帳號:guest(3.144.114.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:王志惠
作者(英文):Chih-Hui Wang
論文名稱:颱風事件對臺灣山地地區物理及化學侵蝕的影響:以萬里溪與馬太鞍溪為例
論文名稱(英文):Role of Episodic Events in Physical and Chemical Erosion in Montane Rivers, Taiwan: A Case Study From The Regions of Wan_li and Ma_an River
指導教授:劉瑩三
指導教授(英文):Ying-San Liou
口試委員:江漢全
齊士崢
張有和
顏君毅
黃誌川
劉瑩三
口試委員(英文):Hann-Chyuan Chiang
Shyh-Jeng Chyi
Yo-Ho Chang
Jiun-Yee Yen
Jr-Chuan Huang
Ying-San Liou
學位類別:博士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:810154002
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:119
關鍵詞:物理侵蝕化學風化輸砂量懸浮沉積物花蓮
關鍵詞(英文):physical erosionchemical weatheringsediment dischargetropical cycloneTaiwan
相關次數:
  • 推薦推薦:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
化學風化與物理侵蝕之間的耦合(coupling)(兩個體系之間藉由各種相互作用而彼此影響),在活躍的造山帶引起了學術界極大的興趣,由於崩塌是佔物理侵蝕的主導地位,但對不同崩塌比對化學風化的影響討論較少。本研究分別收集了臺灣東部兩個相鄰崩塌比率不同的流域(萬里溪、馬鞍溪)的總溶解固體(TDS,包括主要陽離子和陰離子)和總懸浮固體(TSS),及在颱風事件期間的高頻率採樣,來釐清颱風事件對物理侵蝕率(PER)和化學風化率(CWR)在時序上的變化與彼此的共變關係(covariation),以及颱風對物理侵蝕率和化學風化率的貢獻量,同時研究在不同崩塌率條件下的不同侵蝕和流量狀況,以及如何調節化學風化與大氣CO2。
結果顯示,颱風引起的降雨量僅佔年降雨量的20%,然而沉積物輸出量卻佔年輸出量的80%以上。颱風期間,萬里溪的PER 佔全年97.7%,馬太鞍溪的PER為87.8%;萬里溪的CWR 佔全年的22.3%,馬太鞍溪佔17.3%,並由結果推知颱風事件是PER 的主要營力且對CWR 亦有重要的影響。就CWR 而言,矽酸鹽風化速率隨著碳酸鹽岩量的增加而增加,兩者之間存在線性關係,輸出量高於世界平均水準,特別是碳酸鹽岩風化侵蝕速率超過全球風化速率的平均值25 倍以上。流量對TDS 的三種風化速率(CWRsil、CWRcarb 及CWRpyrite)具有效的控制,其中三分之二的量是在颱風季節輸出。非颱風期間的平日,CWRsil可能與侵蝕無關,並且對兩個流域呈現動力學限制(kinetic-limited)。CWRcarb和CWRpyrite 在崩塌較少的集水區存在供不應求的趨勢,而在崩塌較多的集水區則由供應限制(supply-limited)轉變為動力學限制的狀態。儘管物理侵蝕會實質地增加化學風化作用,但增加的大部分來自碳酸鹽岩風化和黃鐵礦氧化引起的。但是,CWRpyrite 的增加會抑制CO2 的消耗甚至釋放,特別是在颱風季節CWRpyritt 成為主要的風化來源。由於侵蝕而增強的化學風化作用不會增加大氣中的CO2 消耗,特別是在颱風季節甚至會增加CO2 的釋放。未來的工作,應該在其他山區進一步研究三種具有不同侵蝕速率的化學風化速率下的CO2 消耗能力,來檢驗因為侵蝕而增強的化學風化對全球降溫的假說。
Coupling between chemical weathering and physical erosion is highly of
interest in active mountain belts, but how chemical weathering responses to
landslide is less discussed. Streamwater TDS (total dissolved solids) and TSS (total
suspended solids) were collected in two adjacent catchments with different landslide
ratios in Eastern Taiwan. Besides, the high-frequency sampling is applied on
typhoon events to clarify the covariation of CWR and PER and determine the
contribution of typhoons to CWR and PER. To investigate how varied erosion and
flow-regimes regulate chemical weathering and the associated CO2 budget under
different conditions of landslide ratio.
Results showed that the typhoon-induced rainfall only account for 20% of the
annual rainfall, whereas the sediment discharge, contrastly, contributed over 80% of
the annual load. For PDR, the PER of Wan_li river in the typhoon accounts for
97.1% of the whole year, and that of Ma_an river is 87.8%. The CWR of Wan_li
river accounted for 22.3% of the whole year, and Ma_an river accounted for 17.3%,
indicating that events of the typhoon are the main source of PER and CWR. In CWR,
the rate of silicate rock erosion increases with the amount of carbonate, there is a
linear relationship between the two, the output is higher than the average of the
world, especially the rate of carbonate erosion which is over 25-fold than the global
average. Streamflow is a strong control on the three weathering rates derived from
TDS, of which up to one-third is exported during typhoons. On a daily scale, the
CWRsil is likely kinetic-limited in the two catchments. The CWRcarb and CWRpyrite
change from supply-limited to kinetic-limited with the increase of landslide ratio.
Although physical erosion exerts chemical weathering substantially, most of the
enhanced weathering results from carbonate weathering and pyrite oxidation. The
increased CWRpyrite unfortunately dampens CO2 consumption, and even elevates
CO2 release, particularly during typhoon seasons, CWRpyrite becomes a more
dominant feature of weathering. The capacity of CO2 consumption by the three
types of chemical weathering complicated with different erosion rates should be
further investigated in other mountainous regions for testing the hypothesis of
global cooling by enhanced chemical weathering from erosion.
中文摘要 IV
英文摘要 VI
目錄 VII
圖目錄 V
表目錄 VII
第一章緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 4
第二章研究區域 7
2.1 地形與地質概況 7
2.2 氣候與水文概況 8
2.3 極端降雨事件 11
第三章文獻回顧 15
3.1 輸砂量與侵蝕作用之關係 15
3.2 崩塌地影響因子 18
3.3 影響河水化學性質之自然因素 23
第四章研究方法 35
4.1 河川水質採樣與分析 36
4.2 河川水質主要離子分析方法 39
4.3 資料的分析與處理 45
第五章結果 51
5.1 總懸浮沉積物、總溶解固體及崩塌地觀測值 51
5.2 總懸浮沉積物與輸砂量之變化 54
5.3 河川化學性質 62
第六章討論 77
6.1 輸砂量之季節變化 77
6.2 河川溶解性物質來源與輸出量變化 85
6.3 物理侵蝕和化學風化的關係 92
6.4 化學風化與二氧化碳的作用 97
第七章結論 103
參考文獻 107
王鑫(1988)地形學,聯經出版事業股份有限公司。
史天元(2012) 以空載光達數值高程模型進行流域地形測計探討,行政院國家科
學委員會補助專題研究計畫成果報告。
池谷浩(1980)土石流災害調查法,台北:國家科學委員會土石流研究群日文翻譯
本,引用自桃善文(2001)。
江漢全(2010)降雨量對花蓮縣河川RPI 之影響研究計畫,宜蘭大學。
何春蓀(1982)普通地質學,國立編譯館。
何春蓀(2005)臺灣地質概論臺灣地質圖說明書經,濟部中央地質調查所出版社。
杜瑞澤與張祖慰(2004)永續產業發展雙月刊,第十六期,30-42。
李三畏(1984)臺灣崩塌問題研討,地工技術雜誌,7,43-49。
李珠(2002)感應偶核電漿質譜儀技術及其在材料分析上的應用,工業材料雜誌,
181 期,87-93。
沈少文(2011)臺灣地區集水區河川侵蝕速率之分析,國立臺南大學,水保技術,
6(2):90-97。
林孟龍(2000)颱風對於蘭陽溪上游集水區懸浮物質生產特性的影響,國立臺灣大
學碩士論文。
林孟龍與林俊全(2003)颱風對於蘭陽溪上游集水區懸物質產生特性的影響,地理
學報,第33 期,39-53。
林冠瑋(2010)臺灣地區之河流輸砂量與岩性、逕流量及地震之相關性,國立臺灣
大學地質科學系博士論文。
林辰翰(2013)花蓮和平溪流域山崩作用與河川化性之相關性,國立臺灣大學地質
科學研究所碩士論文。
呂名翔(2007)新武呂溪流域的山崩與輸砂量在地震與颱風事件中的相對關係,國
立臺灣大學地質科學研究所碩士論文。
洪如江(1992)坡地災害防治(一),台北:行政院國科會重點科技簡介叢書第六輯。
徐美玲(1995) Agrid-based model fog predicting dymamic soil pore pressure,國立
臺灣大學理學院地理學報,18:1-21。
夏興輝與張利田(1999)長江、黃河、松花江60-90 年代水質變化趨勢與社會經濟
發展的關係,環境科學學報,19:500-505。
財團法人成大研究發展基金會(2014)運用光學衛星影像於全島崩塌地判釋與災
害分析(102-103 年),行政院農業委員會林務局。
黃進坤、呂珍謀與林志聰 (2001)黏性土壤沖刷特性之研究,第十二屆水利工程
研討會,D203-D208。
陳靜生(1992)水環境化學,曉園出版社。
林美玲(1999)陳有蘭溪流域土石流地理資訊系統建立與土石流溪流特性分析,災
害國家型科技計畫88 年度成果報告。
陳紫娥(2000)花蓮溪與秀姑巒溪河谷沖積扇之自然環境與土石災害之比較研究,
海峽兩岸流域經營管理暨東部河川集水區管理綜和研討會。
陳汝勤與莊文星( 2001)岩石學-第八章沉積岩各論 236-238,聯經出版社。
陳冠樺與陳宏宇(2015)林邊溪流域河川化學性質、輸砂量與山崩之關係,工程環
境會刊第三十四期,97~122。
陳冠樺(2014)林邊溪流域河川化學性質、輸砂量與山崩之關係,國立臺灣大學碩
士論文。
陳雅惠,儀器基本原理-感應耦合電漿光譜儀,逢甲大學研發處共同貴重儀器中
心,20181112 查詢。
陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民、王國
龍(2016)臺灣地質概論,財團法人中華民國地質學會。
陳沛壕(2017)亞熱帶造山帶之化學風化及其控制因子,國立台灣大學碩士論文。
張瑞津、沈淑敏與劉盈劭(2001)陳有蘭溪四個小流域崩塌與土石流發生頻率之研
究,國立臺灣師範大學地理研究報告第34 期, 第63-83 頁。
張有和(2003)衛星影像辨認在花蓮地區萬里溪、馬太鞍溪集水區崩塌地普查
之應用,中國地理學會會刊,31 期,第1-11 頁。
張子瑩與徐美玲(2004)暴雨與地震觸發崩塌發生區位之比較-以陳有蘭溪流域
為例。台大地理學報35:1-16。
張正亮、紀宗吉與張瑞津(2005)遙測與地理資訊系統應用於大甲溪流域之環境災
害調查分析,師大地理研究報告。
連凱莉(2009)臺灣小河川溶解性物質之區域性與季節性變化,國立臺灣大學海洋
研究所碩士論文。
經濟部水利署(2013)花蓮溪水系治理規劃檢討。
經濟部水利署(2014)水文統計簡訊。
鄒年喬(2010)石門水庫集水區之降雨特性對崩塌及輸砂量的關係,國立臺灣大學
地質科學研究所碩士論文。
楊貴三與沈淑敏(2010)臺灣全志,卷二土地志•地形篇,臺灣文獻館。南投縣南
投市。
楊鈞沂(2001)高屏溪流域陸源物質之剝蝕與傳輸,國立中山大學海洋地質及化學
研究所碩士論文。
鄧屬予(2002)臺灣新生代大地構造,臺灣的大地構造,中國地質學會,49-93。
鄧澤揚(2016)模擬臺灣易山崩地區之崩塌面積及沉積物輸出,國地臺灣大學碩士
論文。
賴怡萱(2013)台灣小河川溶解性物質之季節性變化與極端事件影響,國立台灣大
學碩士論文。
謝文哲(2004)颱風對集水區內崩塌地之影響與剝蝕速率之探討-以花蓮地區馬太
鞍溪與萬里溪為例,國立花蓮師範學院生態與環境研究所碩士論文。
謝玉興(2004)南橫公路邊坡崩壞與降雨間關係研究,臺灣公路工程,第三十卷第
十一期,26-45。
顏富士與蔡鎰輝(1985)臺灣西南部主要泥岩坡地所含黏土之物化特性研究,國家
科學委員會防災科技研究報告73-26 號。
Auer, K and Shakoor, A. (1989) Geotechnical characterization of drainage basin
stability with respect to debris avalanches in center Virginia, Bulletin of
Association of Engineering Geology, 26: 387-395.
Asselman, N.E.M. (2000) Fitting and interpretation of sediment rating curves. J.
Hydrol. 234, 228–248.
Bormann, F.H. (1979) Pattern and process in a forested ecosystem.
Berner ,E.K. and Berner, R.A. (1987) The global water cycle: Ceochemistry and
Environment. Prentice-Hall, Inc., Englewood Cliffs, NJ.
Bluth, G. J. S., and L. R. Kump. (1994) Lithological and climatologicalcontrols of
river chemistry, Geochim. Cosmochim. Acta, 58, 2341–2359.
Berner, R.A., Lasaga, A.C. and Garrels, R.M. (1983) The carbonate-silicate
geochemical cycle and its effect on atmospheric carbon-dioxide over the pasr 100
million years. American Journal of Science 283,
Berner, E.K. and Berner, R.A. (1996) Global environment: Water, Air, and
Geochemical cycles, Prentice Hall, new Jersey.
Berry Lyone W. and Anne E. Carey. (2005) Chemical weathering in
high-sediment-yielding watersheds,New Zealand. Journal.Vol. 110, F01008,
doi:10.
Berner, E.K. and Berner, R.A. (2012) Global environment: Water, Air, and
Geochemical Cycles, Second ed. Princeton University press.
Blattmann, T.M., Wang, S.L., Lupker, M., Marki, L., Haghipour, N., Wacker, L.,
Chung, L.H., Bernasconi, S.M., Plotze, M. and Eglinton, T.I. (2019) Sulphuric
acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks.
Sci Rep 9, 8.
Chen, C. T. and J. J. Hung. (1987) Acid rain and lake acidification in Taiwan. Proc.
Natl. Sci. Counc. (ROC),11,436-442.
Calmels, D., Gaillardet, J., Brenot, A. and France-Lanord, C. (2007) Sustained
sulfide oxidation by physical erosion processes in the Mackenzie River basin:
Climatic perspectives. Geology 35, 1003-1006.
Chuang, S. C., Chen H., Lin G. W., Lin C. W. and Chang C. P. (2009) Increase in
basin sediment yield from landslides in storms following major seismic
disturbance, Engineering Geology, 103, 59-65.
Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A.J., Chen, M.C. and Chapman,
H. (2011) Contribution of deep groundwater to the weathering budget in a
rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters 303,
48-58.
Chao, H. C., You, C. F., Liu, H. C., and Chung, C. H. (2015) Evidence for stable Srisotope fractionation by silicate weathering in a small sedimentary watershed in
southwestern Taiwan. Geochimica et Cosmochimica Acta, 165, 324-341.
Chen, C. W., Oguchi, T., Hayakawa, Y. S., Chen, H., Lin, G. W., Wei, L. W. and
Chao, Y. C. (2018) Sediment yield during typhoon events in relation to landslides,
rainfall, and catchment areas in Taiwan. Geomorphology, 303, 540-548.
Chiang, L.C,, Wang, Y, C. and Liao, C, J. (2019) Spatiotemporal Variation of
Sediment Export from Multiple TaiwanWatersheds. Journal Environmental
Research and Public Health, 16, 1610; doi:10.3390
Duan, N. (1983) Smearing estimate :A non-parametric retransformation method.
Journal of the American Statistical Associztion, Vol.78(383),pp.605-610.
Dietrich, W. E., Wilson, C. J. and Reneau, S. L. (1986) Hollows, colluvium, and
landslides in soil-mantled landscapes. In: A. D. Abraham (ed.) Hilllslope
Processes, Allen & Unwin: 361-388.
Dalai, T.K., Krishnaswami, S. and Sarin, M.M. (2002) Major ion chemistry in the
headwaters of the Yamuna river system: Chemical weathering, its temperature
dependence and CO2 consumption in the Himalaya. Geochimica Et
Cosmochimica Acta 66, 3397-3416.
Dalai, T.K., Krishnaswami, S. and Sarin, M.M. (2002) Major ion chemistry in the
headwaters of the Yamuna river system: Chemical weathering, its temperature
dependence and CO2 consumption in the Himalaya. Geochimica Et
Cosmochimica Acta 66, 3397-3416.
Dadson, S.J., Hovius, N., Chen, H., Dade,W.B., Hsieh, M.L.,Willett, S.D., Hu, J.C.,
Horng, M.J., Chen, M.C., Stark, C.P., Lague, D. and Lin, J.C. (2003) Links
between erosion, runoff variability and seismicity in the Taiwan orogeny. Nature
426, 648–651.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W.,
Horng, M.J., Chen, T.C., Milliman, J. and Stark, C.P. (2004) Earthquake-triggered
increase in sediment delivery from an active mountain belt. Geology 32, 733–
736.
Dadson, S.J., Hovius, N., Pegg, S., Dade,W.B., Horng,M.J. and Chen, H. (2005)
Hyperpycnal river flows from an active mountain belt. J. Geophys. Res. 110,
F04016.
Das, A., Chung, C.H. and You, C.F. (2012) Disproportionately high rates of sulfide
oxidation from mountainous river basins of Taiwan orogeny : Sulfur isotope
evidence. Geophysical Research Letters 39,6.
Edmond, J. M., M. R. Palmer, C. I. Measures, B. Grant. and R. F. Stallard. (1995)
The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela,
Colombia, and Brazil, Geochim. Cosmochim. Acta, 59, 3301–3325.
Emberson, R., Hovius, N., Galy, A. and Marc, O. (2016a) Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nature
Geoscience 9, 42-47.
Emberson, R., Hovius, N., Galy, A. and Marc, O. (2016b) Oxidation of sulfides and
rapid weathering in recent landslides. Earth Surf. Dyn. 4, 727-742.
Emberson, R., Galy, A. and Hovius, N. (2018) Weathering of Reactive Mineral
Phases in Landslides Acts as a Source of Carbon Dioxide in Mountain Belts. J.
Geophys. Res.-Earth Surf. 123, 2695-2713.
FranceLanord, C. and Derry, L.A. (1997) Organic carbon burial forcing of the
carbon cycle from Himalayan erosion. Nature 390, 65-67.
Fuchu, D. and Lee, C.F. (2001) Frequency of rainstorm-induced slide-debris flows
on natural terrain of Lantau Island, Honk Kong, Engineering Geology,
51:279-290
France-Lanord, C., Galy, A. and Singh, S. (2002) The climatic control of weathering
in the Himalayan river system (abstract), Geochim. Cosmochim. Acta, 66, A242.
Fuller, C.W., Hovius, N., Willett, S. and Slingerland, R.L. (2003) Erosion rates for
Taiwan mountain basins :New determinations from suspended sediment records
and a stochastic model of their temporal variation. Journal of Geology,
Vol.111,pp.71-88
Gibb, R.J. (1970) Mechanisms controlling world water chemistry. Science 170,
1088-1090.
Garrels, R.M., Mackenzie, F.T. and Hunt, C. (1975) Chemical cycles and the global
enviroment: assessing human influences. William, Kaufmann.(Editor), United
States: Web.
Galloway, J.N., Keene, W. C. and Miller, J. M. (1982) The composition of
precipitation in remote areas of the world. J. Geophy. Res., 87,8771-8786.
Geli, L., Bard, P. Y. and Jullien, B. (1988) The effect of topography on
earthqGaillardet, J., B. Dupre´, P. Louvat, and C. J. Alle`gre., 1999b. Global
silicate weathering and CO2 consumption rates deduced from the chemistry of
large rivers, Chem. Geol., 159, 3-30.
Gaillardet, J., Dupre, B., Louvat, P. and Allegre, C.J. (1999) Global silicate
weathering and CO2 consumption rates deduced from the chemistry of large
rivers. Chemical Geology 159, 3-30.
Galy, A. and France-Lanord. C. (1999) Weathering processes in the
Ganges-Brahmaputra basin and the riverine alkalinity budget. Chemical Geology
159, 31-60.
Grzymko T.J., Marcantonio, F., Mckee B.A. and Stewart C. M. (2007) Temporal
variability of uranium concentrations and 234U/238U activity ratios in the
Mississippi river and its tributaries. Chem. Geol.214,344-256.
Gabet, E.J. and Mudd, S.M. (2009) A theoretical model coupling chemical weathering rates with denudation rates. Geology 37, 151-154.
Guzman, C.D., Tilahun, S.A. and Zegeye, A.D. (2013) Steenhuis, T.S. Suspended
sediment concentration–discharge relationships in the humid Ethiopian highlands.
Hydrol. Earth Syst. Sci. 17, 1067–1077.
Hwang. C. E. (1982) Suspended Sediment of Taiwan River and their
geomorphological significance, Bulletin of National Taiwan Normal
University.27,649-677.
Hovius, N., Stark, C.P., Chu, H.T. and Lin, J.C (2000) Supply and removal of
sediment in a landslide-dominated mountain belt:Central Range,Taiwan.Journal
of Geology,108,73-89.
Harris, S. E. and A. C. Mix. (2002) Climate and tectonic influences on continental
erosion of tropical South America, 0– 13 Ma, Geology, 30, 447– 450.
Hartshorn, K., Hovius, N., Dade, W.B. and Slingerland, R. L. (2002)Climate-Driven
Bedrock Incision in an Active Mountain Belt, Journal of SCIENCE,
297,2036-2038.
Horowitz, A.J. (2003) An evaluation of sediment rating curves for estimating
suspended sediment concentrations for subsequent flux calculations. Hydrol.
Process. 17, 3387–3409.
Hartmann, J., Jansen, N., Durr, H. H., Kempe, S. and Kohler, P. (2009) Global
CO2-consumption by chemical weathering: What is the contribution of highly
active weathering regions glob. Planet Change 69, 185-194.
Hilley, G. E., Chamberlain, C.P., Moon, S., Porder, S. and Willett, S.D. (2010)
Competition between erosion and reaction kinetics in controlling
silicate-weathering rates. Earth and Planetary Science Letters 293, 191-199.
Huang, J.C., Lee, T.Y., Kao, S.J., Hsu, S.C., Lin, H.J. and Peng, T.R. (2012) Land
use effect and hydrological control on nitrate yield in subtropical mountainous
watersheds. Hydrology and Earth System Sciences 16, 699-714.
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. and West, A.J. (2014)
Global chemical weathering and associated P-release - The role of lithology,
temperature and soil properties. Chemical Geology 363, 145-163.
Keefer, D. K. (1984) Landslides caused by earthquakes, Geological Society of
America Bulletin, 95: 406-421.
Khazai, B. and Sitar, N. (2000) Assessment of Seismic Slope Stability Using GIS
Modiling, Geograpgic Information Sciences, 6, 121-128.
Kao, S. J., and Liu, K. K. (2001) Estimating the suspended sediment load by using
the historical hydrometric record from the Lanyang-Hsi watershed. Terres. Atmos.
Ocean. Sci. 12:401–414.
Kao, S. J., Chan, S. C. H. and Liu, K. K. (2005) Transport-dominated sediment
loading in Twianese rivers: a case study from the Ma-an stream, The Journal of Geology, 113,217-255.
Kao S. J. and Milliman J. D. (2008) Water and Sediment Discharge from Small
Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events, and
Human Activities. The Journal of Geology, 116, 431–448.
Li, Y. H. (1976) Denudation of Taiwan Island since the Pleistocene epoch. Geology
4, 105–107.
Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E. and Nagy, K.L. (1994)
Chemical-weathering rate laws and global geochemical cycles. Geochimica Et
Cosmochimica Acta 58, 2361-2386.
Liu, C.C. (1982) The Ilan Plain and the Southwestward extending Okinawa Trough,
J. Geol. Soc. China, 38, 3,229-242.
Louvat, P., and Allegre,C.J. (1997) Present denudation rates in the island of
Re´union determined by river geochemistry: Basalt weathering and mass budget
between chemical and mechanical erosions, Geochim.Cosmochim. Acta, 61,
3645–3669.
Lin, C. W., Shieh, C. L., Yuan, B. D., Shieh, Y. C, Liu, S. H. and Lee, S. Y. (2003)
Impact of Chi-Chi earthquake on the occurrence of landslides and debris flow:
example from the Chenyulan river Watershed, Nantou, Taiwan, Engineering
Geology, 71, 49-61.
Lyons, W.B., Carey, A.E., Hicks, D.M. and Nezat, C.A. (2005) Chemical weathering
in high-sediment-yielding watersheds, New Zealand, Journal of Geophysical
Research 110: F01008, doi:10.1029/2003JF000088.
Lin, G. W., Chen, H., Y. H. and Horng, M. J. (2008) Influence of typhoons and
earthquakes on rainfall-induced landslides and suspended sediments discharge,
Engineering Gelolgy,97,32-41.
Liu, Z., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z., Siringan, F.P., Liu, J.T.,
Huang, C.Y., You, C.F. and Huang, K.F. (2010) Clay mineral distribution in
surface sediments of the northeastern South China Sea and surrounding fluvial
drainage basins: Source transport. Marine Geology277,48-60.
Lin, G.W., and Chen, H. (2013) Recurrence of hyper-concentration flows on the
orogenic, subtropical island of Taiwan. J. Hydrol. 502, 139–144.
Larsen, I.J., Almond, P.C., Eger, A., Stone, J.O., Montgomery, D.R. and Malcolm, B.
(2014) Rapid Soil Production and Weathering in the Southern Alps, New Zealand.
Science 343, 637-640
Li, S.Y., Lu, X.X. and Bush, R.T. (2014) Chemical weathering and CO2 consumption
in the Lower Mekong River. Science of the Total Environment 472, 162-177.
Lee, L. C., Hsu, T. C., Lee, T. Y., Shih, Y. T., Lin, C. Y., Jien, S. H. and Huang, J. C.
(2019) Unusual Roles of Discharge slope and SOC in DOC transport in small
Mountainous Rivers, Taiwan. Scientific reports, 9(1), 1574.
Lee, Y.J., Chena, Pei.H., Leeb, T.Y., Shiha, Y.T. and Huanga, J.C. (2020) Temporal
variation of chemical weathering rate, source shifting and relationship with
physical erosion in small mountainous rivers, Taiwan. Catena, Volume 190.
Meybeck, M. (1979) Concentrations deseaux fluviales en elements majeurs et
apports en solution aux oceans. Rev. Geol. Dyn. Geogr. Phys., 21(3),215-246.
Meybeck M. (1983) Atmospheric inputs and river transport of dissolved substances.
Proceeding of the Hamburg Symposium. IAHS Publ., vol. 141,pp.173-192.
Milliman, J. D. and Meade, R. H. (1983) World-wide delivery of river sediment to
the oceans. J. Geol. 91, 1-21.
Meybeck M. (1985) Variabilite dans le temps de la composition chimique des
rivieres et de leurs transport en solution et ensuspension. Rev. Sci. Eau 4, 93–121.
Meybeck, M. (1987) Global chemical weathering of surficial rocks estimated from
river dissolved loads. American Journal of Science 287, 401-428.
Mcknight, T. L. (1990) Physical geography: a landscape appreciation, 3rd ed , New
Jersey: Englewood Cliffs Press, 585.
Milliman, J.D. and Syvistski ,J.P.M. (1992) Geomorphic tectonic control of
sediment to the oceans. J. Geol., 100,525-544.
Moody, J.A. and Meade, R.H. (1994) Evaluation of the method of collecting
suspended sediment from large rivers by discharge-weighted pumping and
separating it by continuous-flow centrifugation. Hydrological Process,
v.8,513-530.
Montgomery ,D.R. and Dietrich, W.E. (1994) A physically-based model for the
topographic control on shallow landsliding, Water Resourdes Reesearch, 30(4):
1153-1171.
McDowell, W.H. (2001) Hurricanes, people, and riparian zones: controls on nutrient
losses from forested Caribbean watersheds. Forest Ecology and Management 154,
443-451.
Milligan, A.J. and Morel, F.M.M. (2002) A proton buffering role for silica in
diatoms. Science 297, 1848-1850.
Millot, R., Gaillardet, J., Dupre, B. and Allegre, C.J. (2002) The global control of
silicate weathering rates and the coupling with physical erosion: new insights
from rivers of the Canadian Shield. Earth and Planetary Science Letters 196,
83-98.
Mortatti, J. and Probst, J.L. (2003) Silicate rock weathering and atmospheric/ soil
CO2 uptake in the Amazon basin estimated from river water geochemistry:
Seasonal and spatial variations, Chem. Geol., 197, 177– 196
Mortatti, J. and Probst, J.L. (2003) Silicate rock weathering and atmospheric/soil
CO2 uptake in the Amazon basin estimated from river water geochemistry:
seasonal and spatial variations. Chemical Geology 197, 177-196.
Milliman, J. D.,and Kao, S. J. (2005) Hyperpycnal discharge of fluvial sediment to
the ocean: impact of Super-Typhoon Herb (1996) on Taiwanese Rivers. J. Geol.
113:503–516.
Milliman, J.D. and Farnsworth, K.L. (2011) River Discharge to the Coastal Ocean.
Cambridge university, New York.
Millot, R., Gaillardet, J., Dupre, B. and Allegre, C.J. (2002) The global control of
silicate weathering rates and the coupling with physical erosion: new insights
from rivers of the Canadian Shield. Earth and Planetary Science Letters 196,
83-98.
McKergow, L.A., Prosser, I.P., Hughes, A.O. and Brodie, J. (2005) Sources of
sediment to the Great Barrier Reef world heritage area. Mar. Pollut. Bull. 51,
200–211.
Moore, J. R., Jacobson A. D., Holmden C. and Craw, D. (2013) Tracking the
relationship between mountain uplift, silicate weathering, and long-term CO2
consumption with Ca isotopes: Southern Alps, New Zealand, Chemical Geology
341, 110~127.
Maher, K. and Chamberiain, C.P. (2014) Hydrological Regulation of Chemical
Weathering and the Geologic Carbon Cycle, Science 343: 1502-1504,
doi:10.1126/science.1250770.
Milliman. J.D., Lee,T.Y., Huang, J.C. and Kao, S.J. (2015) Temporal and spatial
responses of river discharge to tectonic and climatic perturbations:Choshui
River,Taiwan,and Typhoon Mindulle(2004). Proceedings of the International
Association of Hydrological Sciences367,29-39.
Moore, J., Jacobson, A. D., Holmden, C. and Craw, D. (2013) Tracking the
relationship between mountain uplift, silicate weathering, and long-term CO2
consumption with Ca isotopes: Southern Alps, New Zealand. Chemical
Geology, 341, 110-127
Meyer, K.J., Carey, A.E. and You, C.F. (2017) Typhoon impacts on chemical
weathering source provenance of a High Standing Island watershed, Taiwan.
Geochimica et Cosmochimica Acta, 215, 404-420, doi:10.1016/
j.gca.2017.07.015.
Milliman, J.D., Lee, T.Y., Huang, J.C. and Kao, S.J. (2017) Impact of catastrophic
events on small mountainous rivers: Temporal and spatial variations in suspended
and dissolved-solid fluxes along the Choshui River, central western Taiwan,
during Typhoon Mindulle, July 2-6, 2004. Geochim. Cosmochim. Acta 205:
272-294.
Mager, S.M., Diack, E.E. and Horton, S.L. (2018) Catchment-scale weathering
fluxes in the Southern Alps, New Zealand. Geomorphology, 316, 24-34.
Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I – A discussion of principles. J. Hydrol. 10, 282–290,
Negrel, P., Allegre, C.J., Dupre, B. and Lewin, E. (1993) Erosion sources determined by
inversion of major and trace element ratios and strontium isotopic ratios in river water:
The Congo Basin case. Earth and Planetary Science Letters 120, 59-76.
Okimura, T. and Nakagawa, M. (1988) A method for predicting surface mountain
slope failure with a digital landform model, Shin Saba, 41: 48-56.
Oliver, K., Mauri J.M. and Davies, R.H. (2004) Sediment generation and delivery
from large historic landslides in Southern Alps, New Zealand. Geomorphology 61,
189-207
Pierson, T.C. (1977) Factors Controlling Debris-Flow Initiation on Forested
Hillslopes in the Oregon Coast Range, Ph.D. Dissertation, University of
Washington, Seattle, 166.
Phillips, J.M., Webb, B.W., Walling, D.E. and Leeks, G.J.L. (1999) Estimating the
suspended sediment loads of rivers in the LOIS study area using infrequent
samples. Hydrol. Process. 13, 1035–1050.
Roy, S., Gaillardet, J. and Allegre, C.J. (1999) Geochemistry of dissolved and
suspended loads of the Seine river, France: Anthropogenic impact, carbonate and
silicate weathering. Geochimica Et Cosmochimica Acta 63, 1277-1292.
Riebe, C.S., Kirchner, J.W. and Finkel, R.C. (2004) Erosional and climatic effects
on long-term chemical weathering rates in granitic landscapes spanning diverse
climate regimes. Earth and Planetary Science Letters 224, 847-562.
Riebe, C.S., Kirchner, J.W., Granger, D.E. and Finkel, R.C. (2001) Strong tectonic and weak
climatic control of long-term chemical weathering rates. Geology 29, 511-514.
Raymond, P.A. and Cole, J.J. (2003) Increase in the export of alkalinity from North
America’s largest river. Science, 301(5629):88-91.
Ryu, J.S., Lee, K.S., Chang, H.W. and Shin, H.S. (2008) Chemical weathering of
carbonates and silicates in the Han River basin, South Korea. Chemical Geology
247, 66-80.
Schumm S.A. (1977)The Fluvial System. Wiley, New york. Sempe’re’ R., Charrie`re
B., Van Wambeke F. and Cauwet G., 2000. Carbon inputs of the Rhone River to
the Mediterranean Sea: biogeochemical implications. Global Biogeochem. Cycles
14, 669–681.
Seno, T. (1977) The instantaneous rotation vector of the Philippine Sea plate
relative to the Eurasian plate., Tectonophysics, 42, 209-226.
Sequeira, R. (1981) Acid rain: some preliminary results from global date. J. Geophy
Res.,8,147-150.
Stallard, R.F. and Edmond, J.M. (1981) Geochemistry of the Amazon :II. The
influence of the geology and weathering environment in the dissolved load at the time of the peak discharge. J. Geophys. Res. 86, 9844-9858.
Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan.
Geological Society, China:4.p67-89.
Stallard, R.F. and Edmond, J.M. (1983) Geochemistry of the Amazon :The influence
of the geology and weathering environment on the dissolved load. Journal of
Geophysical Research, 88,9671-9688.
Sitar, N., Anderson, S. A. and Johnson, K. A. (1992) Conditions leading to the
initiation of rainfall-induced debris flows. Geotech. Engrg. Div. Specialty Conf.:
Stability and Perf. Of slopes and Embankments-11, ASCE, New York, N. Y.,
834-839.
Seno, T., Stein, S. and Gripp A.E. (1993) A model for the motion of the Philippine
Sea plate consistent with NUVEL-1 and Geological Data, J. Geophys. Res., 98,
17-941–17-948.
Strahler, A. and Strahler A. (1994) Introducing Physical Geography, New York: John
Wiley and Sons, INC. press, 505.
Summerfield, M. and Hulton, N., 1994. Natural controls of fluvial denudation rates
in major world drainage basins. Jouranl of geophysical research-all series,
99:13-13.
Stille, P. and Shields, G. (1997) Geochemistry of the Amazon, Weathering chemistry
and to dissolved inputs, J. Geophys. Res, 92:8293-8302.
Syvitski, J.P., Morehead, M.D., Bahr, D.B. and Mulder, T. (2000) Estimating fluvial
sediment transport: The rating parameters. Water Resour. Res.36, 2747–
2760.Stark, C. P. and Hovius, N. (2001) The characterization of landslide size
distribution, Geophysical Research Letters,28 (6) :1091-1094.
Skinner, B.J., Porter, S.C. and Park, J. (2004) Dynamic earth: an introduction to
physical geology. Wiley, New York.
Sadeghi, S.H.R., Mizuyama, T., Miyata, S., Gomi, T., Kosugi, K., Fukushima, T.,
Mizugaki, S. and Onda, Y., 2008. Development, evaluation and interpretation of
sediment rating curves for a Japanese small mountainous reforested watershed.
Geoderma 144, 198–211.
Schopka, H.H., Derry, L.A. and Arcilla, C.A. (2011) Chemical weathering, river
geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions
on Luzon Island, the Philippines. Geochimica Et Cosmochimica Acta 75,
978-1002.
Shih, Y.T., Chen, P.H., Lee, L.C., Liao, C.S., Jien, S.H., Shiah, F.K., Lee, T.Y., Hein,
T., Zehetner, F., Chang, C.T. and Huang, J.C. (2018) Dynamic responses of DOC
and DIC transport to different flow regimes in a subtropical small mountainous
river. Hydrol. Earth Syst. Sci. 22,501 6579-6590.
Rugenstein, J.K.C., Ibarra, D.E. and von Blanckenburg, F. (2019) Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature
571, 99.
Tsai, H., Maejima, Y. and Hseu, Z.Y. (2008) Meteoric Be-10 dating of highly
weathered soils from fluvial terraces in Taiwan. Quaternary International 188,
185-196.
Torres, M.A., West, A.J. and Li, G.J. (2014) Sulphide oxidation and carbonate
dissolution as a source of CO2 over geological timescales. Nature 507, 346.
Torres, M.A., West, A.J., Clark, K.E., Paris, G., Bouchez, J., Ponton, C., Feakins,
S.J., Galy, V. and Adkins, J.F. (2016) The acid and alkalinity budgets of
weathering in the Andes-Amazon system: Insights into the erosional control of
global biogeochemical cycles. Earth and Planetary Science Letters 450, 381-391.
Williamson, M.A. and Rimstidt, J.D. (1994) The kinetics and electrochemical
rate-determining step of aqueous pyrite oxidation. Geochimica Et Cosmochimica
Acta 58, 5443-5454.
White, A.F. and Blum, A.E. (1995) Effects of climate on chemical wea thering in
watersheds. Geochimica Et Cosmochimica Acta 59, 1729-1747.
Walling, D.E. (1997) Assessing the accuracy of suspended sediment raring curves
for asmall basin. Water Resour. Res. 13, 531–538.
White, A., Bullen, T.D., Vivit, D. V., Schulz, M. S. and Clow, D. W. (1999) The role
of disseminated calcite in the chemical weathering of granotoid rocks Geochim.
Cosmochim. Aeta 63, 1939-1953.
Wieczorek, G. F., Morgan, B. A. and Campbell, R. H. (2000) Debris-Flow hazards in
the Blue Ridge of Central Virginia, Environmental and Engineering Geoscience,
6,3-23
Walling, D.E., Collins, A.L., Sichingabula, H.M. and Leeks, G.J.L. (2001)
Integrated assessment of catchment suspended sediment budgets: a Zambian
example. Land Degrad. Dev. 12, 387–415.
Walling, D.E., Russell, M.A., Hodgkinson, R.A. and Zhang, Y. (2002) Establishing
sediment budgets for two small lowland agricultural catchments in the UK.
Catena 47, 323–353
Willett, S. D., Fuller, C., Yeh, E. C. and Lu, C. Y. (2003) Erosion rates and orogenic
wedge kinematics in Taiwan inferred from apatite fission track thermo
chronometry. Geology, 31,945-948.
Walling, D.E. (2005) Tracing suspended sediment sources in catchments and river
systems. Sci. Total Environ. 344, 159–184.
Lyons, W.B. and Carey, A.E. (2005) Chemical weathering in high-sediment-yielding
watersheds New Zealand, Jourbal of geophysical research,Vol.110,
doi:10.1029/2003JF000088.
West, A.J., Galy, A. and Bickle, M. (2005) Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters 235, 211-228.
West, A.J. (2012) Thickness of the chemical weathering zone and implications for
erosional and climatic drivers of weathering and for carbon-cycle feedbacks.
Geology 40, 811-814.
Warrick, J.A. (2014) Trend analyses with river sediment rating curves. Hydrol.
Process. 29, 936–949.
Yu, S.B., Chen, H.Y. and Kuo, L.C. (1997) Velocity field of GPS stations in the
Taiwan area. Tectonophysics 274, 41-59.
Yan, J.H., Li, J.M., Ye, Q. and Li, K. (2012) Concentrations and exports of solutes
from surface runoff in Houzhai Karst Basin, southwest China. Chemical geology.
Zhang, Y., Liu, S., Zhang, Z., Yao, Q. and Hong, G. (2007) Sources and distribution
af carbon within the Yangtze River system, Estuarine, Coastal and Shelf
Science.71,13-25.
Zhang, S., and Zhang, L.M. (2017) Impact of the 2008 Wenchuan earthquake in
China on subsequent long-term debris flow activities in the epicentral area.
Geomorphology 276, 86–103.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *