帳號:guest(18.191.154.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:傅玉明
作者(英文):Yuh-Ming Fuh
論文名稱:致敏植物萃取物強化滲透經皮降低血糖藥物傳遞
論文名稱(英文):Sting Plant Extracts as Penetration Enhancer Potentiate Transdermal Hypoglycemic Compounds Delivery
指導教授:翁慶豐
指導教授(英文):Ching-Feng Weng
口試委員:梁剛荐
傅耀賢
黃斌
盧懷恩
陳健祺
口試委員(英文):Max K. Leong
Yaw-Syan Fu
Bin Huang
Huai-En Lu
Jian-Chy Chen
學位類別:博士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:810113115
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:58
關鍵詞:致敏物質通透皮膚皮膚滲透口服葡萄糖耐量試驗糖尿病
關鍵詞(英文):Irritable substanceTransdermalSkin permeationOral glucose tolerance testDiabetes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
Dendrocnide meyeniana(Dm),Urtica thunbergiana Sieb。 &Zucc(Ut)和Alocasia odora(Lodd。)Sp​​ach(Ao)含有蕁麻刺或汁液引起接觸性皮炎。然而,這些刺痛植物提取物作為透皮藥物遞送(TDD)滲透促進劑的潛力仍不清楚。該研究試圖研究將應用的易致敏物質與降血糖試劑結合用於高油高糖飲食誘導的糖尿病小鼠皮膚降低血糖之功效。首先,Dm,Ut和Ao輕度誘導小鼠疼痛和發紅,塗抹在皮膚上後沒有任何強烈刺激。接下來,與H&E染色中的非處理和護手霜組相比,Dm,Ut和Ao處理對小鼠皮膚的角質層(SC)造成輕度損傷。此外,通過使用台盼藍,PI和MTT測定,分別在0.1mg / mL Dm,Ut和Ao處理120分鐘後,進一步證實人皮膚角質形成細胞(HaCaT)輕微損傷(小於5%細胞死亡)。此外,與胰島素或胰島素增敏劑(薑黃素和蘆丁)的敏感物質相結合,分別塗抹在飲食誘導的糖尿病小鼠皮膚上測試120分鐘口服葡萄糖耐量試驗,結合組結果顯示有降低血糖並與注射胰島素和胰島素增敏劑組相比。這意味著易致敏物質導致皮膚和血管擴張,隨後降糖化合物可能滲透到真皮中。最後,Dm,Ut和Ao具有輕度損傷SC的透皮潛力,並進一步發展為用於藥物遞送的皮膚滲透增強劑。
Accordingly Dendrocnide meyeniana (Dm), Urtica thunbergiana Sieb. & Zucc (Ut), and Alocasia odora (Lodd.) Spach (Ao) contain nettle stings or juice to cause mild contact dermatitis. However, the potential of these sting plants extracts as the penetration enhancers of transdermal drug delivery (TDD) remains unclear. This study attempted to investigate the application irritable substances combined with hypoglycemic reagents to mouse skin for measuring the efficacy of reduce blood sugar in diet-induced diabetic mice. Firstly, Dm, Ut, and Ao mildly induced pain and redness in mice without any strong irritating after smear on skin. Next, Dm, Ut, and Ao treatments caused mild damage on the stratum corneum (SC) of mouse skin when compared with non-treatment and hand cream groups in H&E staining. Additionally, human skin keratinocyte (HaCaT) was further confirmed slight damage (less 5% cell death) after 0.1 mg/mL Dm, Ut, and Ao treatment for 120 min, respectively by using trypan blue, PI, and MTT assay. Furthermore, combined with those irritable substances with insulin or insulin sensitizer (curcumin and rutin), respectively were smeared on the skin of diet-induced diabetic mice for 120 min oral glucose tolerance test, the results of combination groups showed in reduce of blood sugar when compared to the insulin and insulin sensitizer alone groups. This implies that irritable substances caused the skin and blood vessels dilated and subsequently hypoglycemic compounds could penetrate into dermis. Conclusively, Dm, Ut, and Ao possess the transdermal potential with mild damage SC and further develop as a skin permeation enhancer for drug delivery.
Abstract 5
Introduction 7
I. Skin model 7
II. Transdermal drug delivery system 8
III. Transdermal drug delivery of penetration enhancer 9
IV. Transdermal drug delivery system pathways 10
V. Diabetes mellitus 11
VI. Diagnosis of diabetes mellitus 11
VII. Type of diabetes mellitus 12
VIII. Diabetes mellitus treatment 12
X. Arbor and flowering plan 13
A. Dendrocnide meyeniana (Walp.) Chew 14
B. Urtica thunbergiana Sieb. & Zucc 15
C. Alocasia odora (Lodd.) Spach 15
Aim 17
Materials and methods 18
I. The experimental flow chart of in vitro cell test 18
II. The experimental flow chart of in vivo animal test 19
III. Chemicals and reagents 20
IV. Extraction of arbor and flowering plant 20
V. In vitro cell test 21
A. Cell culture 21
B. Cell viability test 22
VI. In vivo animal test 23
A. Animal source and care 23
B. Diet-induced obese induction and glucose intolerance test 23
C. Insulin-glucose tolerance test 24
D. Oral glucose tolerance test 24
E. Irritable test 25
F. Evans blue penetration test 25
G. Paraffin Tissue and sectioning 25
VII. Statistical analysis 26
Results 27
I. Human Skin Keratinocyte mild damage after Dm, Ut, and Ao treatment 27
II. Cell viability by MTT test 27
III. The mouse skin expand by Dm, Ut, or Ao in irritable test 27
IV. ICR male mouse skin damage after Dm, Ut, and Ao treatment in the biopsy specimen 28
V. Using transdermal drug delivery with insulin and insulin sensitizer (curcumin and rutin) to reduce blood sugar in OGTT 28
Discussion 30
References 35
Figure 44
Figure 3. The cell viability of Dm, Ut, and Ao (0.02 mg/mL) treatment. 45
Figure 4. The cell viability of Dm, Ut, and Ao (0.05 mg/mL) treatment 47
Figure 5. The cell viability of Dm, Ut, and Ao (0.1 mg/mL) treatment 49
Figure 6. The cell viability of three sting extract against keratinocytes. 50
Figure 7. MTT assays of Dm, Ut, and Ao treatment 51
Figure 8. The observations of mouse skin color after smear Dm, Ut, and Ao 52
Figure 9. The biopsy specimen of mouse skin after treated with various reagents 53
Figure 10. Normal and diabetic mouse of hypoglycemic efficacy of insulin 54
Figure 11. Normal mouse of hypoglycemic efficacy of irritable substance and plus insulin 55
Figure 12. Diabetic mouse of hypoglycemic efficacy of irritable substance and plus insulin 56
Figure 13. Diabetic mouse of hypoglycemic efficacy of irritable substance plus insulin sensitizer curcumin and rutin 57
[1] H. Marwah, T. Garg, A.K. Goyal, G. Rath, Permeation enhancer strategies in transdermal drug delivery, Drug delivery 23(2) (2016) 564-578.
[2] J.A. Segre, Epidermal barrier formation and recovery in skin disorders, Journal of clinical investigation 116(5) (2006) 1150-1158.
[3] G.K. Menon, G.W. Cleary, M.E. Lane, The structure and function of the stratum corneum, International journal of pharmaceutics 435(1) (2012) 3-9.
[4] H. Marwah, T. Garg, A.K. Goyal, G. Rath, Permeation enhancer strategies in transdermal drug delivery, Drug delivery 23(2) (2016) 564-578.
[5] M. Venus, J. Waterman, I. McNab, Basic physiology of the skin, Surgery (Oxford) 28(10) (2010) 469-472.
[6] J.-Y. Fang, Y.-L. Leu, Prodrug strategy for enhancing drug delivery via skin, Current drug discovery technologies 3(3) (2006) 211-224.
[7] J.-L. Lévêque, P. Hallégot, J. Doucet, G. Piérard, Structure and function of human stratum corneum under deformation, Dermatology 205(4) (2002) 353-357.
[8] M. Pasparakis, I. Haase, F.O. Nestle, Mechanisms regulating skin immunity and inflammation, Nature reviews immunology 14(5) (2014) 289-301.
[9] R. Langer, Transdermal drug delivery: past progress, current status, and future prospects, Advanced drug delivery reviews 56(5) (2004) 557-558.
[10] T. Han, D.B. Das, Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: a review, European Journal of Pharmaceutics and biopharmaceutics 89 (2015) 312-328.
[11] M.R. Prausnitz, V.G. Bose, R. Langer, J.C. Weaver, Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery, Proceedings of the national academy of sciences 90(22) (1993) 10504-10508.
[12] Y. Zheng, W.-Q. Ouyang, Y.-P. Wei, S.F. Syed, C.-S. Hao, B.-Z. Wang, Y.-H. Shang, effects of carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study, International journal of nanomedicine 11 (2016) 5971.
[13] A. Herman, A.P. Herman, Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review, Journal of pharmacy and9Pharmacology 67(4) (2015) 473-485.
[14] S. Münch, J. Wohlrab, R. Neubert, Dermal and transdermal delivery of pharmaceutically relevant macromolecules, European journal of pharmaceutics and biopharmaceutics 119 (2017) 235-242.
[15] H.H. Andersen, S. Lo Vecchio, P. Gazerani, L. Arendt-Nielsen, Dose-response study of topical allyl isothiocyanate (mustard oil) as a human surrogate model of pain, hyperalgesia, and neurogenic inflammation, Pain 158(9) (2017) 1723-1732.
[16] S. Sonnenberger, A. Eichner, T. Schmitt, T. Hauss, S. Lange, A. Langner, R.H.H. Neubert, B. Dobner, Synthesis of specific deuterated derivatives of the long chained stratum corneum lipids [EOS] and [EOP] and characterization using neutron scattering, Journal of labelled compounds and radiopharmaceuticals 60(7) (2017) 316-330.
[17] J.M. Viljoen, A. Cowley, J. du Preez, M. Gerber, J. du Plessis, Penetration enhancing effects of selected natural oils utilized in topical dosage forms, Drug development and industrial pharmacy 41(12) (2015) 2045-2054.
[18] D. Paolino, R. Muzzalupo, A. Ricciardi, C. Celia, N. Picci, M. Fresta, In vitro and in vivo evaluation of Bola-surfactant containing niosomes for transdermal delivery, Biomedical microdevices 9(4) (2007) 421-433.
[19] M. Yang, Y. Gu, D. Yang, X. Tang, J. Liu, Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics, Journal of nanobiotechnology 15(1) (2017) 88.
[20] B. Brownlow, V.J. Nagaraj, A. Nayel, M. Joshi, T. Elbayoumi, Development and In Vitro Evaluation of Vitamin E-Enriched Nanoemulsion Vehicles Loaded with Genistein for Chemoprevention Against UVB-Induced Skin Damage, Journal of pharmaceutical Sciences 104(10) (2015) 3510-3523.
[21] H.T. Nguyen, E. Munnier, M. Souce, X. Perse, S. David, F. Bonnier, F. Vial, F. Yvergnaux, T. Perrier, S. Cohen-Jonathan, I. Chourpa, Novel alginate-based nanocarriers as a strategy to include high concentrations of hydrophobic compounds in hydrogels for topical application, Nanotechnology 26(25) (2015) 255101.
[22] S. Bjorklund, J.M. Andersson, Q.D. Pham, A. Nowacka, D. Topgaard, E. Sparr, Stratum corneum molecular mobility in the presence of natural moisturizers, Soft matter 10(25) (2014) 4535-4546.
[23] C.A. Oliveira, M.F. Dario, F.D. Sarruf, I.F.A. Mariz, M.V.R. Velasco, C. Rosado, A.R. Baby, Safety and efficacy evaluation of gelatin-based nanoparticles associated with UV filters, Colloids and surfaces B: biointerfaces 140 (2016) 531-537.
[24] Z. Zhang, P.C. Tsai, T. Ramezanli, B.B. Michniak-Kohn, Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases, Wiley interdisciplinary reviews nanomedicine and nanobiotechnology 5(3) (2013) 205-218.
[25] J. Kristl, K. Teskac, P.A. Grabnar, Current view on nanosized solid lipid carriers for drug delivery to the skin, Journal of biomedical nanotechnology 6(5) (2010) 529-542.
[26] J.Y. Fang, T.H. Huang, C.F. Hung, Y.L. Huang, I.A. Aljuffali, W.C. Liao, C.F. Lin, Derivatization of honokiol by integrated acetylation and methylation for improved cutaneous delivery and anti-inflammatory potency, European journal of pharmaceutical sciences 114 (2018) 189-198.
[27] M. Kopecna, M. Machacek, E. Prchalova, P. Stepanek, P. Drasar, M. Kotora, K. Vavrova, Galactosyl pentadecene reversibly enhances transdermal and topical drug delivery, Pharmaceutical research 34(10) (2017) 2097-2108.
[28] M. Kopecna, M. Machacek, E. Prchalova, P. Stepanek, P. Drasar, M. Kotora, K. Vavrova, Dodecyl amino glucoside enhances transdermal and topical drug delivery via reversible interaction with skin barrier lipids, Pharmaceutical research 34(3) (2017) 640-653.
[29] W.J. Zhang, J.Y. Wang, H. Li, X. He, R.Q. Zhang, C.F. Zhang, F. Li, Z.L. Yang, C.Z. Wang, C.S. Yuan, Novel application of natural anisole compounds as enhancers for transdermal delivery of ligustrazine, The American journal of Chinese medicine 43(6) (2015) 1231-1246.
[30] A.D. Association, Diagnosis and classification of diabetes mellitus, Diabetes care 37(Supplement 1) (2014) 81-90.
[31] D.R. Whiting, L. Guariguata, C. Weil, J. Shaw, IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030, Diabetes research and clinical practice 94(3) (2011) 311-21.
[32] E. Lee, G.R. Ryu, S.H. Ko, Y.B. Ahn, K.H. Song, A role of pancreatic stellate cells in islet fibrosis and beta-cell dysfunction in type 2 diabetes mellitus, Biochemical and biophysical research communications485(2) (2017) 328-334.
[33] M. Stolar, Glycemic control and complications in type 2 diabetes mellitus, The American journal of medicine 123(3 ) (2010) 3-11.
[34] R. Hoogma, P. Hammond, R. Gomis, D. Kerr, D. Bruttomesso, K. Bouter, K. Wiefels, H. De La Calle, D. Schweitzer, M. Pfohl, Comparison of the effects of continuous subcutaneous insulin infusion (CSII) and NPH‐based multiple daily insulin injections (MDI) on glycaemic control and quality of life: results of the 5‐nations trial, Diabetic medicine 23(2) (2006) 141-147.
[35] L.M. Younk, M. Mikeladze, S.N. Davis, Pramlintide and the treatment of diabetes: a review of the data since its introduction, Expert opinion on pharmacotherapy 12(9) (2011) 1439-1451.
[36] E.A. Schwartz, J. Koska, M.P. Mullin, I. Syoufi, D.C. Schwenke, P.D. Reaven, Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus, Atherosclerosis 212(1) (2010) 217-222.
[37] J.H. Best, B.J. Hoogwerf, W.H. Herman, E.M. Pelletier, D.B. Smith, M. Wenten, M.A. Hussein, Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database, Diabetes care 34(1) (2011) 90-95.
[38] H. Zhang, J. Wei, R. Xue, J.-D. Wu, W. Zhao, Z.-Z. Wang, S.-K. Wang, Z.-X. Zhou, D.-Q. Song, Y.-M. Wang, Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression, Metabolism 59(2) (2010) 285-292.
[39] N. Waugh, E. Cummins, P. Royle, C. Clar, M. Marien, B. Richter, S. Philip, Newer agents for blood glucose control in type 2 diabetes: systematic review and economic evaluation, NIHR health technology assessment programme: executive summaries 14(36) (2010) 1-7.
[40] K.I. Seo, M.S. Choi, U.J. Jung, H.J. Kim, J. Yeo, S.M. Jeon, M.K. Lee, Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice, Molecular nutrition & food research 52(9) (2008) 995-1004.
[41] S.K. Jain, J. Rains, J. Croad, B. Larson, K. Jones, Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats, Antioxidants & redox signaling 11(2) (2009) 241-249.
[42] S. Ghosh, S. Banerjee, P.C. Sil, The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update, Food and chemical toxicology 83 (2015) 111-124.
[43] S. Nazeri, M. Farhangi, S. Modarres, The effect of different dietary inclusion levels of rutin (a flavonoid) on some liver enzyme activities and oxidative stress indices in rainbow trout, Oncorhynchus mykiss (Walbaum) exposed to Oxytetracycline, Aquaculture Research 48(8) (2017) 4356-4362.
[44] C.Y. Hsu, H.Y. Shih, Y.C. Chia, C.H. Lee, H. Ashida, Y.K. Lai, C.F. Weng, Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation, Molecular nutrition & food research 58(6) (2014) 1168-1176.
[45] H.-T. Ma, J.-F. Hsieh, S.-T. Chen, Anti-diabetic effects of Ganoderma lucidum, Phytochemistry 114 (2015) 109-113.
[46] C. Xiao, Q. Wu, J. Zhang, Y. Xie, W. Cai, J. Tan, Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice, Journal of ethnopharmacology 196 (2017) 47-57.
[47] P. Crawford, C. Thai, J. Obholz, J. Schievenin, M. True, S.A. Shah, J. Hallgren, J. Clark, D. Sharon, Assessment of the effect of lifestyle intervention plus water-soluble cinnamon extract on lowering blood glucose in pre-diabetics, a randomized, double-blind, multicenter, placebo controlled trial: study protocol for a randomized controlled trial, Trials 17(1) (2016) 1-6.
[48] K. Aulia, B. Wirjatmadi, M. Adriani, Influence of cinnamon extract (Cinnamomum burmanii) provision on the reduction of blood glucose level of hyperglycemic male wistar rats, Health notions 2(3) (2018) 349-355.
[49] R.A. Anderson, Z. Zhan, R. Luo, X. Guo, Q. Guo, J. Zhou, J. Kong, P.A. Davis, B.J. Stoecker, Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose, Journal of traditional and complementary medicine 6(4) (2016) 332-336.
[50] R. Sharma, H. Amin, P.K. Prajapati, Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: critical appraisal and role in therapy, Asian pacific journal of tropical biomedicine 5(1) (2015) 68-78.
[51] S. Mishra, N. Verma, S. Bhattacharya, K. Usman, H. Reddy, N. Verma, B. Anjum, P. Singh, S. Bharadwaj, K. Bharadwaj, Efficacy and safety of Tinospora cordifolia (Tc) as an add-on therapy in patients with type-2 diabetes, International journal of research in medical sciences 3(5) (2017) 1109-1113.
[52] H. Moravej, A. Salehi, Z. Razavi, M.R. Moein, H. Etemadfard, F. Karami, F. Ghahremani, Chemical composition and the effect of walnut hydrosol on glycemic control of patients with type 1 diabetes, International journal of endocrinology and metabolism 14(1) (2016) 1-6.
[53] M. Abdoli, F.H. Dabaghian, A. Goushegir, M.T. Shirazi, M. Nakhjavani, A. Shojaii, S. Rezvani, K. Mahlooji, Anti-hyperglycemic effect of aqueous extract of Juglans regia L. leaf (walnut leaf) on type 2 diabetic patients: A randomized controlled trial, Advances in integrative medicine 4(3) (2017) 98-102.
[54] X. Bi, J. Lim, C.J. Henry, Spices in the management of diabetes mellitus, Food chemistry 217 (2017) 281-293.
[55] B. Laribi, K. Kouki, M. M'Hamdi, T. Bettaieb, Coriander (Coriandrum sativum L.) and its bioactive constituents, Fitoterapia 103 (2015) 9-26.
[56] K.J. Salwe, D.O. Sachdev, Y. Bahurupi, M. Kumarappan, Evaluation of antidiabetic, hypolipedimic and antioxidant activity of hydroalcoholic extract of leaves and fruit peel of Punica granatum in male wistar albino rats, Journal of natural science, biology, and medicine 6(1) (2015) 56-62.
[57] B. Hosseini, A. Saedisomeolia, L.G. Wood, M. Yaseri, S. Tavasoli, Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial, Complementary therapies in clinical practice 22 (2016) 44-50.
[58] A. Andrade-Cetto, J. Becerra-Jiménez, R. Cárdenas-Vázquez, Alfa-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes, Journal of ethnopharmacology 116(1) (2008) 27-32.
[59] D.P. Arend, T.C. dos Santos, L.H. Cazarolli, M.A. Hort, D. Sonaglio, A.L.G. dos Santos, R.M. Ribeiro-do-Valle, F.R.M.B. Silva, A.M. de Campos, In vivo potential hypoglycemic and in vitro vasorelaxant effects of Cecropia glaziovii standardized extracts, Revista brasileira de farmacognosia 25(5) (2015) 473-484.
[60] A.A. Elberry, F.M. Harraz, S.A. Ghareib, S.A. Gabr, A.A. Nagy, E. Abdel-Sattar, Methanolic extract of Marrubium vulgare ameliorates hyperglycemia and dyslipidemia in streptozotocin-induced diabetic rats, International journal of diabetes mellitus 3(1) (2015) 37-44.
[61] Z. Ghlissi, R. Atheymen, Z. Sahnoun, K. Zeghal, H. Mnif, A. Hakim, The effect of Marrubium vulgare L. on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of diabetic rats, Journal of chemical and pharmaceutical research 1(2) (2015) 97-106.
[62] K.I. Seo, M.S. Choi, U.J. Jung, H.J. Kim, J. Yeo, S.M. Jeon, M.K. Lee, Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice, Molecular nutrition & food research 52(9) (2008) 995-1004.
[63] H.R. Rahimi, A.H. Mohammadpour, M. Dastani, M.R. Jaafari, K. Abnous, M.G. Mobarhan, R.K. Oskuee, The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial, Avicenna journal of phytomedicine 6(5) (2016) 567-577.
[64] M. Kato, S. Nishikawa, A. Ikehata, K. Dochi, T. Tani, T. Takahashi, A. Imaizumi, T. Tsuda, Curcumin improves glucose tolerance via stimulation of glucagon‐like peptide‐1 secretion, Molecular nutrition & food research 61(3) (2017) 1-6.
[65] W. Liang, D. Zhang, J. Kang, X. Meng, J. Yang, L. Yang, N. Xue, Q. Gao, S. Han, X. Gou, Protective effects of rutin on liver injury in type 2 diabetic db/db mice, Biomedicine & pharmacotherapy 107 (2018) 721-728.
[66] A. Avogaro, Treating diabetes today with gliclazide MR: a matter of numbers, Diabetes Obes Metab 14 (Suppl 1) (2012) 14-19.
[67] A. Shisheva, Phosphoinositides in insulin action on GLUT4 dynamics: not just PtdIns (3, 4, 5) P3, American journal of physiology-endocrinology and metabolism 295(3) (2008) 536-544.
[68] N.H. Son, T.S. Park, H. Yamashita, M. Yokoyama, L.A. Huggins, K. Okajima, S. Homma, M.J. Szabolcs, L.S. Huang, I.J. Goldberg, Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice, The journal of clinical investigation 117(10) (2007) 2791-2801.
[69] C.Y. Hsu, H.Y. Shih, Y.C. Chia, C.H. Lee, H. Ashida, Y.K. Lai, C.F. Weng, Rutin potentiates insulin receptor kinase to enhance insulin‐dependent glucose transporter 4 translocation, Molecular nutrition & food research 58(6) (2014) 1168-1176.
[70] Y.-T. Chang, J.-J. Shen, W.-R. Wong, H.-R. Yen, Alternative therapy for autosensitization dermatitis, Chang gung medical journal 32(6) (2009) 668-673.
[71] H.-Y. Fu, S.-J. Chen, L.-L. Kuo-Huang, Comparative study on the stinging trichomes and some related epidermal structures in the leaves of Dendrocnide meyeniana, Girardinia diversifolia, and Urtica thunbergiana, Taiwania 48(4) (2003) 213-223.
[72] F. Oliver, E. Amon, A. Breathnach, D. Francis, P. Sarathchandra, A. Kobza Black, M. Greaves, Contact urticaria due to the common stinging nettle (Urtica dioica)—histological, ultrastructural and pharmacological studies, Clinical and experimental dermatology 16(1) (1991) 1-7.
[73] H. Collier, G. Chesher, Identification of 5‐hydroxytryptamine in the sting of the nettle (Urtica dioica), British journal of pharmacology and chemotherapy 11(2) (1956) 186-189.
[74] N. Emmelin, W. Feldberg, The mechanism of the sting of the common nettle (Urtica urens), The journal of physiology 106(4) (1947) 440-55.
[75] H.Y. Fu, S.J. Chen, R.F. Chen, W.H. Ding, L.L. Kuo-Huang, R.N. Huang, Identification of oxalic acid and tartaric acid as major persistent pain-inducing toxins in the stinging hairs of the nettle, Urtica thunbergiana, Annals of botany 98(1) (2006) 57-65.
[76] K. Taskila, J.V. Saarinen, I.T. Harvima, R.J. Harvima, Histamine and LTC4 in stinging nettle-induced urticaria, Allergy 55(7) (2000) 680-1.
[77] J.M. Moon, B.K. Lee, B.J. Chun, Toxicities of raw Alocasia odora, human & experimental toxicology 30(10) (2011) 1720-3.
[78] J.C. Pickup, Insulin-pump therapy for type 1 diabetes mellitus, The New England journal of medicine 366(17) (2012) 1616-24.
[79] M. Kidron, S. Dinh, Y. Menachem, R. Abbas, B. Variano, M. Goldberg, E. Arbit, H. Bar-On, A novel per-oral insulin formulation: proof of concept study in non-diabetic subjects, Diabetic medicine : a journal of the British diabetic association 21(4) (2004) 354-357.
[80] M.R. Prausnitz, R. Langer, Transdermal drug delivery, Nature biotechnology 26(11) (2008) 1261-1268.
[81] K. Tachibana, Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure, Pharmaceutical research 9(7) (1992) 952-954.
[82] A.-R. Denet, R. Vanbever, V. Préat, Skin electroporation for transdermal and topical delivery, Advanced drug delivery reviews 56(5) (2004) 659-674.
[83] P. Tyle, lontophoretic devices for drug delivery, Pharmaceutical research 3(6) (1986) 318-326.
[84] Y. Wang, R. Thakur, Q. Fan, B. Michniak, Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery, European journal of pharmaceutics and biopharmaceutics 60(2) (2005) 179-191.
[85] Y.N. Kalia, A. Naik, J. Garrison, R.H. Guy, Iontophoretic drug delivery, Advanced drug delivery reviews 56(5) (2004) 619-658.
[86] J. Hirvonen, R.H. Guy, lontophoretic delivery across the skin: electroosmosis and its modulation by drug substances, Pharmaceutical research 14(9) (1997) 1258-1263.
[87] M.B. Brown, G.P. Martin, S.A. Jones, F.K. Akomeah, Dermal and transdermal drug delivery systems: current and future prospects, Drug delivery 13(3) (2006) 175-187.
[88] I. Lavon, J. Kost, Ultrasound and transdermal drug delivery, Drug discovery today 9(15) (2004) 670-676.
[89] C. Gomez, A. Costela, I. García‐Moreno, F. Llanes, J.M. Teijón, D. Blanco, Laser treatments on skin enhancing and controlling transdermal delivery of 5‐fluorouracil, Lasers in Surgery and Medicine: The official journal of the american society for laser medicine and surgery 40(1) (2008) 6-12.
[90] A. Ascenso, S. Raposo, C. Batista, P. Cardoso, T. Mendes, F.G. Praça, M.V.L.B. Bentley, S. Simões, Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes, International journal of nanomedicine 10 (2015) 5837.
[91] J. Liesivuori, H. Savolainen, Methanol and formic acid toxicity: biochemical mechanisms, Pharmacol toxicol 69(3) (1991) 157-163.
[92] J.S. Kasteler, M.J. Petersen, J.E. Vance, J.J. Zone, Circulating activated T lymphocytes in autoeczematization, Archives of dermatology 128(6) (1992) 795-798.
[93] M.J. Cunningham, J.J. Zone, M.J. Petersen, J.A. Green, Circulating activated (DR-positive) T lymphocytes in a patient with autoeczematization, Journal of the American academy of dermatology 14(6) (1986) 1039-1041.
[94] I.R. Williams, T.S. Kupper, Immunity at the surface: homeostatic mechanisms of the skin immune system, Life sciences 58(18) (1996) 1485-1507.
[95] Y. Zheng, M. Dai, G. Chen, W. Wei, Study of the anti-allergy and mechanism of Xiao Fengsan granules, Journal of experimental traditional medical formulae (Chinese) 8 (2002) 26-28.
[96] K. Shichijo, H. Saito, Effect of Chinese herbal medicines and disodium cromoglycate on IgE-dependent histamine release from mouse cultured mast cells, International journal of immunopharmacology 19(11-12) (1997) 677-682.
[97] Y. Dai, K. Miki, T. Fukuoka, A. Tokunaga, T. Tachibana, E. Kondo, K. Noguchi, Suppression of neuropeptides' mRNA expression by herbal medicines in a rat model of peripheral inflammation, Life sciences 66(1) (2000) 19-29.
[98] T.Y. Chan, L.Y. Chan, L.S. Tam, J.A. Critchley, Neurotoxicity following the ingestion of a Chinese medicinal plant, Alocasia macrorrhiza, Human & experimental toxicology 14(9) (1995) 727-728.
[99] Y.d. Wang, M.d. Liao, J.-l. Zhang, H.h. XU, Tested on antifungal activity of Alocasia odora methanol extract, Pesticides-Shenyang- 45(11) (2006) 744.
[100] S.A. Schreyer, D.L. Wilson, R.C. LeBoeuf, C57BL/6 mice fed high fat diets as models for diabetes-accelerated atherosclerosis, Atherosclerosis 136(1) (1998) 17-24.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *