帳號:guest(3.133.157.142)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳益民
作者(英文):Yi-Min Chen
論文名稱:建模式探究教學法對不同空間能力高年級學童心智模式與建模能力之影響—以公路選線統整地形與地層為例
論文名稱(英文):The impacts of modeling-based inquiry on the Grades 5 and 6 students’ mental models and modeling competences—An example of using route selection to integrate terrain and strata
指導教授:林靜雯
指導教授(英文):Jing-Wen Lin
口試委員:邱美虹
許民陽
李文瑜
蔣佳玲
口試委員(英文):Mei-Hung Chiu
MING-YANG XU
Wen-Yu Lee
Chia-Ling Chiang
學位類別:博士
校院名稱:國立東華大學
系所名稱:教育與潛能開發學系
學號:810188301
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:192
關鍵詞:心智模式地形地層空間能力建模式探究建模能力建模實務模型本質
關鍵詞(英文):mental modelterrainstrataspatial abilitymodeling-based inquirymodeling competencemodeling practicesnature of models
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏收藏:0
本研究透過「十二年自然科學領域課程綱要」中學習內容的「核心概念」,以及學習表現的「探究能力」、「科學態度與本質」延伸出「心智模式」、「模型本質」和「建模實務」的研究三面向,並採用「公路選線」的議題,跨科際統整(transdisciplinary integration)「地形」和「地層」的知識,對國小高年級學童進行建模式探究教學。
研究目的探討:一、建模式探究教學對學生公路選線(「地形」和「地層」)心智模式的改變情形;二、建模式探究教學對學生模型本質的影響;三、建模式探究教學對學生公路選線(「地形」和「地層」)建模實務的影響;四、建模式探究教學對高、低空間能力學生模型本質的影響;五、建模式探究教學對高、低空間能力學生公路選線(「地形」和「地層」)建模實務的影響。
本研究以兩班國小高年級學生(24位)為對象,並以「空間能力測驗」得分40為依據,40以上為「高空間能力」組(10位),低於40則是「低空間能力」組(14位)。全體學生一同接受8節,每節40分鐘,共320分鐘的「公路選線」建模式探究教學。在「心智模式」方面,研究者以「心智模式試題」及教學活動學習單分別收集學生教學前、期間與後的心智模式,以分析「公路選線」心智模式的演變。在「模型本質」方面,則於教學前、地形課程結束後、地層課程結束後和教學後,收集學生接受4次「模型本質問卷和晤談」,進行無母數Friedman考驗、Mann-Whitney U檢定,並輔以晤談資料佐證,以說明教學前中後學生,以及高、低空間能力學生「模型本質」的差異。在「建模實務」方面,則設計相關學習單收集7次學生在教學期間建模實務的演變,以Friedman檢定、Wilcoxon test檢定和Mann-Whitney U檢定考驗教學期間高年級學生/高、低空間能力學生「建模實務」的差異。所有研究工具皆經專家進行效度檢驗,建模實務進行評分者一致性信度檢驗為PA=0.97,具有相當高的信度。
研究結果顯示:一、建模探究教學能使1/4「公路選線」直觀模式的學生演變成地形主軸模式、地層主軸模式或類科學模式,高空間能力者比低空間能力者較易使公路選線直觀模式趨向於地形主軸模式、地層主軸模式或類科學模式。二、建模式探究教學能提升學生「模型目的」和「建模歷程」之模型本質(p=.000<.001)的認同度。三、建模式探究教學法能提升學生「公路選線」建模實務於「模型選擇」、「模型建立」、「模型效化」和「模型應用」的表現,但「模型調度」的能力則沒有,建議教師可透過模型培養學生科學理論和生活經驗連結,以提升學生「模型調度」的能力。四、教學之後,高空間能力者對模型本質認同度優於低空間能力者。五、教學之後,高空間能力者於建模實務的表現優於低空間能力者。
綜上所述,本研究針對建模式探究教學對心智模式、建模能力的相關實務與研究以及跨科際統整的課程設計提出建議。
There are three dimensions of the research: “ mental model (MM) ”, “ nature of model (NOM) ” and “modeling practice (MP) ” from “core concepts” of the learning content in the “ Curriculum Guidelines of 12- Year Basic Education on Science” of the learning performance. The study which adopted a transdisciplinary integration framework by “ route selection ” combining with the knowledge of “ terrain” and “ strata ” also does the modeling-based inquiry (MBI) teachings for the Grades 5 and 6 students.
The purpose of the study explored: 1.The changes of the students' MM of route selection (“ terrain” and “ strata ”) were by the MBI teaching; 2.The impacts of the students' NOM were by the MBI teaching; 3.The impacts of the MP of students' route selection (“ terrain” and “ strata ”) were by the MBI teaching; 4.The impacts of the NOM of the students between high and low spatial ability were by the BMI teaching; 5.The impacts of MP on route selection (“ terrain” and “ strata ”) for students between high and low spatial ability were by the BMI teaching.
The study took two classes of the Grades 5 and 6 students (24) as the subjects, and divided the students into a “high spatial ability” group (10) and a “low spatial ability ” group (14) according to
the score of “ Spatial Ability Test ” which was 40. All of the students participated in 8 sessions (40 minutes, 320 minutes in total ) of the BMI teaching about “ route selection ”.
In terms of “MM”, the researcher used “MM test ” and worksheets to collect students' MM among before, during and after teaching to analyze the development of the MM of “ route selection”. In terms of “NOM”, the researcher collected 4 times about “questionnaires and interviews of NOM”. Tested with Friedman test, Mann-Whitney U test, and supplemented by interview data, to illustrate the difference of the “NOM” among before, during and after teaching, and students between high and low spatial abilities. In terms of “MP”, a related study sheet was designed to collect 7 times about the development of students' MP during teaching. Friedman test, Wilcoxon test and Mann-Whitney U test were used to test the differences of “MP” during teaching , and students between high and low spatial abilities. All research tools were tested for validity by experts, and the score of MP were PA=0.97 which showed a high degree of reliability.
The study showed as below: 1.The MBI teaching could make the 1/4 students of “route selection ” intuitive model into a model of terrain main axis, a model of strata main axis or a model of science-like. It was easier for the students with high spatial ability to make “route selection ” intuitive model into a model of terrain main axis, a model of strata main axis or a model of science-like than the students with low spatial ability. 2.The BMI teaching could enhance students' recognition about the NOM ( “ the purpose of the models ” and “MP ”) (p = .000< .001). 3.The BMI teaching could improve students' abilities in “model selection ”, “model construction ”, “model validation ” and “model application ” in the MP of “route selection ”, but the ability of “model deployment ” would be not. It suggested that teachers could cultivate students' to connect scientific theory with life experience by models, to enhance students' “ model deployment ” ability. 4.After teaching, the students with high spatial ability had better recognition of the NOM than those with low spatial ability.5.After teaching, the students with high spatial ability performed better than those with low spatial ability in MP.
To sum up, it proposed the suggestions about the curriculum design of transdisciplinary integration. It also proposed that related research and practice of MM and modeling competence.
中文摘要 Ι
Abstract Ⅱ
目錄 Ⅳ
表次 Ⅵ
圖次 Ⅸ
第壹章 緒論01
第一節 研究背景與動機 02
第二節 研究目的與問題 06
第三節 名詞釋義 08
第四節 研究範圍與限制 10
第貳章 文獻探討 11
第一節 模型與建模 12
第二節 建模實務與模型本質 27
第三節 心智模式 45
第四節 空間能力的相關研究 55
第五節 「地形」與「地層」的相關研究 66
第參章 研究方法 83
第一節 研究架構 84
第二節 研究對象 87
第三節 教材設計 90
第四節 研究工具 97
第五節 研究流程 111
第六節 資料處理與分析 113
第肆章 研究結果 115
第一節 公路選線(「地形」與「地層」)心智模式的變化 115
第二節 建模式探究教學法對學生模型本質的影響 142
第三節 建模式探究教學法對公路選線(「地形」與「地層」)建模實務的影響 50
第四節 建模式探究教學法對不同空間能力學生模型本質之影響 157
第五節 MBI對不同空間能力學生公路選線(「地形」與「地層」)建模實務之影響 164
第六節 綜合討論 170
第伍章 結論與建議 175
第一節 結論 175
第二節 建議 177
參考文獻 179
中文部份 179
英文部分 184
附錄一 模型本質問卷 193
附錄二 「模型本質」的晤談題目 195
附錄三 心智模式試題 196
附錄四 空間能力測驗題目卷 198
附錄五 『建模式探究教學』教學活動設計---公路選線 206
附錄六 「公路選線」教學評量基準 256
中文部分
于富雲、陳玉欣(2008)。概念構圖對不同空間能力之國小學生自然科學習成效之影響。教育心理學報,39,83-104。
方建能、田蓉禮、魏正岳、余炳盛(2000)。有趣的沈積構造。臺北市:國立臺灣博物館。
左台益、梁勇能(2001)。國二學生空間能力與van Hiele幾何思考層次相關性研究。師大學報:科學教育類,46(1,2),1-20。
石慶得、蘇永生(1997)。兒童對地圖符號認知之地圖學研究-兒童地圖學系列研究之(二)。地圖:中華民國地圖學會會刊,8,1-14。
石慶得、陳慧芳、聞祝達(2004)。九年一貫國民小學地圖教材內容之探討。地圖:中華民國地圖學會會刊,14,195-205。
石慶得、聞祝達、陳慧芳(2004)。國小高年級學生地圖能力分析與學習能力指標擬定之研究-兒童之地圖學系列研究(四)。地圖:中華民國地圖學會會刊,14,1-20。
地理入門。機械沉積作用形成的沉積岩。查詢日期:2019年7月12日,檢自:http://ihouse.hkedcity.net/~hm1203/lithosphere/rock-sed-mech-form.htm。
宋曜廷、潘佩妤(2010)。混合研究在教育研究的應用。教育科學研究期刊,55(4),97-130。
邱怡禎(2017)。地質塗(圖)了沒?認識地質歷史事件。地科MIT,5,17-22。
邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,1-9。
邱美虹(2016a)。科學模型與建模:科學素養中的模型認知與建模能力。臺灣化學教育,11。查詢日期:2017年02月13日,檢自http://chemed.chemistry.org.tw/?p=14186。
邱美虹(2016b)。科學模型與建模:科學模型、科學建模與建模能力。臺灣化學教育,11。查詢日期:2017年03月05日,檢自http://chemed.chemistry.org.tw/?p=13898。
邱美虹(2020,12月)。科學素養中的建模與系統思考。發表於中華民國第36屆科學教育學術研討會。高雄市:國立科學工藝博物館(南館)。
邱美虹、翁雪琴(1995)。國三學生「四季成因」之心智模式與推論歷程之探討。科學教育學刊,3(1) ,23-68。
邱美虹、劉俊庚(2008)。從科學學習的觀點探究模型和建模能力。科學教育月刊,314,2-20。
邱皓政(2015)。量化研究與統計分析SPSS(PASW)資料分析範例解析。台北市:五南圖書出版有限公司。
李城忠(2016)。應用統計:SPSS & AMOS範例分析完全手冊。新北市:新聞京開發出版股份有限公司。
吳明珠(2008)。科學模型本質剖析:認識論面向初探。科學教育月刊,307,2-8。
吳文龍(2012)。以概念演化探討物質三態變化之教科書內容與教學對學生心智模式發展歷程之影響。未出版之博士論文,國立臺灣師範大學科學教育研究所,臺北市。
何俊青(2007)。兒童自然地理迷思概念之研究:以台東地區國小學生的八個概念為例。國教學報,19,277-311。
林青慧(2015)。國小五年級實施等高線地形圖教學之行動研究。未出版之碩士論文,國立臺北教育大學社會與區域發展學系,臺北市。
林佳穎、邱美虹(2009)。探討多重表徵教學對聽覺障礙學生學習血液循環概念之影響。中華民國第25屆科學教育學術研討會,179-182。
林靜雯、邱美虹(2008)。從認知/方法論之向度初探高中學生模型及建模歷程之知識。科學教育
月刊,307,9-14。
林靜雯、吳育倫(2010)。國小教師科學模型功能暨建模歷程量表之編製發展與實測分析。教育與心理研究,33(4),23-51。
林靜雯(2016a)。建模序列教學模組與評量實例。「科學建模教學模組與評量設計」之教師專業成長工作坊:科學模型和建模能力之簡介與實作。臺北市:臺灣師範大學。
林靜雯(2016b)。建模取向的探究在科學教育上的應用--建立建模能力架構以促進概念改變與建模取向探究的教與學。科技部專題研究計畫105-2628-S-259-001-MY3。
林靜雯(2017)。12年國教自然科學學習表現「建立模型」融入教科書的教學設計教育訓練紀錄。
周金城(2008)。探究中學生對科學模型的分類與組成本質的理解。科學教育月刊,306,10-17。
洪振方、莊敏雄、宋國城(2011)。建模教學對國小學生的模型認知及地質概念理解之影響。科學教育學刊,19(4),309-333。
南一書局企業有限公司(2014)。國民小學社會科學習領域課本(第一冊)、(第二冊)、(第三冊)、(第四冊)、(第五冊)。臺南市:南一書局企業有限公司。
南一書局企業有限公司(2014)。國民中學社會科學習領域課本(第一冊)。臺南市:南一書局企業有限公司。
南一書局企業有限公司(2014)。國民小學自然與生活科技學習領域課本(第七冊)。臺南市:南一書局企業有限公司。
南一書局企業有限公司(2014)。國民中學自然科學習領域課本(第五冊)。臺南市:南一書局企業有限公司。
南一書局企業有限公司(2015)。普通高級中學地理科教師(第一冊)手冊。臺南市:南一書局企業有限公司。
紀宗吉(2010)。鑑古知今全臺重大順向坡滑動歷史事件簿。地質,29(2),24-27。
教育部(2018)。十二年國民基本教育自然領域課程綱要。台北:教育部國家教育研究院。
教育部(2018)。十二年國教課程綱要前導學校協作計畫(北區)前導學校工作坊Ⅲ-素養導向學習評量(進階)。新北市:國立臺北大學。
張志康(2008)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。未出版之博士論文,國立臺灣師範大學科學教育研究所,臺北市。
張志康、邱美虹(2009)。建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17
(4),319-342。
張志康、林靜雯、邱美虹(2009a)。跨年級中學生串並聯電路心智模式的研究。科學教育月刊,317,2-17。
張志康、林靜雯、邱美虹(2009b)。從方法論向度探討中學生對模型與建模歷程之觀點。科學教育研究與發展季刊,53,24-42。
許民陽(1995)。國小學生對方向及位置兩空間概念認知發發展的研究(Ⅱ)國小中年級學生對東西南北相關方位的認知探討。臺北市立師範學院學報,26,213-243。
許民陽、王郁軒、梁添水(2005)。國小自然科學地質概念個別化教學的研究。科學教育學刊,13(1),71-100。
許育臺(2013)。地球形狀概念演化樹之驗證及其與空間能力關係之跨年級研究。未出版之碩士論
文,臺北市立教育大學應用物理暨化學系自然科學教學碩士班,臺北市。
曹雅玲、陳穎瑤、曾怡嘉(2008)。國小學生的空間能力之相關研究。台灣數學教師電子期刊,15,18-40。
陳文山(2002)。台灣的岩石。發表於2002岩盤工程研討會論文集。新竹市。
陳玉玲、井敏珠、周宣光(2005)。空間能力、教學層次與學習方式的交互作用對兒童地球運動概念改變之效果。南大學報,39(1),133-148。
陳翠雯(2004)。非語詞刺激對小四學生月相概念學習之影響。未出版之碩士論文,國立高雄師範大學科學教學碩士班,高雄市。
陳翠雯、侯依伶、劉嘉茹(2010)。不同非語詞刺激對國小學生月相概念學習之影響。科學教育學
刊,18(4),361-387。
陳瑞麟(2004)。科學理論版本的結構與發展。臺北市:臺大出版中心。
陳耀茂(2019)。工業調查資料分析。台北市:五南圖書出版有限公司。
陳慧芳、石慶得、聞祝達(2003)。學生地圖使用能力與地圖學習課程之研究-兒童之地圖學系列研究(三),地圖:中華民國地圖學會會刊,13,25-44。
鈕文英(2011)。教育研究方法論文寫作。台北市:雙葉書廊有限公司。
華人百科。公路選線。查詢日期:2019年7月12日,檢自:https://www.itsfun.com.tw/%E5%85%AC%E8%B7%AF%E9%81%B8%E7%B7%9A/wiki-1677386-4693266。
康軒文教事業股份有限公司(2014)。國民小學社會科學習領域課本(第一冊)、(第二冊)、(第三冊)、(第四冊)、(第五冊)。新北市:康軒文教事業股份有限公司。
康軒文教事業股份有限公司(2014)。國民中學社會科學習領域課本(第一冊)。新北市:康軒文教事業股份有限公司。
康軒文教事業股份有限公司(2014)。國民小學自然與生活領域學習領域課本(第七冊)。新北市:康軒文教事業股份有限公司。
康軒文教事業股份有限公司(2014)。國民中學自然與生活科技領域課本(第五冊)。新北市:康軒文教事業股份有限公司。
劉俊庚(2011)。探討模型與建模對於學生原子概念學習之影響。未出版博士論文,國立臺灣師範
大學,臺北市。
劉俊庚、邱美虹(2010)。從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵。科學教育研究與發展季刊,59,23-54。
潘國樑(2007)。工程地質通論。台北市:五南圖書出版股份有限公司。
熊雲嵋(1991)。基礎工程。台北市:大中國圖書公司。
鄭海蓮、陳世玉(2007)。標準化空間能力測驗之建模與驗證。教育研究與發展期刊,3(4),181-216。
鄧屬予(1997)。台灣的沉積岩。臺北縣:經濟部中央地質調查所。
賴慶三(2010)。國小教師地質專業發展之敘事探究。科學教育月刊,327,2-22。
翰林出版事業股份有限公司(2014)。國民小學社會科學習領域課本(第一冊)、(第二冊)、(第三冊)、(第四冊)、(第五冊)。臺南市:翰林出版事業股份有限公司。
翰林出版事業股份有限公司(2014)。國民中學社會科學習領域課本(第一冊)。臺南市:翰林出版事業股份有限公司。
翰林出版事業股份有限公司(2014)。國民小學自然與生活科技學習領域課本(第七冊)。臺南市:翰林出版事業股份有限公司。
翰林出版事業股份有限公司(2014)。國民中學自然與生活科技學習領域課本(第五冊)。臺南市:翰林出版事業股份有限公司。
鍾曉蘭、邱美虹(2012)。高二學生在理想氣體多重表徵教學前後心智模式的改變。教育科學研究期刊,57(4),73-101。
鐘建坪(2010)。引導式建模探究教學架構初探。科學教育月刊,328,2-18。
英文部分
Bamberger, Y. M., & Davis, E. A. (2013). Middle-School Science Students’ Scientific Modelling Performances Across Content Areas and Within a Learning Progression. International Journal of Science Education, 35(2), 213–238.
Belzen, A. U., Driel, J., & Kruger, D. (2019). Introducing a framework for modeling competence. In Upmeier zu Belzen, A., Krüger D., & van Driel, J. (Eds.), Towards a competence-based view on models and modeling in science education (pp.3-19). Cham, Switzerland: Springer.
Berry, R. Q., III, Bull, G., Browning, C., Thomas, C. D., Starkweather, K., & Aylor, J. H. (2010).Preliminary considerations regarding use of digital fabrication to incorporate engineering design principles in elementary mathematics education. Contemporary Issues in Technology and Teacher Education, 10(2), 167‐172.
Bielik, T., Stephens, L., Damelin, D., & Kraj, J. S.(2019). Designing Technology Environments to Support System Modeling Competence, Towards a competence-based view on models and modeling in science education (pp.275-290). Cham, Switzerland: Springer.
Boardman, D.(1989). The development of graphicacy: children's understanding of maps. Geography, 74, 321-331.
Buckley, B. C. & Boulter, C. J. (2000). Investigating the role of representations and expressed
models in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 119-135). Netherlands: Kluwer Academic Publishers.
Carter, C. S., LaRussa, M. A., & Bodner, G. M. (1987). A study of two measures of spatial ability as predictors of success in different levels of general chemistry. Journal of Research in Science Teaching, 24(7), 645-657.
Chris, K.(2012). Common Earth Science Misconceptions in Science Teaching. School Science Review, 347, 45-52.
Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195–212.
Dauer, J. T., Bergan-Roller, H. E., King, G. P., Kjose, M., Galt, N. J., & Helikar, T.(2019). Changes in students’ mental models from computational modeling of gene regulatory networks. International Journal of STEM Education, 6(38),10-12.
Dove (1998). Students' alternative conceptions in Earth science: a review of research and implications for teaching and learning. Research Papers in Education, 13(2), 183-201.
Drake, S. M., & Burns, R. C. (2004). Meeting standards Through Integrated Curriculum. Association for Supervision and Curriculum Development(ASCD).
Francek, M.(2013). A compilation and review of over 500 geoscience misconceptions. International Journal of Science, 35(1), 31-64.
Gardner, Howard (1983). Frames of Mind: The theory of multiple intelligences. New York: Basic Books.
Gericke, N., & Hagberg, M. (2010). Conceptual incoherence as a result of the use of multiple history models in school textbooks. Research in Science Education, 40(4), 605-623.
Gentner, D., & Stevens, A. L. (1983). Mental models. Hillsdale: Lawrence Erlbaum.
Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79.
Gilbert, J. K., Boulter, C., J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (eds.) Developing models in science education (pp. 3-17). Netherlands: Kluwer Academic Publishers.
Gilbert, J. K., & Justi, R. (Eds.). (2016). Modelling-based Teaching in Science Education. Switzerland:Springer International Publishing .
Gobert, J. K., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
Greca, I. M. & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International
Journal of Science Education, 22(1), 1-11.
Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
Hartmann, S. (1995). Models as a tool for theory construction: Some strategies of preliminary physics. Poznan Studies in the Philosophy of Science and the Humanities, 44, 49-67.
Hodson, D. (1992). In search of a meaningful relationship: an explanation of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541-562.
Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22(1), 85–142.
Huk, T. (2006). Who benefits from learning with 3D models?: The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
Jong, J. P., Chiu, M. H., & Chung S. L. (2015). The use of modeling-based text to improve students’ modeling competencies. Science Education, 99(5), 986-1018.
Justi, R. S. & Gilbert, J. K. (2002a). Modeling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4),
369-387.
Justi, R. S., & Gilbert, J. K. (2002b). Philosophy of chemistry in university chemical education: The case of models and modelling. Foundations of Chemistry, 4, 213-240.
Justi, R. S. & Gilbert, J. K. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386.
Justi, R. S. & van Driel, J. V. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modeling. Research in Science Education, 35(2-3), 197-219.
Krell, M., & Krüger, D. (2016). Testing models: A key aspect to promote teaching-activities related to models and modelling in biology lessons? Journal of Biological Education, 50, 160–173.
Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549–579.
Lazenby, K., Stricker, A., Brandriet, A., Rupp, C. A., Mauger‐Sonnek, K., & Becker, N. M. (2019). Mapping undergraduate chemistry students’ epistemic ideas about models and modeling. Journal of Research in Science Teaching, 57, 794-824.
Lee, S. W., Chang, H., & Wu, H. (2017). Students’ views of scientific models and modeling: Do representational characteristics of models and students’ educational levels matter? Research in Science Education, 47(2), 305-328.
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498.
Lord, T. R. (1985). Enhancing the visual-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405.
Louca, L. T., Zacharia, Z. C., & Constantinou, C. P. (2011).In Quest of productive modeling-based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919–951.
Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344-351.
Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603-630.
Milburn, D.(1972). Children's vocabulary. In: GRAVES, N. (Ed) New Movements in the Study and Teaching of Geography (pp.107-120). London: Maurice Temple Smith.
Miller, A. R., & Kastens, K. A. (2017). Investigating the impacts of targeted professional development around models and modeling on teachers’ instructional practice and student learning. Journal of Research in Science Teaching, 55(5), 641–663.
Namdar, B., & Shen, J.(2015). Modeling-oriented assessment in K-12 science education: A synthesis of research from 1980 to 2013 and new directions. International Journal of Science Education, 37(7), 993-1023.
National Research Council (2013). Next Generation Science Standards. Retrieved February 15, 2021 from http://www.nextgenscience.org.
Nicolaou, C.T., & Constantinou C. P. (2014). Assessment of the modeling competence: A systematic review and synthesis of empirical research. Educational Research Review, 13, 52–73.
NJDOT(2015). Roadway design manual. The State of New Jersey: Department of Transportation Press.
Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7-14). New Jersey and London: Lawrence Erlbaum.
Pellegrino, J. W., & Kail, R. (1982). Process analyses of spatial aptitude. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 311-365). NJ: Lawrence Erlbaum.
Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486–511.
Remmele, M., Weiers, K., & Martens, A.(2015). Stereoscopic 3D's impact on constructing spatial hands-on representations. Computers & Education, 85, 74-83.
Rule, A. C. & Auge, J.(2005). Using humorous cartoons to teach mineral and rock concepts in sixth grade science class. Journal of Geoscience Education, 53(5), 548-558.
Schwarz, C. (2009). Developing preservice elementary teachers’ knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720 –744.
Schwarz, C., & Gwekwerere, Y. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support pre-service K-8 science teaching. Science Education, 91(1), 158-186.
Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Ach´er, A., Fortus, D., .Shwartz, Y., Hug, B., & Krajcik, J. (2009).Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654.
Schwartz, R. S.(2019). Modeling competence in the light of nature of science. In Upmeier zu Belzen, A., Krüger D., & van Driel, J. (Eds.), Towards a competence-based view on models and modeling in science education (pp.59-77). Cham, Switzerland: Springer.
Sensevy, G., Tiberghien, A., Sylvain Laube, J. S., & Griggs, P. (2008). An epistemological approach to modeling: cases studies and implications for science teaching. Science Education, 92, 424-446.
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614.
Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modeling: an analysis of novices’ reasoning during computer-based modeling. International Journal of Science Education, 14(18), 1695-1721.
Solem, M., & Boehm, R. G. (2018). Research in geography education: Moving from declarations and road maps to actions. International Research in Geographical and Environmental Education, 27(3), 191-198.
msn新聞(2019年5月7日)。【圖】美到秒讚!IG上最受歡迎25條公路。查詢日期:2019年8月19日,檢自https://www.msn.com/zh-tw/news/photos/%E3%80%90%E5%9C%96%E3%80%91%E7%BE%8E%E5%88%B0%E7%A7%92%E8%AE%9A%EF%BC%81ig%E4%B8%8A%E6%9C%80%E5%8F%97%E6%AD%A1%E8%BF%8E25%E6%A2%9D%E5%85%AC%E8%B7%AF/ss-AABa2ls。
Tiberghien, A. (1994 ). Modeling as a basis for analyzing teaching-learning situations. Learning & Instruction, 4, 71-87.
Tregidgo, D., & Ratcliffe, M. (2000). The use of modeling for improving pupils’ learning about cells. School Science Review, 81, 53-59.
Urhahne, D., Nick, S., & Schanze, S. (2009). The effect of three-dimensional simulations on the understanding of chemical structures and their properties. Research in Science Education, 39(4), 495-513.
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological bulletin, 139(2), 352-402.
Van Driel, J. H. & Verloop, N.(1999).Teachers’ knowledge of models and modelling in Science. International Journal of Science Education, 21(11), 1141-1153.
Van Driel, J. H. & Verloop, N.(2002). Experienced teachers’ knowledge of teaching and learning of
models and modelling in science Education. International Journal of Science Education, 24(12), 1255–1272.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535-585.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
Vosniadou, S. & Skopeliti, I. (2014). Conceptual change from the framework theory side of the fence.
Science & Education, 23(7), 1427–1445
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.
Wang, C. Y., & Barrow, L. H. (2011). Characteristics and levels of sophistication: An analysis of chemistry students’ ability to think with mental models. Research in Science Education, 41(4), 561 – 586.
Wiegand, P., & Stiell, B. (1997). Children’s relief map of model landscapes. British Educational Research Journal, 23(2), 179-192.
Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465–492.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *