帳號:guest(18.217.189.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Sk Jahir Abbas
作者(英文):Sk Jahir Abbas
論文名稱:Analogues Chemistry of Coenzyme Vit-B6 & Application of Synthesized Biocompatible Materials
論文名稱(英文):Analogues Chemistry of Coenzyme Vit-B6 & Application of Synthesized Biocompatible Materials
指導教授:柯學初
指導教授(英文):Shyue-Chu Ke
口試委員:胡焯淳
翁明壽
朱修安
李佳洪
柯學初
口試委員(英文):Cho-chun Hu
Ming-Show Wong
Hsiu-An Chu
Chia-Hung Lee
Shyue-Chu Ke
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學號:810114108
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:137
關鍵詞:维生素B6的化学生物相容性材料
關鍵詞(英文):Chemistry of Vit-B6Biocompatible Materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
本文的目的主要有两个:一开始它的重点是类似物吡哆醛-5'-磷酸(PLP)和吡哆胺-5'-磷酸(PMP)的化学反应:辅酶B6化学中的一个独特的范例。将纳米结构材料和化学路线的多样性分别用于B6辅酶衍生物的合成,然后进一步研究生物催化自由基反应。另一个有趣的话题描述了潜在的应用和机理的阐述:生物相容的环保功能材料。在不含助催化剂的金属中不提供选择性氧化的领域。催化还原是不存在硬还原剂,偶联反应仍然具有挑战性。阐明微观电荷增强机制对纳米异质结构材料具有重要意义。
根据有机反应,包括吡哆醛,吡哆醛-N-氧化物,吡哆胺,吡哆胺-5'-磷酸和吡哆醛-5'-磷酸的C3取代的脱氧衍生物的吡哆醛-5'-磷酸类似物的高效选择性合成路线,磷酸盐通过还原和用多功能固体支持的绿色纳米颗粒选择性氧化而形成。该策略的突出特点是:经济二步转化,纳米粒子表面上更多数量的路易斯酸位点和空位。
在这个背景下,无助催化剂和无金属光氧化化学(Con:85.01%,Sel:99.6%)之间的研究相似。催化剂进行三组分cc偶联反应(表观收率76.22%)和催化还原(收率91%),类似地光降解(k = 0.1475h-1,C / C0和k = 0.7705h-1, / C0)和脂肪酸酯化(〜97%)。所有的协议都是环保,高效,简单和低成本的方法。另外,针对异质结构g-C3N4中作用机制的突出问题:(1)增强电荷分离的动力是什么? (2)掺入过量掺杂剂后,复合材料性能的降低如何?制备了具有良好活性的新型环保型CaO / g-C3N4异质结构,为揭示增强电荷分离的微观机理做好准备。 X射线和Q波段EPR光谱显示在可见光照射下没有从g-C3N4到CaO的电子转移的证据。 CaO / g-C3N4在不同比例下的活性与明暗EPR强度之间的强对应表明,催化反应的主要驱动力是被捕获在g-C3N4的C2p态的电子。时间分辨EPR跟踪显示在CaO / g-C3N4上存活的C2p俘获的电子比在g-C3N4上存活的更多,导致更高的活性。 1:5的CaO / g-C3N4达到最高的活性。过量掺入会降低活性,这是在异质结构的g-C3N4中经常发现的现象,但是没有得到解释。 EPR和DFT之间的相似性表明,CaO的掺入增加了LUMO C2p特征,用于俘获光激发的电子,从而减少有害的重组,以降低价带中的激子解离效率为代价,必须平衡协同相互作用以优化异质结构的g-C3N4
结果表明,这些材料是在乌云中获得银线的最有前途的有志之士。它以其光滑的能力和无限的有前景的灵活性,吸引了人们的注意力,使光景能够扩大,合成中间体/试剂和辅酶应用。本研究合并了独立的研究领域:有机合成,辅酶化学和材料科学,为酶和工业化学的未来发展指明了方向。
The aim for this dissertation is mainly two-fold; in the beginning it is focused on chemistry of analogues pyridoxal-5′-phosphate (PLP) and pyridoxamine-5′-phosphate (PMP): An exclusive paradigm in coenzyme B6 chemistry. The versatility of nanostructured materials and chemical route is employed to the synthesis of B6 coenzyme derivatives respectively, and then further investigation is carried out on biocatalytic radical reactions. Another interesting topic described potential application and mechanistic elucidation: Biocompatible environmental friendly functional materials. In the field of selective oxidation is not offered in metal free without co-catalyst. Catalytic reduction is the absence of hard reducing agent and coupling reaction remains challenging. The elucidation microscopic charge enhanced mechanism which is of great interest to the nanoheterostructured materials.
In the light of organic reaction, highly efficient-selective synthetic routes of the pyridoxal-5′-phosphate analogues including C3 substituted deoxy derivatives of pyridoxal, pyridoxal-N-oxide, pyridoxamine, pyridoxamine-5′-phosphate and pyridoxal-5′-phosphate are developed via reduction and selective oxidation with versatile solid supported green nanoparticles. The salient features of this strategy are: step economic two-fold conversion, more number of lewis acid sites and vacancies on the nanoparticle surface.
In this context, research parallels between co-catalysts free and metal free photo oxidation chemistry (Con: 85.01%, Sel: 99.6%). The catalyst progresses three component c-c coupling reaction (apparent yield 76.22%) and catalytic reduction (Yield: 91%), similarly photo-degradation (k=0.1475 h-1, C/C0 and k=0.7705 h-1, -ln C/C0) and fatty acids esterification (~97%). All the protocols are eco-friendly, efficient, simple and low-cost approach. In addition, address salient questions regarding the mechanism of actions in heterostructured g-C3N4: (1) What is the driving force to enhance charge separation? (2) How the degradation of the composite performance happens when excessive dopants are incorporated?. A novel and environmental friendly CaO/g-C3N4 heterostructure with good activity is prepared to unravel the microscopic mechanism for enhanced charge separation. X- and Q-band EPR spectroscopies revealed no evidence for electron transfer from g-C3N4 to CaO under visible light illumination. Strong correspondence between the activities and light-dark EPR intensities for CaO/g-C3N4 at different ratios demonstrates that the main driving force for the catalytic reaction is the electron trapped in the C2p state of g-C3N4. Time-resolved EPR tracking showed more C2p trapped electrons survived on CaO/g-C3N4 than on g-C3N4 leading to higher activity. 1:5 CaO/g-C3N4 achieved the highest activity. Excessive incorporation degrades the activity, a phenomenon often found in heterostructured g-C3N4 but unexplained. Parallels between EPR and DFT demonstrate that incorporation of CaO increases the LUMO C2p characters for trapping photoexcited electrons minimizing detrimental recombination, at the expense of decreasing exciton dissociation efficiency in the valance band, a synergistic interplay must be balanced for optimal performances of heterostructured g-C3N4.
The outcomes revealed that these kinds of materials are the most promising aspirants to acquire a silver line amidst of dark cloud. It attracts expressive attention for its smooth ability and limitless promising flexibility to enlarge the landscape towards photo energy, intermediates/reagents in synthesis, and coenzyme application. This study merge independent research field: organic synthesis, coenzyme chemistry and material science which help to point the way for future development of enzyme and industrial chemistry.
Acknowledgements I
Abstract IV
List of Figures IX
List of Schemes XII
List of Tables XIII
Chapter 1: Research Background and Motivation
1.1 Analogues Chemistry 1
1.1.1 Analogues Chemistry of PLP 2
1.1.2 Analogues Chemistry of PMP 3
1.2 Biocompatible Materials 4
1.3 Goals and Objectives 4
Chapter 2: MnO2/TiO2 Catalyzed Synthesis of Coenzyme Pyridoxamine-5′- Phosphate Analogues : 3-deoxypyridoxamine-5′- phosphate
2.1 Introduction 6
2.2 Results and Discussion 8
2.3 Conclusions 17
2.4 Experimental Section 18
2.4.1 General information 18
2.4.2 Preparation of catalysts 19
Chapter 3: CaO/TiO2 Catalyzed Synthesis of Coenzyme Pyridoxal-5′-Phosphate Analogues: 3-deoxypyridoxal-5′- phosphate
3.1 Introduction 26
3.2 Results and Discussion 27
3.2.1 Characterization of Catalysts 27
3.3 Conclusions 40
3.4 Experimental Section 41
3.4.1 General information 41
3.4.2 Preparation of catalysts 42
Chapter 4: A co-oxidant free selective oxidation of alcohol with non-metal catalysts: Visible light response with synergistic action and catalytic reduction
4.1 Introduction 47
4.2 Results and Discussion 48
4.3 Conclusions 63
4.4 Experimental Section 63
Chapter 5: Microscopic Mechanism of the Enhanced Charge Separation and Photocatalytic Activity of Environmental Friendly Nanoheterostructure
5.1 Introduction 65
5.2 Results and Discussion 65
5.3 Conclusions 77
5.4 Experimental Section 79
Chapter 6: A catalytic approach to synthesis of environmental protocols in a single handed CaO/TiO2 green nanoparticle
6.1 Introduction 80
6.2 Results and Discussion 81
6.2.1 Photocatalytic activity 81
6.2.2 Fatty acids esterification reaction 82
6.2.3 C-C Coupling reactions 85
6.3 Conclusions 88
6.4 Experimental Section 88
7 Summary 90
8 Reference 92
9 Appendices 99
9.1 List of Abbreviation 99
9.2 NMR spectrum chapter-2 100
9.3 NMR spectrum chapter-3 115
9.4 Scientific Contribution 136
9.5 Curriculum Vitac 137
1. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic and M. Mazur, Chemico-Biological Interactions, 2006, 160, 1-40.
2. F. S. Pala and H. Gürkan, Advances in Molecular Biology, 2008, 2, 1-9.
3. R. Singh, S. Devi and R. Gollen, Diabetes/Metabolism Research and Reviews, 2015, 31, 113-126.
4. M. Gutowski and S. Kowalczyk, Acta Biochimica Polonica, 2013, 60, 1-16.
5. D. E. Edmondson, Biol. Magn. Reson, 1978, 1, 205-237.
6. P. A. Frey, Chemical Reviews, 1990, 90, 1343-1357.
7. A. Maity, Y.-H. Chen and S.-C. Ke, International Journal of Molecular Sciences, 2014, 15, 3064.
8. C. Drewke and E. Leistner, in Vitamins & Hormones, Academic Press, 2001, vol. 61, pp. 121-155.
9. J. N. Jansonius, Current Opinion in Structural Biology, 1998, 8, 759-769.
10. M. D. Toney, Archives of Biochemistry and Biophysics, 2005, 433, 279-287.
11. A. C. Eliot and J. F. Kirsch, Annual Review of Biochemistry, 2004, 73, 383-415.
12. H. Hayashi, H. Wada, T. Yoshimura, N. Esaki and K. Soda, Annual Review of Biochemistry, 1990, 59, 87-110.
13. S.Mooney, J.E.Leuendorf, C.Hendrickson and H.Hellmann, Molecules, 2009, 14, 329-351.
14. S. Mooney and H. Hellmann, Phytochemistry, 2010, 71, 495-501.
15. G. Fenalti and A. M. Buckle, Autoimmunity Reviews, 2010, 9, 148-152.
16. H. Nishiura, E. A. Rietman and R. Wu, Theoretical Biology and Medical Modelling, 2013, 10, 1-11.
17. M. D. Toney, Arch Biochem Biophys, 2005, 433.
18. M. D. Toney and T. P. Begley, in Wiley Encyclopedia of Chemical Biology, John Wiley & Sons, Inc., 2007, DOI: 10.1002/9780470048672.wecb455.
19. R. Percudani and A. Peracchi, BMC Bioinformatics, 2009, 10, 273.
20. W. R. Griswold and M. D. Toney, Bioorg Med Chem Lett, 2010, 20, 1352-1354.
21. A. N. Maity, H.-H. Lin, H.-S. Chiang, H.-H. Lo and S.-C. Ke, ACS Catalysis, 2015, 5, 3093-3099.
22. S. D. Wetmore, D. M. Smith and L. Radom, Journal of the American Chemical Society, 2001, 123, 8678-8689.
23. S. D. Wetmore, D. M. Smith and L. Radom, Journal of the American Chemical Society, 2000, 122, 10208-10209.
24. S. Ohdake and T. Yamagishi, Bulletin of the Agricultural Chemical Society of Japan, 1935, 11, 51-61.
25. P. W. Wiardy, Nature, 1938, 142, 1158-1158.
26. E. E. Snell, B. M. Guirard and R. J. Williams, Journal of Biological Chemistry, 1942, 143, 519-530.
27. D. Dolphin, R. Poulson and O. A. (Eds.), Part A, Wiley-Interscience, 1986.
28. J. S. Thorson and H. W. Liu, Journal of the American Chemical Society, 1993, 115, 7539-7540.
29. H. W. Liu, Pure Appl. Chem, 1998, 70, 9-16.
30. R. G. Khalifah, J. Baynes and B. G. Hudson, Biochem. Biophys. Res. Commun, 1999, 257, 251-258.
31. J. M. Onorato, A. J. Jeenkins, S. R. Thorpe and J. W. Baynes, J. Biol. Chem, 2000, 257, 21177-21184.
32. P. A. Voziyam, T. O. Metz, J. W. Baynes and B. G. Hudson, J. Biol. Chem, 2002, 277, 3397-3403.
33. J. Chow, R. J. Kopp and P. R. Portney, Science, 2003, 302, 1528-1531.
34. F. Klose, P. Scholz, G. Kreisel, B. Ondruschka, R. Kneise and U. Knopf, Applied Catalysis B: Environmental, 2000, 28, 209-221.
35. H. Zhu, W. Luo, P. N. Ciesielski, Z. Fang, J. Y. Zhu, G. Henriksson, M. E. Himmel and L. Hu, Chemical Reviews, 2016, 116, 9305-9374.
36. J. Ran, J. Zhang, J. Yu, M. Jaroniec and S. Z. Qiao, Chemical Society Reviews, 2014, 43, 7787-7812.
37. I. Spiridon, R. N. Darie-Nita, G. E. Hitruc, J. Ludwiczak, I. A. Cianga Spiridon and M. Niculaua, Journal of Cleaner Production, 2016, 133, 235-242.
38. M. S. Taskhiri, M. Garbs and J. Geldermann, Journal of Cleaner Production, 2016, 110, 25-39.
39. R. M. Navarro, M. C. Alvarez-Galvan, J. A. Villoria de la Mano, S. M. Al-Zahrani and J. L. G. Fierro, Energy & Environmental Science, 2010, 3, 1865-1882.
40. F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angewandte Chemie International Edition, 2006, 45, 4467-4471.
41. F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Chemical Communications, 2006, DOI: 10.1039/B608532F, 4530-4532.
42. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nat Mater, 2009, 8, 76-80.
43. X. Chen, J. Zhang, X. Fu, M. Antonietti and X. Wang, Journal of the American Chemical Society, 2009, 131, 11658-11659.
44. X.-H. Li, J.-S. Chen, X. Wang, J. Sun and M. Antonietti, Journal of the American Chemical Society, 2011, 133, 8074-8077.
45. W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong and S.-P. Chai, Chemical Reviews, 2016, 116, 7159-7329.
46. S. Cao and J. Yu, The Journal of Physical Chemistry Letters, 2014, 5, 2101-2107.
47. Y. Wang, X. Wang and M. Antonietti, Angewandte Chemie International Edition, 2012, 51, 68-89.
48. N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen and B. Inceesungvorn, Journal of Colloid and Interface Science, 2014, 417, 402-409.
49. H.-Y. Chen, L.-G. Qiu, J.-D. Xiao, S. Ye, X. Jiang and Y.-P. Yuan, RSC Advances, 2014, 4, 22491-22496.
50. Y. Wang, R. Shi, J. Lin and Y. Zhu, Energy & Environmental Science, 2011, 4, 2922-2929.
51. Q. Hao, X. Niu, C. Nie, S. Hao, W. Zou, J. Ge, D. Chen and W. Yao, Physical Chemistry Chemical Physics, 2016, 18, 31410-31418.
52. H. Dong, M. Wei, J. Li, J. Fang, L. Gao, X. Li and A. Xu, RSC Advances, 2016, 6, 70747-70755.
53. P. A. Pieper, D.-y. Yang, H.-q. Zhou and H.-w. Liu, Journal of the American Chemical Society, 1997, 119, 1809-1817.
54. T. Pfeuffer, J. Ehrlich and E. Helmreich, Biochemistry, 1972, 11, 2125-2136.
55. K. Feldmann and E. J. M. Helmreich, Biochemistry, 1976, 15, 2394-2401.
56. V. J. Chen, D. E. Metzler and W. T. Jenkins, Journal of Biological Chemistry, 1987, 262, 14422-14427.
57. G. M. Sandala, D. M. Smith and L. Radom, Journal of the American Chemical Society, 2006, 128, 16004-16005.
58. M. L. Mechanik, Y. M. Torchinsky, V. L. Florentiev and M. Y. Karpeisky, FEBS Letters, 1971, 13, 177-180.
59. V. I. Ivanov, A. L. Bocharov, M. V. Volkenstein, M. Y. Karpeisky, S. Mora, E. I. Okina and L. V. Yudina, European Journal of Biochemistry, 1973, 40, 519-526.
60. J. E. Ayling and E. E. Snell, Biochemistry, 1968, 7, 1626-1636.
61. N. A. Stambolieva, Y. N. Breusov, M. Y. Karpeisky, A. M. Kritzyn and V. L. Florentiev, Tetrahedron, 1970, 26, 3083-3090.
62. N. A. Stambolieva, M. Y. Karpeiskii, A. M. Kritsyn and V. L. Florent'ev, Chemistry of Heterocyclic Compounds, 1971, 7, 455-459.
63. R. G. Jones and E. C. Kornfeld, Journal of the American Chemical Society, 1951, 73, 107-109.
64. H. Huang, D. Y. C. Leung and D. Ye, Journal of Materials Chemistry, 2011, 21, 9647-9652.
65. Z. Rui, L. Chen, H. Chen and H. Ji, Industrial & Engineering Chemistry Research, 2014, 53, 15879-15888.
66. A. Kamimura, Y. Nozaki, M. Nishiyama and M. Nakayama, RSC Advances, 2013, 3, 468-472.
67. A. R. Massah, R. J. Kalbasi and M. Azadi, Comptes Rendus Chimie, 2012, 15, 428-436.
68. M. D. Robbins and M. A. Henderson, Journal of Catalysis, 2006, 238, 111-121.
69. V. Idakiev, L. Ilieva, D. Andreeva, J. L. Blin, L. Gigot and B. L. Su, Applied Catalysis A: General, 2003, 243, 25-39.
70. Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C.-H. Shek, C. M. L. Wu and J. K. L. Lai, Chemical Reviews, 2012, 112, 3833-3855.
71. Z. W. Chen, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu and J. K. L. Lai, Progress in Materials Science, 2011, 56, 901-1029.
72. R. Huang, Y. Liu, Z. Chen, D. Pan, Z. Li, M. Wu, C.-H. Shek, C. M. L. Wu and J. K. L. Lai, ACS Applied Materials & Interfaces, 2015, 7, 3949-3959.
73. Y. Liu, Z. Chen, C.-H. Shek, C. M. L. Wu and J. K. L. Lai, ACS Applied Materials & Interfaces, 2014, 6, 9776-9784.
74. A. K. H. Nohman, M. I. Zaki, S. A. A. Mansour, R. B. Fahim and C. Kappenstein, Thermochimica Acta, 1992, 210, 103-121.
75. M. I. Zaki, A. K. H. Nohman, G. A. M. Hussein and Y. E. Nashed, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 99, 247-253.
76. E. J. Moriconi and F. A. Spano, Journal of the American Chemical Society, 1964, 86, 38-46.
77. A. F. Lindenstruth and C. A. VanderWerf, Journal of the American Chemical Society, 1949, 71, 3020-3021.
78. E. C. Kornfeld, Journal of the American Chemical Society, 1955, 77, 4425-4425.
79. J. D. Aiken Iii and R. G. Finke, Journal of Molecular Catalysis A: Chemical, 1999, 145, 1-44.
80. Y. V. Larichev, O. V. Netskina, O. V. Komova and V. I. Simagina, International Journal of Hydrogen Energy, 2010, 35, 6501-6507.
81. A. Aboukaïs, E. Abi-Aad and B. Taouk, Materials Chemistry and Physics, 2013, 142, 564-571.
82. A. Abad, P. Concepción, A. Corma and H. García, Angewandte Chemie International Edition, 2005, 44, 4066-4069.
83. H.-y. Sun, Q. Hua, F.-f. Guo, Z.-y. Wang and W.-x. Huang, Advanced Synthesis & Catalysis, 2012, 354, 569-573.
84. P. A. Frey and G. H. Reed, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2011, 1814, 1548-1557.
85. S. J. Abbas, P. V. R. K. Ramacharyulu and S.-C. Ke, RSC Advances, 2016, 6, 10242-10248.
86. R. Mallampati and S. Valiyaveettil, ACS Sustainable Chemistry & Engineering, 2014, 2, 855-859.
87. S. A. Gardezi and B. Joseph, Industrial & Engineering Chemistry Research, 2015, 54, 8080-8092.
88. M. Nasrollahzadeh, S. M. Sajadi and A. Hatamifard, Applied Catalysis B: Environmental, 2016, 191, 209-227.
89. D. Cree and A. Rutter, ACS Sustainable Chemistry & Engineering, 2015, 3, 941-949.
90. J. Shen, H. Wang, Y. Zhou, N. Ye, G. Li and L. Wang, RSC Advances, 2012, 2, 9173-9178.
91. B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie and M. S. El-Aasser, Langmuir, 2001, 17, 2664-2669.
92. S. Nath, S. Kumar Ghosh, S. Praharaj, S. Panigrahi, S. Basu and T. Pal, New Journal of Chemistry, 2005, 29, 1527-1534.
93. Y. Castro, N. Arconada and A. Durán, Boletín de la Sociedad Española de Cerámica y Vidrio, 2015, 54, 11-20.
94. R. K. Blackwood, G. B. Hess, C. E. Larrabee and F. J. Pilgrim, Journal of the American Chemical Society, 1958, 80, 6244-6249.
95. F. A. J. Armstrong, P. M. Williams and J. D. H. Strickland, Nature, 1966, 211, 481-483.
96. F. Su, S. C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert and X. Wang, Journal of the American Chemical Society, 2010, 132, 16299-16301.
97. W. Huang, B. C. Ma, H. Lu, R. Li, L. Wang, K. Landfester and K. A. I. Zhang, ACS Catalysis, 2017, 7, 5438-5442.
98. M. Zhang, C. Chen, W. Ma and J. Zhao, Angewandte Chemie, 2008, 120, 9876-9879.
99. Y.-Z. Chen, Z. U. Wang, H. Wang, J. Lu, S.-H. Yu and H.-L. Jiang, Journal of the American Chemical Society, 2017, 139, 2035-2044.
100. Z. Wu, E. M. Benchafia, Z. Iqbal and X. Wang, Angewandte Chemie International Edition, 2014, 53, 12555-12559.
101. T. Abe, G.-H. Tao, Y.-H. Joo, Y. Huang, B. Twamley and J. n. M. Shreeve, Angewandte Chemie, 2008, 120, 7195-7198.
102. D. R. Miller, J. R. Holst and E. G. Gillan, Inorganic Chemistry, 2007, 46, 2767-2774.
103. H. Teramoto, K.-i. Nakajima and K. Kojima, ACS Biomaterials Science & Engineering, 2016, 2, 251-258.
104. E. D. Stenehjem, V. R. Ziatdinov, T. D. P. Stack and C. E. D. Chidsey, Journal of the American Chemical Society, 2013, 135, 1110-1116.
105. Y.-C. Li, C. Qi, S.-H. Li, H.-J. Zhang, C.-H. Sun, Y.-Z. Yu and S.-P. Pang, Journal of the American Chemical Society, 2010, 132, 12172-12173.
106. B. Jiang and M. Xu, Angewandte Chemie, 2004, 116, 2597-2600.
107. J. J. Fleming and J. Du Bois, Journal of the American Chemical Society, 2006, 128, 3926-3927.
108. A. Hoepping, K. M. Johnson, C. George, J. Flippen-Anderson and A. P. Kozikowski, Journal of Medicinal Chemistry, 2000, 43, 2064-2071.
109. M. Naoi, W. Maruyama, M. B. H. Youdim, P. Yu and A. A. Boulton, InflammoPharmacology, 2003, 11, 175-181.
110. S. J. Abbas, P. V. R. K. Ramacharyulu, H.-H. Lo, S. I. Ali and S.-C. Ke, Applied Catalysis B: Environmental, 2017, 210, 276-289.
111. D. Hollmann, M. Karnahl, S. Tschierlei, K. Kailasam, M. Schneider, J. Radnik, K. Grabow, U. Bentrup, H. Junge, M. Beller, S. Lochbrunner, A. Thomas and A. Brückner, Chemistry of Materials, 2014, 26, 1727-1733.
112. S. C. Yan, Z. S. Li and Z. G. Zou, Langmuir, 2009, 25, 10397-10401.
113. Z. Zhang, K. Liu, Z. Feng, Y. Bao and B. Dong, 2016, 6, 19221.
114. M. Tabbala, T. Christidis, S. Isber, P. Merel, M. A. Khakani, M. Chaker, M. Amassian and L. Martinu, Journal of Applied Physics 2005, 98, 044310.
115. A. Molla, M. Sahu and S. Hussain, Scientific Reports, 2016, 6, 26034.
116. M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, Journal of Hazardous Materials, 2010, 177, 70-80.
117. A. Angelis-Dimakis, A. Alexandratou and A. Balzarini, Journal of Cleaner Production, 2016, 138, Part 2, 237-247.
118. C. A. Martínez-Huitle and E. Brillas, Applied Catalysis B: Environmental, 2009, 87, 105-145.
119. C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang and G. Guo, Energy & Environmental Science, 2014, 7, 2831-2867.
120. M. L. Marin, L. Santos-Juanes, A. Arques, A. M. Amat and M. A. Miranda, Chemical Reviews, 2012, 112, 1710-1750.
121. R. Luque, J. C. Lovett, B. Datta, J. Clancy, J. M. Campelo and A. A. Romero, Energy & Environmental Science, 2010, 3, 1706-1721.
122. G. L. Maddikeri, A. B. Pandit and P. R. Gogate, Industrial & Engineering Chemistry Research, 2012, 51, 14610-14628.
123. A. Karmakar, S. Karmakar and S. Mukherjee, Bioresource Technology, 2010, 101, 7201-7210.
124. R. Madhuvilakku and S. Piraman, Bioresource Technology, 2013, 150, 55-59.
125. Z. Wen, X. Yu, S.-T. Tu, J. Yan and E. Dahlquist, Bioresource Technology, 2010, 101, 9570-9576.
126. W. Lin, T. Cao, W. Fan, Y. Han, J. Kuang, H. Luo, B. Miao, X. Tang, Q. Yu, W. Yuan, J. Zhang, C. Zhu and S. Ma, Angewandte Chemie International Edition, 2014, 53, 277-281.
127. M. Naoi, W. Maruyama, H. Yi, K. Inaba, Y. Akao and M. Shamoto-Nagai, Journal of Neural Transmission, 2009, 116, 1371-1381.
128. J. P. Brand and J. Waser, Chemical Society Reviews, 2012, 41, 4165-4179.
129. D. Habrant, V. Rauhala and A. M. P. Koskinen, Chemical Society Reviews, 2010, 39, 2007-2017.
130. H. Nakamura, T. Kamakura, M. Ishikura and J.-F. Biellmann, Journal of the American Chemical Society, 2004, 126, 5958-5959.
131. S. P. Teong, D. Yu, Y. N. Sum and Y. Zhang, Green Chemistry, 2016, 18, 3499-3502.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *