帳號:guest(18.116.62.172)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:施慕帝
作者(英文):Smruti Ranjan Sahoo
論文名稱:各種負載金納米結構中Au 4f核心級自旋軌道分量的X射線光電子能譜研究
論文名稱(英文):X-ray photoelectron Spectroscopic Investigations into the Au 4f Core-Level Spin-Orbit Components in Various Supported Gold Nanostructures
指導教授:柯學初
指導教授(英文):Shyue-Chu Ke
口試委員:吳季珍
胡焯淳
李佳洪
俞聖法
陳企寧
柯學初
口試委員(英文):Jih-Jen Wu
Cho-Chun Hu
Chia-Hung Lee
Sheng-Fa Yu
Chi-Ning Chen
Shyue-Chu Ke
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學號:810114106
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:133
關鍵詞:X射线光电子能谱电子结构纳米粒子定量光电子能谱的模拟納米顆粒基催化剂纳米颗粒表面形貌建模核心级转移定量X射线光电子能谱Au4f核心级异常
關鍵詞(英文):X-ray Photoelectron SpectroscopyElectronic StructureNanoparticle QuantitationSimulation of Photoelectron SpectraNanoparticle-based catalystsModeling nanoparticle Surface MorphologyCore-level ShiftsQuantitative X-ray Photoelectron SpectroscopyAu4f Core-level Anomalies
相關次數:
  • 推薦推薦:6
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏收藏:0
納米粒子在不同學科中的合成和技術應用的最新進展要求其核心級電子結構和元素量化在納米級別上精確表徵。在這方面,X射線光電子能譜(XPS)在探測納米尺度的粒子中的重要性已經引起了極大的關注,因為它是表面敏感的並且以非破壞性的方式提供來自幾納米深度的信息。在本論文中,將XPS與其他分析工具結合使用,以探測各種基板上支持的各種合成金納米結構的核心級電子結構。模擬來自大塊平面金基底和被支撐非球形金納米顆粒的XPS定量,並與相應的實驗測量的XPS光譜進行比較。
由於自旋軌道耦合效應,典型的Au 4f XPS核心能級光譜分別顯示對應於Au 4f7/2 和Au 4f5/2 激發的兩個光電子峰。Au 4f_(7/2)-Au-4f_(5/2)的Au 4f核心能級峰強度的比率通常被認為遵循標準統計多重性值,(2j + 1)= 4:3或1.33。研究了Au 4f雙峰在各種支撐金納米結構和體積標準中的這種標準統計行為的有效性。在使用沉積 - 沉澱法製備的負載TiO2載體上的奈米金顆粒,觀察到與標準統計值, 1.33有很大的偏差。改變實驗條件以在不同條件下重新檢查其有效性,例如不同的合成方法,煅燒條件和支持物。採用沉積 - 沉澱和化學浸漬合成方法在各種載體上生長金納米顆粒。多種載體材料(TiO2,Al2O3,Ti2O3,V2O5,NiO,BN和MoS2)用於沉積金納米顆粒以及金納米棒。通過兩步種子介導的方法合成短的各向異性金納米棒,並通過雙功能連接分子將其附著到載體上。
Au 4f_(7/2)-Au-4f_(5/2)峰強度比在所有在各種實驗條件下製備的各向同性和各向異性金納米顆粒中顯示出類似的變化。負載金納米結構的峰強度比的變化從0.92±0.07到1.61±0.09。 Au 4f_(7/2)-Au-4f_(5/2)線寬比率在合成的負載金納米結構中也顯示出0.8±0.03至1.12±0.01的類似變化。然而,自旋軌道分裂值保持不變並且更接近塊材Au值3.68eV。另一方面,由具有不同厚度的塊狀平面金基板確定的峰強度比沒有表現出任何這樣的變化;雖然獲得的值略低於標準統計比率。這被認為是由於納米顆粒和載體材料的電子狀態的變化,表面原子中的配位數減少,金納米顆粒中的弱d-d相互作用以及分別對價軌道的相對論效應。
與大塊固體表面不同,XPS定量在具有不同形狀,尺寸或形態的納米顆粒中並沒有很好地建立。從具有不同幾何形狀的納米結構解釋XPS峰強度需要先進的解析表達式來描述各種模型,以及不同類型的數值模擬。它們僅限於少數理想的納米顆粒形態,其嚴格和復雜的性質限制了XPS定量適合常規使用目的。在本文中,我们使用NIST SESSA v2.0来模拟非理想金纳米粒子的XPS光谱。使用透射電子顯微鏡(TEM)分析AuNP上的形態信息作為SESSA中的輸入模型參數,從各自的輸入納米顆粒形態產生XPS光譜。當使用TEM獲得的納米顆粒的平均直徑時,觀察到SESSA模擬和實驗XPS光譜之間更大程度的不匹配。當從TEM圖像獲得的納米顆粒的真實非球形形狀被考慮用於模擬時,失配程度降低。我們還模擬了具有不同厚度的平面層狀Au膜的XPS光譜,並將分析的光譜與來自非理想納米粒子的光譜進行了比較。結合實驗XPS和TEM測量結果,SESSA適用於精確定量複雜的非理想納米粒子的XPS峰強度。
Recent advances in the synthesis and technological applications of nanoparticles in different disciplines have demanded both their core-level electronic structure and elemental quantification to be precisely characterized at nanoscale level. The importance of X-ray photoelectron spectroscopy (XPS) in probing particles at nanoscale regimes has gained remarkable attention in this regard, as it is surface sensitive and provides information from a depth of few nanometers in a nondestructive manner. In this thesis, use of XPS in combination with other analytical tools is made to probe into the core-level electronic structures from a variety of as-synthesized gold nanostructures supported on various substrates. XPS quantitation from bulk planar gold substrates and supported non-spherical gold nanoparticles is simulated, and is compared against the respective experimentally measured XPS spectra.
Due to the spin-orbit-coupling effects, a typical Au 4f XPS core-level spectrum displays two photoelectron peaks corresponding to Au 4f_(7/2) and Au 4f_(5/2) excitations, respectively. The ratio of Au 4f_(7/2)-to-Au 4f_(5/2) peak intensities is generally assumed to obey a standard statistical multiplicity value,(2j+1)=4:3 or 1.33 in the Au 4f core-level spectra. The validity of such standard statistical behavior of the Au 4f doublets in various supported gold nanostructures and bulk standards is investigated. A large deviation from the standard statistical value, 1.33, was observed in TiO_2 supported gold nanoparticles prepared by using the deposition-precipitation method. The experimental conditions were varied to recheck its validity under different conditions, such as different synthesis routes, calcination conditions, and supports. Both deposition-precipitation and chemical impregnation synthetic routes were adopted to grow gold nanoparticles on various supports. A wide range of support materials (TiO2, Al2O3, Ti2O3, V2O5, NiO, BN, and MoS2) were used for the deposition of gold nanoparticles as well as gold nanorods. Short anisotropic gold nanorods were synthesized via a two-step seed mediated approach and were attached onto the supports by means of a bi-functional linker molecule.
The Au 4f_(7/2)-to-Au 4f_(5/2) peak intensity ratios displayed similar variations in all the supported isotropic and anisotropic gold nanoparticles prepared under various experimental conditions. The peak intensity ratios from supported gold nanostructures varied as widely as from 0.92±0.07 to 1.61±0.09. The Au 4f_(7/2)-to-Au 4f_(5/2) linewidth ratios also displayed similar variations from 0.8±0.03 to 1.12±0.01 in the as-synthesized supported gold nanostructures. However, the spin-orbit-splitting values remained essentially unchanged and were closer to the bulk Au value, 3.68 eV. On the other hand, the peak intensity ratios determined from bulk planar gold substrates with different thicknesses did not exhibit any such variations; although the values obtained were little lower than the standard statistical ratios. This is thought to be due to changes in the electronic states of both the nanoparticle and support material, reduced coordination number imperfections in the surface atoms, weak d-d interactions in gold nanoparticles and relativistic effects on the valence orbitals respectively.
Unlike bulk solid surfaces, XPS quantitation is not well established in nanoparticles with different shapes, sizes or morphologies. Interpretation of XPS peak intensities from nanostructures with different geometries require advanced analytical expressions describing various models, and numerical simulations of different types. These are limited to few ideal morphologies only, and their rigorous and complex nature restricts XPS quantitation amenable for routine use purposes. In this thesis, we have used NIST Simulation of Electron Spectroscopy for Surface Analysis (SESSA v2.0) to perform a more routinely model XPS signals from non-ideal gold nanoparticles. Using transmission electron microscopy (TEM) analyzed morphological information on the AuNPs as input model parameters in SESSA, XPS spectra were generated from the respective input nanoparticle morphologies. A degree of greater mismatch between SESSA simulated and experimental XPS spectra was observed while using the TEM obtained average diameter of the nanoparticles. The degree of mismatch lowered when the true nonspherical shape of the nanoparticles as obtained from TEM images was taken into account for the simulation. We also simulated the XPS spectra from planar layered Au films with different thicknesses and compared the analyzed spectra with those from the non-ideal nanoparticles. The applicability of SESSA in combination with experimental XPS and TEM measurements for the precise quantification of XPS peak intensities from complex, non-ideal nanoparticles is demonstrated.
TABLE OF CONTENTS

ACKNOWLEDGMENT I
ABSTRACT III
TABLE OF CONTENTS V
LIST OF FIGURES IX

Chapter 1: Introduction 1

Chapter 2: Synthesis of Isotropic and Anisotropic Gold Nanoparticles in Aqueous Media, on various Supports, and Their Characterization by Different Analytical Instruments............7

2.1 Introduction...........7
2.2 Mechanism for the Synthesis of Monodisperse Nanocrystals: Nucleation and Growth..............9
2.3 Formation of Gold Nanorods by two-step Seeded Growth Procedure: Mechanisms and Modeling............13
2.4 Synthesis of Supported Gold nanostructures........19
2.5 Nucleation and Growth of Supported Gold Nanoparticles......19
2.6 Localized Surface Plasmon Resonance from Small Metal Nanoparticles and Nanorods: Mie and Gan’s Theory........22
2.7 Imaging and Spectroscopic Characterization Techniques..........28
2.7.1 Scanning Electron Microscope............28
2.7.2 Energy-Dispersive X-Ray Spectroscopy (EDS)............31
2.7.3 Transmission Electron Microscopy..........32
2.8 Spectroscopic Techniques............35
2.8.1 Absorbance Spectroscopy Employing Ultraviolet and Visible Light Sources............36
2.8.2 X-ray Photoelectron Spectroscopy...........38


Chapter 3: Anomalies in Au 4f Core-level Electronic Structures in Supported Gold Nanoparticles and in Bulk Planar Gold Surfaces.......45

3.1 Introduction.........45
3.2 Experimental.........47
3.2.1 Synthesis of AuNPs on TiO_2 suports by Deposition-Precipitation method...........48
3.2.2 Synthesis of gold nanorods (AuNRs) by a two-step seed mediated approach.......48
3.2.3 Purification, surface modification of AuNRs and their attachment onto various supports.......49
3.2.4 Synthesis of Supported AuNPs on various supports using chemical impregnation method........49
3.3 Characterizations........50
3.4 Theoretical Calculation of Chemical Shifts.......52
3.5 Surface-atom Core-level Shifts (SCS) in Metallic Nanoparticles.....57
3.6 Choice of a Suitable XPS Reference Peak.........62
3.7 Reference Standards for Binding Energy Scale in X-Ray Photoelectron Spectroscopic Characterization of Supported Gold Nanostructures....64
3.8 Deviation from the Standard Statistical Multiplicity Ratio.....66
3.9 Relativistic Photoemission Peak Intensities from Au 4f Core levels Spin-Orbit Doublets...................69
3.10 Au 4f7/2-to-Au 4f5/2 Linewidth Ratios........71
3.10.1 N_6 N_7 O Coster-Kronig processes..........77
3.11 X-ray Photoelectron Spectra from Au 5d Valence Band..........78
3.12 Conclusion......81

Chapter 4: Quantitative X-ray Photoelectron Spectroscopic Analysis of Au 4f Doublets from Supported Gold Nanostructures........83
4.1 Introduction.........83
4.2 Experimental...........86
4.3 TEM Results..........87
4.4 Core-level Photoelectron Peak Intensity Expression in X-ray Photoelectron Spectroscopy.........88
4.5 Peak Intensity from a Spherical Nanoparticle (Au) Supported on TiO_2: Dependency on Radius and Height.........92
4.6 Determination of Elemental Composition from Photoelectron Spectra.....93
4.7 Background Correction and Peak Fitting..........94
4.7.1 Linear background:................94
4.7.2 Integral or Shirley background:..........95
4.7.3 Tougaard background:............97
4.7.4 Photoelectron Line Shape-Convolution........97
4.7.5 Peak fitting Au 4f Spectra from GC1-GC3 catalysts.....99
4.8 High resolution X-ray Photoemission Spectra from Ti 2p, Ti 3p, O1s, and C1s Core levels in Au-TiO_2 catalysts...........99
4.9 Core-level Shifts in Au 4f_(7/2) excitations in TiO_2 supported gold nanoparticle (AuNP) catalysts…………………………………………………………….100
4.10 Simulation of Electron Spectra for Surface Analysis (SESSA)..........102
4.10.1 SESSA Simulation on Au Thin Films............106
4.10.2 SESSA Simulation on Ideal and Non-Ideal AuNPs...........107
4.11 Elemental Composition from SESSA Analysis.............110
4.11.1 Catalyst Models: Core-Shell, Encapsulation of AuNPs......111
4.12 Conclusion........112

Chapter 5: Summary, Conclusions and Future Perspectives.....115

Bibliography.......121

APPENDIX........133

[1] M. C. M. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).
[2] P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Acc.
Chem. Res. 41, 1578 (2008).
[3] S. E. Lohse and C. J. Murphy, J. Am. Chem. Soc. 134, 15607 (2012).
[4] E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A.
El-Sayed, Chem. Soc. Rev. 41, 2740 (2012).
[5] I. Iavicoli, V. Leso, D. H. Beezhold, and A. A. Shvedova, Toxicol.
Appl. Pharmacol. 329, 96 (2017).
[6] M. R. Hill, E. J. MacKrell, C. P. Forsthoefel, S. P. Jensen, M.
Chen, G. A. Moore, Z. L. He, and B. S. Sumerlin, Biomacromolecules
16, 1276 (2015).
[7] S. Eustis and M. A. El-Sayed, Chem. Soc. Rev. 35, 209 (2006).
[8] N. R. Jana, L. Gearheart, and C. J. Murphy, J. Phys. Chem. B 105,
4065 (2001).
[9] H. C. Chu, C. H. Kuo, and M. H. Huang, Inorg. Chem. 45, 808 (2006).
[10] P. R. Sajanlal, T. S. Sreeprasad, A. S. Nair, and T. Pradeep,
Langmuir 24, 4607 (2008).
[11] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys.
Chem. B 107, 668 (2003).
[12] C. Y. Chiu, P. J. Chung, K. U. Lao, C. W. Liao, and M. H. Huang,
J. Phys. Chem. C 116, 23757 (2012).
[13] J. Xiao and L. Qi, Nanoscale 3, 1383 (2011).
[14] J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P.
Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).
[15] S. Link, M. B. Mohamed, and M. A. El-Sayed, J. Phys. Chem. B 103,
3073 (1999).
[16] F. Guarracino, L. Cabrini, R. Baldassarri, S. Petronio, M. De
Carlo, R. D. Covello, G. Landoni, L. Gabbrielli, and N. Ambrosino,
J. Cardiothorac. Vasc. Anesth. 294, 3124 (2010).
[17] H. Chen, L. Shao, Q. Li, and J. Wang, Chem. Soc. Rev. 42, 2679
(2013).
[18] M. Chen and D. W. Goodman, Acc. Chem. Res. 39, 739 (2006).
[19] A. S. K. Hashmi, Top. Organomet. Chem. 44, 143 (2013).
[20] A. Corma and H. Garcia, Chem. Soc. Rev. 37, 2096 (2008).
[21] M. Stratakis and H. Garcia, Chem. Rev. 112, 4469 (2012).
[22] M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 16,
405 (1987).
[23] M. Chen and D. W. Goodman, Chem. Soc. Rev. 37, 1860 (2008).
[24] M. Haruta, Catal. Today 36, 153 (1997).
[25] G. R. Bamwenda, S. Tsubota, T. Nakamura, and M. Haruta, Catal.
Letters 44, 83 (1997).
[26] M. Haruta, Chem. Rec. 3, 75 (2003).
[27] W. S. M. Werner, M. Chudzicki, W. Smekal, and C. J. Powell, Appl.
Phys. Lett. 104, 243106 (2014).
[28] X. S. Huang, H. Sun, L. C. Wang, Y. M. Liu, K. N. Fan, and Y. Cao,
Appl. Catal. B Environ. 90, 224 (2009).
[29] J. Saavedra, C. Powell, B. Panthi, C. J. Pursell, and B. D.
Chandler, J. Catal. 307, 37 (2013).
[30] E. D. Park and J. S. Lee, J. Catal. 186, 1 (1999).
[31] M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A.
Keane, R. F. Howe, J. Llorca, and H. Idriss, Nat. Chem. 3, 489
(2011).
[32] A. Cabot, J. Arbiol, J. R. Morante, U. Weimar, N. Bârsan, and W.
Göpel, Sensors Actuators, B Chem. 70, 87 (2000).
[33] W. Deng, J. De Jesus, H. Saltsburg, and M. Flytzani-
Stephanopoulos, Appl. Catal. A Gen. 291, 126 (2005).
[34] S. Arrii, F. Morfin, A. J. Renouprez, and J. L. Rousset, J. Am.
Chem. Soc. 126, 1199 (2004).
[35] P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. B 27, 3160
(1983).
[36] B. Johansson and N. Mårtensson, Phys. Rev. B 21, 4427 (1980).
[37] F. E. Kruis, H. Fissan, and A. Peled, J. Aerosol Sci. 29, 511
(1998).
[38] Y. Wang and Y. Xia, Nano Lett. 4, 2047 (2004).
[39] T. Tsuzuki and P. G. McCormick, J. Mater. Sci. 39, 5143 (2004).
[40] J. Daniel L. Feldheim, Colby A. Foss, Metal Nanoparticles
Synthesis, Characterization, and Applications (Marcel Dekker,
2002).
[41] L. B. Hunt, Gold Bull. 9, 134 (1976).
[42] M. Faraday, Philos. Trans. R. Soc. London 147, 145 (1857).
[43] J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday
Soc. 11, 55 (1951).
[44] G. FRENS, Nat. Phys. Sci. 241, 20 (1973).
[45] M. Giersig and P. Mulvaney, Langmuir 9, 3408 (1993).
[46] P. Mulvaney, M. Giersig, and A. Henglein, J. Phys. Chem. 97, 7061
(1993).
[47] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman,
J. Chem. Soc. Chem. Commun. 0, 801 (1994).
[48] H. You and J. Fang, Nano Today 11, 145 (2016).
[49] D. Erdemir, A. Y. Lee, and A. S. Myerson, Acc. Chem. Res. 42, 621
(2009).
[50] S. Karthika, T. K. Radhakrishnan, and P. Kalaichelvi, Cryst.
Growth Des. 16, 6663 (2016).
[51] N. T. K. Thanh, N. Maclean, and S. Mahiddine, Chem. Rev. 114, 7610
(2014).
[52] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959).
[53] N. T. K. Thanh, N. Maclean, and S. Mahiddine, Chem. Rev. 114, 7610
(2014).
[54] D. W. Oxtoby, Acc. Chem. Res. 31, 91 (1998).
[55] P. G. Vekilov, Cryst. Growth Des. 10, 5007 (2010).
[56] M. S. Bakshi, Cryst. Growth Des. 16, 1104 (2016).
[57] M. S. Bakshi, S. Sachar, G. Kaur, P. Bhandari, G. Kaur, M. C.
Biesinger, F. Possmayer, and N. O. Petersen, Cryst. Growth Des. 8,
1713 (2008).
[58] E. Petryayeva and U. J. Krull, Anal. Chim. Acta 706, 8 (2011).
[59] M. J. Walsh, S. J. Barrow, W. Tong, A. M. Funston, and J.
Etheridge, ACS Nano 9, 715 (2015).
[60] D. K. Smith, N. R. Miller, and B. A. Korgel, Langmuir 25, 9518
(2009).
[61] K. Park, L. F. Drummy, R. C. Wadams, H. Koerner, D. Nepal, L.
Fabris, and R. A. Vaia, Chem. Mater. 25, 555 (2013).
[62] C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P.
Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Huang,
J. Phys. Chem. Lett. 1, 2867 (2010).
[63] M. Liu and P. Guyot-Sionnest, J. Phys. Chem. B 109, 22192 (2005).
[64] K. T. Yong, Y. Sahoo, M. T. Swihart, P. M. Schneeberger, and P. N.
Prasad, Top. Catal. 47, 49 (2008).
[65] M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán,
Chem. Soc. Rev. 37, 1783 (2008).
[66] J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P.
Mulvaney, Adv. Funct. Mater. 14, 571 (2004).
[67] M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M.
Marquez, and Y. Xia, Chem. Soc. Rev. 35, 1084 (2006).
[68] K. M. Mayer and J. H. Hafner, Chem. Rev. 111, 3828 (2011).
[69] M. Haruta, Nature 437, 1098 (2005).
[70] G. J. Hutchings, Catal. Today 100, 55 (2005).
[71] R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H.-J. Freund, Gold
Bull. 37, 72 (2004).
[72] M. M. Schubert, S. Hackenberg, A. C. Van Veen, M. Muhler, V.
Plzak, and J. J. Behm, J. Catal. 197, 113 (2001).
[73] R. Zanella, L. Delannoy, and C. Louis, Appl. Catal. A Gen. 291, 62
(2005).
[74] R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, J. Phys. Chem.
B 106, 7634 (2002).
[75] A. Zwijnenburg, A. Goossens, W. G. Sloof, M. W. J. Crajé, A. M.
Van der Kraan, L. J. De Jongh, M. Makkee, and J. A. Moulijn, J.
Phys. Chem. B 106, 9853 (2002).
[76] A. Hugon, N. El Kolli, and C. Louis, J. Catal. 274, 239 (2010).
[77] X. Y. Liu, A. Wang, T. Zhang, and C. Y. Mou, Nano Today 8, 403
(2013).
[78] E. Roduner, Chem. Soc. Rev. 35, 583 (2006).
[79] M. A. El-Sayed, Acc. Chem. Res. 37, 326 (2004).
[80] C. Louis and O. Pluchery, Gold Nanoparticles for Physics,
Chemistry and Biology (World Scientific, 2012).
[81] C. Clavero, Nat. Photonics 8, 95 (2014).
[82] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, and I. Itzkan,
Phys. Rev. Lett. 78, 1667 (1997).
[83] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A.
Mirkin, J. Phys. Chem. B 110, 2150 (2006).
[84] A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant,
and N. F. Van Hulst, Nat. Commun. 4, 1 (2013).
[85] S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).
[86] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, J.
Phys. Chem. B 110, 7238 (2006).
[87] G. Mie, Ann. Phys. 330, 377 (1908).
[88] Wolfram Hergert and T. Wriedt, Springer Series in Optical
Sciences, Vol 169 (Springer-Verlag, 2012).
[89] R. Gans, Ann. Phys. 352, 270 (1915).
[90] D. P. Sprünken, H. Omi, K. Furukawa, H. Nakashima, I. Sychugov, Y.
Kobayashi, and K. Torimitsu, J. Phys. Chem. C 111, 14299 (2007).
[91] P. K. Jain, S. Eustis, and M. A. El-Sayed, J. Phys. Chem. B 110,
18243 (2006).
[92] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig,
C. E. Lyman, C. Fiori, and E. Lifshin, Scanning Electron
Microscopy and X-Ray Microanalysis a Text for Biologists,
Materials Scientists, and Geologists (Springer, 1992).
[93] D. B. Williams and C. B. Carter, Transmission Electron Microscopy:
A Textbook for Materials Science (Springer, 2009).
[94] John C. Vickerman and I. Gilmore, Surface Analysis: The Principal
Techniques (Wiley, 2009).
[95] M. Sardela (Ed.), Practical Materials Characterization (Springer,
2014).
[96] H. Hertz, Ann. Phys. 267, 983 (1887).
[97] W. Hallwachs, Ann. Phys. 273, 666 (1889).
[98] J. G. Jenkin, R. C. G. Leckey, and J. Liesegang, J. Electron
Spectros. Relat. Phenomena 12, 1 (1977).
[99] D. Briggs and M. P. Seah, Auger and X-Ray Photoelectron
Spectroscopy (Wiley, 1996).
[100] R. Nyholm, A. Berndtsson, and N. Martensson, J. Phys. C Solid
State Phys. 13, (1980).
[101] V. Jovic, W. T. Chen, D. Sun-Waterhouse, M. G. Blackford, H.
Idriss, and G. I. N. Waterhouse, J. Catal. 305, 307 (2013).
[102] T. F. Jaramillo, S. H. Baeck, B. R. Cuenya, and E. W. McFarland,
J. Am. Chem. Soc. 125, 7148 (2003).
[103] M. P. Casaletto, A. Longo, A. Martorana, A. Prestianni, and A. M.
Venezia, Surf. Interface Anal. 38, 215 (2006).
[104] C. Li, Y. Shen, M. Jia, S. Sheng, M. O. Adebajo, and H. Zhu,
Catal. Commun. 9, 355 (2008).
[105] A. M. Visco, F. Neri, G. Neri, A. Donato, C. Milobe, and S.
Galvagno, Phys. Chem. Chem. Phys. 1, 2869 (1999).
[106] S. Arrii, F. Morfin, A. J. Renouprez, and J. L. Rousset, J. Am.
Chem. Soc. 126, 1199 (2004).
[107] Y. Hao, R. Liu, X. Meng, H. Cheng, and F. Zhao, J. Mol. Catal. A
Chem. 335, 183 (2011).
[108] A. A. Tal, W. Olovsson, and I. A. Abrikosov, Phys. Rev. B 95,
245402 (2017).
[109] A. Zwijnenburg, A. Goossens, W. G. Sloof, M. W. J. Crajé, A. M.
Van der Kraan, L. J. De Jongh, M. Makkee, and J. A. Moulijn, J.
Phys. Chem. B 106, 9853 (2002).
[110] P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. Lett. 41,
1425 (1978).
[111] C. Nordling, S. Hagström, and K. Siegbahn, Zeitschrift Für Phys.
178, 433 (1964).
[112] S. Hagstrom, C. Nordling, and K. Siegbahn, Zeitschrift Fur Phys.
178, 439 (1964).
[113] U. Gelius, Phys. Scr. 9, 133 (1974).
[114] J. C. Slater, J. B. Mann, T. M. Wilson, and J. H. Wood, Phys.
Rev. 184, 672 (1969).
[115] P. A. P. Nascente, S. S. Maluf, C. R. M. Afonso, R. Landers, A.
N. Pinheiro, and E. R. Leite, Appl. Surf. Sci. 315, 490 (2014).
[116] L. Qiu, F. Liu, L. Zhao, W. Yang, and J. Yao, Langmuir 22, 4480
(2006).
[117] P. H. Citrin and G. K. Wertheim, Phys. Rev. B 27, 3176 (1983).
[118] S. Ntais, R. J. Isaifan, and E. A. Baranova, Mater. Chem. Phys.
148, 673 (2014).
[119] E. Hüger, M. Zelený, T. Káňa, and M. Šob, Phys. Status Solidi –
Rapid Res. Lett. 2, 117 (2008).
[120] H. Roulet, J.-M. Mariot, G. Dufour, and C. F. Hague, J. Phys. F
Met. Phys. 10, 1025 (1980).
[121] M. Mason, Phys. Rev. B 27, 748 (1983).
[122] N. J. Shevchik, J. Phys. F Met. Phys. 5, 1860 (1975).
[123] C. D. Gelatt, H. Ehrenreich, and R. E. Watson, Phys. Rev. B 15,
1613 (1977).
[124] A. R. Williams and N. D. Lang, Phys. Rev. Lett. 40, 954 (1978).
[125] K. Richter and B. Peplinski, J. Electron Spectros. Relat.
Phenomena 13, 69 (1978).
[126] M. Jacquemin, M. J. Genet, E. M. Gaigneaux, and D. P. Debecker,
ChemPhysChem 14, 3618 (2013).
[127] G. Greczynski and L. Hultman, ChemPhysChem 18, 1507 (2017).
[128] M. P. Seah, I. S. Gilmore, and S. J. Spencer, Surf. Interface
Anal. 26, 617 (1998).
[129] S. Hüfner, Photoelectron Spectroscopy : Principles and
Applications (Springer-Verlag, 1996).
[130] J. Küppers, K. Wandelt, and G. Ertl, Phys. Rev. Lett. 1 (1979).
[131] G. Greczynski and L. Hultman, ChemPhysChem 18, 1507 (2017).
[132] T. L. Barr and S. Seal, J. Vac. Sci. Technol. A Vacuum, Surfaces,
Film. 13, 1239 (1995).
[133] M. P. Seah, J. Electron Spectros. Relat. Phenomena 71, 191
(1995).
[134] L. Chen, A. Yelon, and E. Sacher, J. Phys. Chem. C 115, 7896
(2011).
[135] N. Kruse and S. Chenakin, Appl. Catal. A Gen. 391, 367 (2011).
[136] I. V. Plyuto, A. P. Shpak, J. Stoch, L. F. Sharanda, Y. V.
Plyuto, I. V. Babich, M. Makkee, and J. A. Moulijn, Surf.
Interface Anal. 38, 917 (2006).
[137] S. P. Chenakin and N. Kruse, Phys. Chem. Chem. Phys. 18, 22778
(2016).
[138] H. Häkkinen, M. Moseler, O. Kostko, N. Morgner, M. A. Hoffmann,
and B. V. Issendorff, Phys. Rev. Lett. 93, 1 (2004).
[139] S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77,
3419 (1996).
[140] L. Petersen and P. Hedegård, Surf. Sci. 459, 49 (2000).
[141] P. Pyykkö, Angew. Chemie - Int. Ed. 43, 4412 (2004).
[142] P. Pyykko and J. P. Desclaux, Acc. Chem. Res. 12, 276 (1979).
[143] L. F. Mattheiss and R. E. Dietz, Phys. Rev. B 22, 1663 (1980).
[144] P. Weinberger, F. Rosicky, and U. Wien, Theor. Chim. Acta 356,
349 (1978).
[145] S. Ḧufner and G. K. Wertheim, Phys. Rev. B 11, 678 (1975).
[146] P. Nozières and C. T. De Dominicis, Phys. Rev. 178, 1097 (1969).
[147] S. Doniach and M. Sunjic, J. Phys. C Solid State Phys. 3, 285
(1970).
[148] J. C. Fuggle and S. F. Alvarado, Phys. Rev. A 22, 1615 (1980).
[149] M. Ohno and G. A. Van Riessen, J. Electron Spectros. Relat.
Phenomena 128, 1 (2003).
[150] J. F. Hamilton, P. C. Logel, and R. C. Baetzold, Thin Solid Films
32, 233 (1976).
[151] J. F. Hamilton and P. C. Logel, Thin Solid Films 23, 89 (1974).
[152] M. Zacchigna, C. Astaldi, K. Prince, M. Sastry, C. Comicioli, M.
Evans, R. Rosei, C. Quaresima, C. Ottaviani, C. Crotti, M.
Matteucci, and P. Perfetti, Phys. Rev. B - Condens. Matter Mater.
Phys. 54, 7713 (1996).
[153] M. Patanen, S. Aksela, S. Urpelainen, T. Kantia, S. Heinäsmäki,
and H. Aksela, J. Electron Spectros. Relat. Phenomena 183, 59
(2011).
[154] S. Aksela, M. Harkoma, M. Pohjola, and H. Aksela, J. Phys. B At.
Mol. Phys. 17, 2227 (1984).
[155] H. Aksela and S. Aksela, J. Phys. B At. Mol. Phys. 16, 1531
(1983).
[156] W. Bambynek, B. Crasemann, R. W. Fink, H. U. Freund, H. Mark, C.
D. Swift, R. E. Price, and P. V. Rao, Rev. Mod. Phys. 44, 716
(1972).
[157] F. P. Larkins and A. Lubenfeld, J. Electron Spectros. Relat.
Phenomena 12, 111 (1977).
[158] J. A. D. Matthew, F. P. Netzer, and E. Bertel, J. Electron
Spectros. Relat. Phenomena 20, 1 (1980).
[159] Y. P. Maillard, J. C. Dousse, and J. Hoszowska, Eur. Phys. J. D
57, 155 (2010).
[160] R. Nyholm and N. Martensson, Phys. Rev. B 36, 20 (1987).
[161] R. Nyholm and J. Schmidt-May, J. Phys. C Solid State Phys. 17,
L113 (1984).
[162] S. J. Naftel, A. Bzowski, and T. K. Sham, J. Alloys Compd. 283, 5
(1999).
[163] A. Bzowski, T. K. Sham, R. E. Watson, and M. Weinert, Phys. Rev.
B 51, 9979 (1995).
[164] P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. Lett. 41,
1425 (1978).
[165] S. D. Perrault and W. C. W. Chan, J. Am. Chem. Soc. 131, 17042
(2009).
[166] R. A. Sperling and W. J. Parak, Philos. Trans. A. Math. Phys.
Eng. Sci. 368, 1333 (2010).
[167] D. W. Grainger and D. G. Castner, Adv. Mater. 20, 867 (2008).
[168] P. Nel, D. Lau, D. Hay, and N. Wright, Nucl. Instruments Methods
Phys. Res. Sect. B Beam Interact. with Mater. Atoms 251, 489
(2006).
[169] Á. Barna, B. Pécz, and M. Menyhard, Micron 30, 267 (1999).
[170] A. Bumajdad and M. Madkour, Phys. Chem. Chem. Phys. 16, 7146
(2014).
[171] X. Wang, G. I. N. Waterhouse, D. R. G. Mitchell, K. Prince, and
R. A. Caruso, ChemCatChem 3, 1763 (2011).
[172] A. Villa, N. Dimitratos, C. E. Chan-Thaw, C. Hammond, G. M.
Veith, D. Wang, M. Manzoli, L. Prati, and G. J. Hutchings, Chem.
Soc. Rev. 45, 4953 (2016).
[173] A. M. Venezia, Catal. Today 77, 359 (2003).
[174] R. L. Austermann, D. R. Denley, D. W. Hart, P. B. Himelfarb, R.
M. Irwin, M. Narayana, R. Szentirmay, S. C. Tang, and R. C.
Yeates, Anal. Chem. 59, 68 (1987).
[175] P. R. Moses, L. M. Wier, J. C. Lennox, H. O. Finklea, J. R.
Lenhard, and R. W. Murray, Anal. Chem. 50, 576 (1978).
[176] E. I. Solomon, P. M. Jones, and J. A. May, Chem. Rev. 93, 2623
(1993).
[177] R. Wojcieszak, M. J. Genet, P. Eloy, P. Ruiz, and E. M.
Gaigneaux, J. Phys. Chem. C 114, 16677 (2010).
[178] L. Coronel, J. F. Múnera, A. M. Tarditi, M. S. Moreno, and L. M.
Cornaglia, Appl. Catal. B Environ. 160–161, 254 (2014).
[179] A. M. Tarditi, N. Barroso, A. E. Galetti, L. A. Arrúa, L.
Cornaglia, and M. C. Abello, Surf. Interface Anal. 46, 521
(2014).
[180] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J.
Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G.
Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A.
Walsh, and A. A. Sokol, Nat Mater 12, 798 (2013).
[181] S. Kono, H. Kodama, K. Ichikawa, T. Yoshikawa, T. Abukawa, and A.
Sawabe, Jpn. J. Appl. Phys. 53, 05FP03 (2014).
[182] F. N. Li, J. W. Liu, J. W. Zhang, X. L. Wang, W. Wang, Z. C. Liu,
and H. X. Wang, Appl. Surf. Sci. 370, 496 (2016).
[183] M. D. Torelli, R. A. Putans, Y. Tan, S. E. Lohse, C. J. Murphy,
and R. J. Hamers, ACS Appl. Mater. Interfaces 7, 1720 (2015).
[184] P. Borghetti, E. Meriggio, G. Rousse, G. Cabailh, R. Lazzari, and
J. Jupille, J. Phys. Chem. Lett. 7, 3223 (2016).
[185] W. Smekal, W. S. M. Werner, and C. J. Powell, Surf. Interface
Anal. 37, 1059 (2005).
[186] C. J. Powell, W. S. M. Werner, A. G. Shard, and D. G. Castner, J.
Phys. Chem. C 120, 22730 (2016).
[187] Y. C. Wang, M. H. Engelhard, D. R. Baer, and D. G. Castner, Anal.
Chem. 88, 3917 (2016).
[188] S. Techane, D. R. Baer, and D. G. Castner, Anal. Chem. 83, 6704
(2011).
[189] W. Smekal, W. S. M. Werner, and C. J. Powell, Surf. Interface
Anal. 37, 1059 (2005).
[190] I. Lopez-Salido, D. C. Lim, R. Dietsche, N. Bertram, and Y. D.
Kim, J. Phys. Chem. B 110, 1128 (2006).
[191] S. R. Sahoo, P. V. R. K. Ramacharyulu, and S.-C. Ke, Anal. Chem.
90, 1621 (2018).
[192] C. S. Fadley, Surf. Interface Anal. 40, 1579 (2008).
[193] J. Cooper, Phys. Rev. 38, 1078 (1931).
[194] U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).
[195] J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968).
[196] W. Ong and S. T. Manson, Phys. Rev. A 20, 2364 (1979).
[197] B. R. Tambe and S. T. Manson, Phys. Rev. A 30, 256 (1984).
[198] W. Ong and S. T. Manson, Phys. Rev. A 21, 842 (1980).
[199] S. T. Manson and A. F. Starace, Rev. Mod. Phys. 54, 389 (1982).
[200] F. Keller and F. C. Farnoux, J. Phys. B At. Mol. Phys. 15, 2657
(1982).
[201] T. E. H. Walker and J. T. Waber, J. Phys. B At. Mol. Phys. 7, 674
(1974).
[202] H. K. Tseng, R. H. Pratt, S. Yu, and A. Ron, Phys. Rev. A 17,
1061 (1978).
[203] E. R. Grumbling and A. Sanov, J. Chem. Phys. 135, 164302 (2011).
[204] W. S. M. Werner, C. Tomastik, T. Cabela, Gerald Richter, and H.
Störi, Surf. Sci. 470, L123 (2000).
[205] S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal.
20, 77 (1993).
[206] C. J. Powell, S. Tougaard, W. S. M. Werner, and W. Smekal, J.
Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 021402 (2013).
[207] L. Calliari, L. Minati, G. Speranza, A. Paris, A. Baranov, and S.
Fanchenko, Appl. Surf. Sci. 314, 800 (2014).
[208] J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).
[209] C. J. Powell and A. Jablonski, J. Electron Spectros. Relat.
Phenomena 178–179, 331 (2010).
[210] A. Herrera-Gomez, M. Bravo-Sanchez, O. Ceballos-Sanchez, and M.
O. Vazquez-Lepe, Surf. Interface Anal. 46, 897 (2014).
[211] R. Hesse and R. Denecke, Surf. Interface Anal. 43, 1514 (2011).
[212] J. E. Castle and A. M. Salvi, J. Vac. Sci. Technol. A Vacuum,
Surfaces, Film. 19, 1170 (2001).
[213] J. Végh, J. Electron Spectros. Relat. Phenomena 151, 159 (2006).
[214] R. Hesse, P. Streubel, and R. Szargan, Surf. Interface Anal. 39,
381 (2007).
[215] B. Singh, A. Diwan, V. Jain, A. Herrera-Gomez, J. Terry, and M.
R. Linford, Appl. Surf. Sci. 387, 155 (2016).
[216] R. Hesse, M. Weiß, R. Szargan, P. Streubel, and R. Denecke, J.
Electron Spectros. Relat. Phenomena 205, 29 (2015).
[217] J. M. Conny and C. J. Powell, Surf. Interface Anal. 29, 856
(2000).
[218] J. . Castle, H. Chapman-Kpodo, A. Proctor, and A. . Salvi, J.
Electron Spectros. Relat. Phenomena 106, 65 (2000).
[219] P. H. Citrin, G. K. Wertheim, and Y. Baer, Phys. Rev. B 27, 3160
(1983).
[220] E. Paparazzo, Surf. Interface Anal. 12, 115 (1988).
[221] J. Radnik, C. Mohr, and P. Claus, Phys. Chem. Chem. Phys. 5, 172
(2003).
[222] M. Mohai, Surf. Interface Anal. 36, 828 (2004).
[223] A. P. Grosvenor, B. A. Kobe, N. S. McIntyre, S. Tougaard, and W.
N. Lennard, Surf. Interface Anal. 36, 632 (2004).
[224] C. J. Powell, A. Jablonski, W. S. M. Werner, and W. Smekal, Appl.
Surf. Sci. 239, 470 (2005).
[225] W. S. M. Werner, Surf. Interface Anal. 31, 141 (2001).
[226] J. W. Cooper, Phys. Rev. A 42, 6942 (1990).
[227] M. Patanen, S. Aksela, S. Urpelainen, T. Kantia, S. Heinäsmäki,
and H. Aksela, J. Electron Spectros. Relat. Phenomena 183, 59
(2011).
[228] J. H. Scofield, J. Electron Spectros. Relat. Phenomena 8, 129
(1976).
[229] A. Cimino, D. Gazzoli, and M. Valigi, J. Electron Spectros.
Relat. Phenomena 104, 1 (1999).
[230] F. P. J. M. Kerkhof and J. A. Moulijn, J. Phys. Chem. 83, 1612
(1979).
[231] A. Berko, I. Ulrych, and K. C. Prince, J. Phys. Chem. B 102, 3379
(1998).
[232] F. Pesty, H. P. Steinrruck, and T. E. Madey, Surf. Sci. 339, 83
(1995).
[233] Q. Fu and T. Wagner, Surf. Sci. Rep. 62, 431 (2007).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *