshin RA, Zakeri Z. 2014. Regulation of cell survival and death during Flavivirus infections. World journal of biological chemistry 5:93-105.
50. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, Borden EC. 2003. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis : an international journal on programmed cell death 8:237-249.
51. Fortes P, Morris KV. 2016. Long noncoding RNAs in viral infections. Virus research 212:1-11.
52. Tycowski KT, Guo YE, Lee N, Moss WN, Vallery TK, Xie M, Steitz JA. 2015. Viral noncoding RNAs: more surprises. Genes & development 29:567-584.
53. Carnero E, Barriocanal M, Prior C, Pablo Unfried J, Segura V, Guruceaga E, Enguita M, Smerdou C, Gastaminza P, Fortes P. 2016. Long noncoding RNA EGOT negatively affects the antiviral response and favors HCV replication. EMBO reports 17:1013-1028.
54. Ouyang J, Zhu X, Chen Y, Wei H, Chen Q, Chi X, Qi B, Zhang L, Zhao Y, Gao GF, Wang G, Chen JL. 2014. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell host & microbe 16:616-626.
55. Nishitsuji H, Ujino S, Yoshio S, Sugiyama M, Mizokami M, Kanto T, Shimotohno K. 2016. Long noncoding RNA #32 contributes to antiviral responses by controlling interferon-stimulated gene expression. Proceedings of the National Academy of Sciences of the United States of America 113:10388-10393.
56. Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. 2002. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt's lymphoma. The EMBO journal 21:954-965.
57. McKenna SA, Kim I, Liu CW, Puglisi JD. 2006. Uncoupling of RNA binding and PKR kinase activation by viral inhibitor RNAs. Journal of molecular biology 358:1270-1285.
58. Vachon VK, Conn GL. 2016. Adenovirus VA RNA: An essential pro-viral non-coding RNA. Virus research 212:39-52.
59. Rossetto CC, Tarrant-Elorza M, Verma S, Purushothaman P, Pari GS. 2013. Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA. Journal of virology 87:5540-5553.
60. Conrad NK. 2016. New insights into the expression and functions of the Kaposi's sarcoma-associated herpesvirus long noncoding PAN RNA. Virus research 212:53-63.
61. Reeves MB, Davies AA, McSharry BP, Wilkinson GW, Sinclair JH. 2007. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316:1345-1348.
62. Unni SK, Ruzek D, Chhatbar C, Mishra R, Johri MK, Singh SK. 2011. Japanese encephalitis virus: from genome to infectome. Microbes and infection 13:312-321.
63. Bidet K, Dadlani D, Garcia-Blanco MA. 2014. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS pathogens 10:e1004242.
64. Donald CL, Brennan B, Cumberworth SL, Rezelj VV, Clark JJ, Cordeiro MT, Freitas de Oliveira Franca R, Pena LJ, Wilkie GS, Da Silva Filipe A, Davis C, Hughes J, Varjak M, Selinger M, Zuvanov L, Owsianka AM, Patel AH, McLauchlan J, Lindenbach BD, Fall G, Sall AA, Biek R, Rehwinkel J, Schnettler E, Kohl A. 2016. Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS neglected tropical diseases 10:e0005048.
65. Ly JD, Grubb DR, Lawen A. 2003. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115-128.
66. Urbanowski MD, Hobman TC. 2013. The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. Journal of virology 87:872-881.
67. Lee CJ, Liao CL, Lin YL. 2005. Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. Journal of virology 79:8388-8399.
68. Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, Wenzel M, Hoffmann FS, Michallet MC, Besch R, Hopfner KP, Endres S, Rothenfusser S. 2009. 5'-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proceedings of the National Academy of Sciences of the United States of America 106:12067-12072.
69. Hausler P, Papoff G, Eramo A, Reif K, Cantrell DA, Ruberti G. 1998. Protection of CD95-mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein kinase B. European journal of immunology 28:57-69.
70. Cooray S. 2004. The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. The Journal of general virology 85:1065-1076.
71. McLean JE, Wudzinska A, Datan E, Quaglino D, Zakeri Z. 2011. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. The Journal of biological chemistry 286:22147-22159.
72. Kennedy SG, Kandel ES, Cross TK, Hay N. 1999. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Molecular and cellular biology 19:5800-5810.
73. Majewski N, Nogueira V, Robey RB, Hay N. 2004. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Molecular and cellular biology 24:730-740.
74. Airo AM, Urbanowski MD, Lopez-Orozco J, You JH, Skene-Arnold TD, Holmes C, Yamshchikov V, Malik-Soni N, Frappier L, Hobman TC. 2018. Expression of flavivirus capsids enhance the cellular environment for viral replication by activating Akt-signalling pathways. Virology 516:147-157.
75. Tien CF, Cheng SC, Ho YP, Chen YS, Hsu JH, Chang RY. 2014. Inhibition of aldolase A blocks biogenesis of ATP and attenuates Japanese encephalitis virus production. Biochemical and biophysical research communications 443:464-469.
76. He Y, Meng XM, Huang C, Wu BM, Zhang L, Lv XW, Li J. 2014. Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer letters 344:20-27.
77. Smith JL, Grey FE, Uhrlaub JL, Nikolich-Zugich J, Hirsch AJ. 2012. Induction of the cellular microRNA, Hs_154, by West Nile virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors. Journal of virology 86:5278-5287.
78. Hussain M, Asgari S. 2014. MicroRNA-like viral small RNA from Dengue virus 2 autoregulates its replication in mosquito cells. Proceedings of the National Academy of Sciences of the United States of America 111:2746-2751.
79. Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S. 2012. West Nile virus encodes a microRNA-like small RNA in the 3' untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic acids research 40:2210-2223.
80. Villordo SM, Carballeda JM, Filomatori CV, Gamarnik AV. 2016. RNA Structure Duplications and Flavivirus Host Adaptation. Trends in microbiology 24:270-283.
81. Villordo SM, Filomatori CV, Sanchez-Vargas I, Blair CD, Gamarnik AV. 2015. Dengue virus RNA structure specialization facilitates host adaptation. PLoS pathogens 11:e1004604.
82. Chattopadhyay S, Fensterl V, Zhang Y, Veleeparambil M, Yamashita M, Sen GC. 2013. Role of interferon regulatory factor 3-mediated apoptosis in the establishment and maintenance of persistent infection by Sendai virus. Journal of virology 87:16-24.
83. Liu W, Ding C. 2017. Roles of LncRNAs in Viral Infections. Frontiers in cellular and infection microbiology 7:205.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *