帳號:guest(18.223.196.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Duc Huy Nguyen
作者(英文):Duc Huy Nguyen
論文名稱:前瞻單晶光纖於全光化整合之應用
論文名稱(英文):Emerging crystalline fibers for all-optic photonic integration
指導教授:賴建智
指導教授(英文):Chien-Chih Lai
口試委員:賴建智
馬遠榮
盧廷昌
闕郁倫
蔡志宏
口試委員(英文):Chien-Chih Lai
Yuan-Ron Ma
Tien-Chang Lu
Yu-Lun Chueh
Chih-Hung Tsai
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學號:810214103
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:119
關鍵詞:晶體光纖積體光學激光器
關鍵詞(英文):Crystalline fiberPhotonic IntegrationLaser
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
使用兩步驟雷射加熱平台成長技術製造了混合單晶中心玻璃包層中的非線性光學元件。晶體形態學和化學元素研究表明,雷射光照射後快速冷卻建立了相互擴散過程,導致各向異性面中大尺寸非中心對稱晶體的再結晶。扭曲的多面體性質,加上生長機制產生的巨大內應力,使更多的缺陷中心成為可能。二次諧波產生測試表明反演對稱性破缺導致𝜒(2)非線性增強。在混合器件上進行光學分析技術、μ-光致發光和μ-拉曼光譜,以確認非線性晶體的形成。
在第二個中,通過將 MAPbI3 鈣鈦礦塗覆到單晶光纖上來製造雷射裝置。採用了一種有效控制的製造方法,包括浸塗和蒸汽轉化。晶體形態學研究表明,原子等級的光滑單晶纖維被鈣鈦礦均勻包覆
晶粒尺寸約為 55nm 的奈米晶體,表面粗糙度約為 12.5nm,優於最近報導的數值。雷射裝置在室溫下連續波驅動下運行,並呈現出巨大的優勢,其超低雷射閾值低至 132nW,是現有鈣鈦礦雷射無法達到的。從具有模擬支持的實驗數據中闡明了雷射過程的運行機制。
A nonlinear optical component in hybrid single-crystal core glass-cladding was fabricated using a two-step laser heat pedestal growth technique. Morphology and chemical elements investigations showed that laser irradiation followed by rapid cooling establishes the inter-diffusion process resulted in the recrystallization of large-sized non-centrosymmetric crystals in anisotropic faceting. The distorted polyhedral nature, together with large internal stress resulting from the growth mechanism, enables more defect centers. Second harmonic generation observation indicated the presence of inversion symmetry broken leads to the enhancement of 𝜒(2)nonlinearity. Optical analyses technique, μ-photoluminescence, and μ-Raman were conducted over the hybrid device to confirm the formation of the nonlinear crystal.
In the second, a laser device was fabricated by coating MAPbI3 perovskites onto a single-crystalline fiber. An efficiently controlled fabrication that included dip coating and vapor transformation was adopted. Morphology investigations revealed that an atomical smooth single-crystalline fiber was uniformly coated by perovskite
nanocrystal with a grain size of about 55nm with surface roughness about 12.5nm, better than the value reported recently. The hybrid laser device was operated at room temperature under continuous-wave pumping, then presented a huge advantage with an ultralow lasing threshold down to 132nW that is unattainable by the existing perovskite laser. The mechanism of the lasing process was clarified from observed data supported by simulation.
Abstract i
Table of Contents iv
List of Tables vi
List of Figures vii
Chapter 1 Introduction 1
Chapter 2 Background 5
2.1. Laser principle 5
2.1.1. Optical cavity 5
2.1.2. Stimulated emission 8
2.1.3. Lasing behavior 11
2.2. Second harmonic generation 13
2.3. Laser-heated pedestal growth of single-crystal materials 15
2.4. Laser scanning confocal microscope 17
Chapter 3 Hybrid crystal-glass fiber for compact nonlinear optical device 21
3.1. Introduction 21
3.2. Fabrication and characterization of hybrid crystal-glass fiber 23
3.3. Demonstration of the novel hybrid fiber for second harmonic generation component 33
3.4. Conclusions 42
Chapter 4 Hybrid structure crystal fiber/nanoperovskite for ultralow threshold continuous-wave room-temperature laser device 45
4.1. Introduction 45
4.2. Fabrication and characterization of crystal fiber/nanoperovskite device 47
4.3. Laser device performance 57
4.1. Conclusions 72
Chapter 5 Conclusion and prospect 77
References 81
H. Chen, C. Wang, H. Ouyang, Y. Song, and T. Jiang, All-optical modulation with 2D layered materials: status and prospects. Nanophotonics, 2020, 9, 2107-2124.
G. Lifante, Integrated photonics: fundamentals, 2003, John Wiley & Sons.
J. K. Doylend, and A. P. Knights, The evolution of silicon photonics as an enabling technology for optical interconnection. Laser Photonics Rev., 2012, 6, 504-525.
L. Thylén, and L. Wosinski, Integrated photonics in the 21st century. Photonics Res., 2014, 2, 75-81.
A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev., 2018, 12, 1700256.
C. Lacava, M. A. Ettabib, and P. Petropoulos, Nonlinear silicon photonic signal processing devices for future optical networks. Appl. Sci., 2017, 7, 103.
Y. Zhang, C. Husko, J. Schröder, S. Lefrancois, I. H. Rey, T. F. Krauss, and B. J. Eggleton, Phase-sensitive amplification in silicon photonic crystal waveguides. Opt. Lett., 2014, 39, 363-366.
X. Zhang, T. Huo, C. Wang, W. Liao, T. Chen, S. Ai, W. Zhang, J. C. Hsieh, and P. Xue, Optical computing for optical coherence tomography. Sci. Rep., 2016, 6, 37286.
A. Malacarne, Y. Park, M. Li, S. LaRochelle, and J. Azaña, Real-time Fourier transformation of lightwave spectra and application in optical reflectometry. Opt. Express, 2015, 23, 32516-32527.
P. Muñoz, R. García-Olcina, C. Habib, L. R. Chen, X. J. M. Leijtens, T. de Vries, D. Robbins, and J. Capmany, Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP. Opt. Express, 2011, 19, 13540-13550.
C. Qiu, Y. Yuxing, L. Chao, W. Yifang, W. Kan, and C. Jianping, All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Sci. Rep., 2017, 7, 17046.
D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, and E. Puma, Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 2021, 13, 242-352.
P. Muñoz, G. Micó, L. A. Bru, D. Pastor, D. Pérez, J. D. Doménech, J. Fernández, R. Baños, B. Gargallo, R. Alemany, A. M. Sánchez, Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors, 2017, 17, 2088.
D. M. F. Lai, C. H. Kwok, and K. K. Y. Wong, All-optical picoseconds logic gates based on a fiber optical parametric amplifier. Opt. Express, 2008, 16, 18362-18370.
K. Singh, G. Kaur, and M. L. Singh, A simultaneous all-optical half/full-subtraction strategy using cascaded highly nonlinear fibers. J. Mod. Opt., 2018, 65, 465-479.
X. Hu, A. Wang, M. Zeng, Y. Long, L. Zhu, L. Fu, and J. Wang, Graphene-assisted multiple-input high-base optical computing. Sci. Rep., 2016, 6, 32911.
D. Wang, Z. Wu, M. Zhang, and X. Tang, Multifunctional all-optical signal processing scheme for wavelength-division-multiplexing multicast, wavelength conversion, format conversion, and all-optical encryption using hybrid modulation format exclusive-OR gates based on four-wave mixing in highly nonlinear fiber. Appl. Opt., 2018, 57, 1562-1568.
J. K. Kearns, Silicon single crystal, in R. Fornari, ed. Single Crystals of Electronic Materials: Growth and Properties. Woodhead Publishing, 2018.
H. Lai, and F. He, Crystal engineering in organic photovoltaic acceptors: a 3D network approach. Adv. Energy Mater., 2020, 10, 2002678.
J. Zhang, L. Lin, K. Jia, L. Sun, H. Peng, and Z. Liu, Controlled growth of single‐crystal graphene films. Adv. Mater., 2020, 32, 1903266.
M. Nikl, and A. Yoshikawa, Recent R&D trends in inorganic single‐crystal scintillator materials for radiation detection. Adv. Opt. Mater., 2015, 3, 463-481.
Y. Sun, S. Walter, A. L. David, W. Ping, P. Ayush, L. Xianhe, W. Yuanpeng, S. Mohammad, and M. Zetian. Ultrahigh Q microring resonators using a single-crystal aluminum-nitride-on-sapphire platform. Opt. Lett., 2019, 44, 5679-5682.
J. Thapa, B. Liu, S. D. Woodruff, B. T. Chorpening, and M. P. Buric, Raman scattering in single-crystal sapphire at elevated temperatures. Appl. Opt., 2017, 56, 8598-8606.
S. Yang, D. Homa, G. Pickrell, and A. Wang, Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber. Opt. Lett., 2018, 43, 62-65.
J. Wang, Q. Song, Y. Sun, Y. Zhao, W. Zhou, D. Li, X. Xu, C. Shen, W. Yao, L. Wang, and J. Xu, High-performance Ho: YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser. Opt. Lett., 2019, 44, 455-458.
X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, 250 W single-crystal fiber Yb: YAG laser. Opt. Lett., 2012, 37, 2898-2900.
W. Koechner, Solid-state laser engineering (Vol. 1), Springer, 2020.
G. T. Hohensee, R. B. Wilson, and D. G. Cahill, Thermal conductance of metal–diamond interfaces at high pressure. Nat. Commun., 2015, 6, 6578.
Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, and Y. Tian, Nanotwinned diamond with unprecedented hardness and stability. Nature, 2014, 510, 250-253.
M. W. Chen, J. W. McCauley, D. P. Dandekar, and N. K. Bourne, Dynamic plasticity and failure of high-purity alumina under shock loading. Nat. Mater., 2006, 5, 614-618.
W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello, and S. T. Lee, Oriented single-crystal diamond cones and their arrays. Appl. Phys. Lett., 2003, 82, 2622-2624.
G. H. Kroetz, M. H. Eickhoff, and H. Moeller, Silicon compatible materials for harsh environment sensors. Sens. Actuator. A Phys., 1999, 74, 182-9.
R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, High-temperature infrared properties of sapphire, AlON, fused silica, yttria, and spinel. Infrared Phys. Technol., 1998, 39, 251-261.
A. Yan, R. Chen, M. Zaghloul, Z. L. Poole, P. Ohodnicki, and K. P. Chen, Sapphire fiber optical hydrogen sensors for high-temperature environments. IEEE Photonics Technol. Lett., 2015, 28, 47-50.
Z. Huang, R. Wang, D. Jia, L. Maoying, M. G. Humphrey, and C. Zhang, Low-cost, large-scale, and facile production of Si nanowires exhibiting enhanced third-order optical nonlinearity. ACS Appl. Mater. Interfaces, 2012, 4, 1553-1559.
J. Leuthold, C. Koos, and W. Freude, Nonlinear Silicon Photonics. Nat. Photonics,
2010, 4, 535–544.
W. L. Wang, J. S. Wang, Y. C. Huang, M. T. Sheen, S. L. Huang, and W. H. Cheng, The fabrication of Cr4+:YAG few-mode dual-clad crystal fiber. In OECC 2010 Technical Digest, IEEE, 2010, 360-361.
S. Bera, C. D. Nie, M. G. Soskind, and J. A. Harrington, Optimizing alignment and growth of low-loss YAG single crystal fibers using laser heated pedestal growth technique. Appl. Opt., 2017, 56, 9649-9655.
T. Wang, J. Zhang, N. Zhang, S. Wang, B. Wu, N. Lin, P. Kusalik, Z. Jia, and X. Tao, Single crystal fibers: diversified functional crystal material. Adv. Fiber Mater., 2019, 1, 163-187.
Z. Yu, X. Xi, J. Ma, H. K. Tsang, C. L. Zou, and X. Sun, Photonic integrated circuits with bound states in the continuum. Optica, 2019, 6, 1342-1348.
W. Bogaerts, D. Pérez, J. Capmany, D. A. B. Miller, J. Poon, D. Eglund, F. Morichetti, and A. Melloni, Programmable photonic circuits. Nature, 2020, 586, 207-216.
F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, F. Druon, F. Balembois, and P. Georges, Yb: YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique. Opt. Lett., 2016, 41, 1628-1631.
S. Bera, C. D. Nie, M. G. Soskind, Y. Li, J. A. Harrington, and E. G. Johnson, Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations. Opt. Mater., 2018, 75, 44-48.
J. Wang, Q. Song, Y. Sun, Y. Zhao, W. Zhou, D. Li, X. Xu, C. Shen, W. Yao, L. Wang, J. Xu, and D. Shen, High-performance Ho: YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser. Opt. Lett., 2019, 44, 455-458.
B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics. John Wiley & sons, 2019.
J. M. Liu, Principle of photonics. Cambridge University Press, 2016.
J. F. Mulligan, Who were Fabry and Pérot? Am. J. Phys., 1998, 66, 797-802.
Y. Yang, H. Zong, C. Ma, T. Wei, J. Li, J. Zhang, M. Li, C. Pan, and X. Hu, Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing. Opt. Express, 2017, 25, 21025-21036.
T. Zhang, Z. Gong, R. Giorno, and L. Que, A nanostructured Fabry-Perot interferometer. Opt. Express, 2010, 18, 20282-20288.
N. Hodgson and H. Weber, Laser Resonators and Beam Propagation Fundamentals, Advanced Concepts and Applications. Springer, 2005.
J. Weiner, P.-T. Ho, Light-Matter Interaction, Fundamentals and Applications. v.1. Wiley-VCH, 2003.
C. Rulliere, Femtosecond laser pulses. Springer Science+Business Media, Incorporated, 2005.
A. E. Siegman, Laser. University Science Books, 1986.
S. Svelto, Principles of Laser, Springer, 2010.
W. Koechner, M. Bass, Solid-State Laser- A Graduate Text, Springer, 2003.
J. P. Gordon, H. J. Zeiger, and C. H. Townes, The maser—new type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev., 1955, 99, 1264.
Y. Tian, Z. Gan, Z. Zhou, D. W. Lynch, J. Shinar, J. H. Kang, and Q. H. Park, Spectrally narrowed edge emission from organic light-emitting diodes. Appl. Phys. Lett., 2007, 91, 143504.
H. Cao, J. Y. Xu, S-H. Chang, and S. T. Ho, Transition from amplified spontaneous emission to laser action in strongly scattering media. Phys. Rev. E, 2000, 61, 1985-1989.
I. D. Abella, Optical double-photon absorption in cesium vapor. Phys. Rev. Lett., 1962, 9, 453-455.
E. P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of optical harmonics. Phys. Rev. Lett., 1961, 7, 118-119.
R. W. Boyd, Nonlinear Optics, 3rd ed. Academic Press 2008.
Y. R. Shen, The Principles of Nonlinear Optics. John Wiley & Sons 1984.
G. C. Cardoso, P. Pradhan, J. Morzinski, and M. S. Shahriar, In situ detection of the temporal and initial phase of the second harmonic of a microwave field via incoherent fluorescence. Phys. Rev. A, 2005, 71, 063408.
J. F. Nye, Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, 1985.
J. S. Haggerty, W. P. Menashi, and J. F. Wenckus, Method for Forming Refractory Fibers by Laser Energy. U. S. Patent 3,944,640, March 16th, 1976.
C. Y. Lo, and P. Y. Chen, Three-dimensional simulation and experiment on micro-floating zone of LHPG with asymmetrical perturbation. J. Cryst. Growth, 2013, 362, 45-51.
B. Liu, D. Karki, S. Bera, and P. Ohodnicki Jr. Fabrication and application of single crystal fiber via laser heated pedestal growth system. In Fiber Optic Sensors and Applications XVII, 11739, 1173903. International Society for Optics and Photonics, 2021.
M. H. Tavakoli, H. Wilke, Numerical Study of Heat Transport and Fluid Flow ofMelt and Gas during the Seeding Process of Sapphire Czochralski Crystal Growth. Cryst. Growth Des., 2007, 7, 644–651
B. Chalmers, H. E. Jr. Labele, A. I. Mlavsky, Edge-Defined, Film-Fed Growth (EFG) of Silicon Ribbons. Mater. Res. Bull., 1972, 13–14, 84–87.
C. C. Lai, C. Y. Lo, J. Z. Huang, C. C. F. Chiang, D. H. Nguyen, Y. P. Chen, and C. D. Liao, Architecting a nonlinear hybrid crystal–glass metamaterial fiber for all-optical photonic integration. J. Mater. Chem. C, 2018, 6, 1659-1669.
Y. S. Luh, R. S. Feigelson, M. M. Fejer, R. L. Byer, Ferroelectric Domain Structures in LiNbO3 Single-Crystal Fibers. J. Cryst. Growth, 1986, 78, 135–143.
C. C. Lai, P. Yeh, S. C. Wang, D. Y. Jheng, C. N. Tsai, and S. L. Huang, Strain-dependent fluorescence spectroscopy of nanocrystals and nanoclusters in Cr:YAG crystalline-core fibers and its impact on lasing behavior. J. Phys. Chem. C, 2012, 116, 26052-26059.
C. C. Lai, C. P. Ke, C. N. Tsai, C. Y. Lo, R. C. Shr, and M. H. Chen, Near-field lasing dynamics of a crystal-glass core–shell hybrid fiber. J. Phys. Chem. C, 2013, 117, 17725-17730.
C. C. Lai, C. Y. Lo, D. H. Nguyen, J. Z. Huang, W. S. Tsai, Y. R. Ma, Atomically smooth hybrid crystalline-core glass-clad fibers for low-loss broadband wave guiding. Opt. Express, 2016, 24, 20089-20106.
M. Minsky, U. S. Patent 3,013,467, November 07th, 1957.
D. H. Nguyen, J. Y. Sun, C. Y. Lo, J. M. Liu, W. S. Tsai, M. H. Li, S. J. Yang, C. C. Lin., S. D. Tzeng, Y. R. Ma, M. Y. Lin, and C. C. Lai, Ultralow‐Threshold Continuous‐Wave Room‐Temperature Crystal‐Fiber/Nanoperovskite Hybrid Lasers for All‐Optical Photonic Integration. Adv. Mater., 2021, 33, 2006819.
R. Won, Integrating silicon photonics. Nat. photonics, 2010, 4, 498-499.
M. Hochberg, and T. Baehr-Jones. Towards fabless silicon photonics. Nat. Photonics, 2010, 4, 492-494.
S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, S. B. Papernyi, and W. R. L. Clements, Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat. Photonics, 2015, 9, 608-614.
A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, Enhancing guided second-harmonic light in lithium niobate nanowires. ACS Photonics, 2015, 2, 687-691.
J. M. Dudley, G. Genty, and S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 2006, 78, 1135-1184.
P. C̆erný, H. Jelı́nková, P. G. Zverev, and T. T. Basiev, Solid state lasers with Raman frequency conversion. Prog. Quantum Electron., 2004, 28, 113-143.
G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, Amsterdam, 2013,
G. P. Agrawal, Nonlinear fiber optics: its history and recent progress. JOSA B, 2011, 28, A1-A10.
R. Cieslak, R., W. A. Clarkson, Internal resonantly enhanced frequency doubling of continuous-wave fiber lasers. Opt. Lett., 2011, 36, 1896-1898.
T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota., Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier. Optic. Express, 2008, 16, 1546-1551.
C. P. Khattak, F. Schmid, Growth of the World’s Largest Sapphire Crystals. J. Cryst. Growth, 2001, 225, 572–579.
C. C. Lai, Y. S. Lin, K. Y. Huang, and S. L. Huang, Study on the Core/Cladding Interface in Cr:YAG Double-Clad Crystal Fibers Grown by the Codrawing Laser-Heated Pedestal Growth Method. J. Appl. Phys., 2010, 108, 054308.
F. Faure, N. Arndt, and G. Libourel, Formation of Spinifex Texture in Komatiites: An Experimental Study. J. Petrol., 2006, 47, 1591–1610.
M. Shore and A. Fowler, Ceramic Laser Materials. Nature 1999, 397, 691–694.
A. A. Cabral, V. M. Fokin, E. D. Zanotto, and C. R. Chinaglia, Nanocrystallization of Fresnoite Glass. I. Nucleation and Growth Kinetics. J. Non-Cryst. Solids, 2003, 330, 174–186.
P. F. Yan, K. Du, and M. L Sui, α- to γ-Al2O3 Martensitic Transformation Induced by Pulsed Laser Irradiation. Acta Mater., 2010, 58, 3867–3876.
J. D. Hunt and K. A. Jackson, Binary Eutectic Solidification. Trans. Metall. Soc. AIME, 1966, 236, 843–852.
D. Z. Wang, J. Ma, G. He, G. H. Liu, J. T. Li, and Z. Shen, Complex Structural Hierarchies Observed in Y2O3–Al2O3–SiO2 Eutectic Ceramics Prepared by Laser Melting. J. Asian Ceram. Soc., 2015, 3, 13–17.
F. T. Wallenberger and P. A. Bimgham, Fiberglass and Glass Technology, ed.; Springer: New York, 2009.
S. Alahraché, M. Deschamps, J. Lambert, M. R. Suchomel, D. D. Meneses, G. Matzen, D. Massiot, E. Véron, and M. Allix, Crystallization of Y2O3–Al2O3 Rich Glasses: Synthesis of YAG Glass-Ceramics. J. Phys. Chem. C, 2011, 115, 20499–20506.
D. A. Pawlak, K. Kolodziejak, R. Diduszko, K. Rozniatowski, M. Kaczkan, M. Malinowski, J. Kisielewski, and T. Lukasiewicz, The PrAlO3-Pr2O3 Eutectic, its Microstructure, Instability, and Luminescent Properties. Chem. Mater., 2007, 19, 2195–2202.
A. Gahlerw, J. G. Heinrich, and Direct Laser Sintering of Al2O3–SiO2 Dental Ceramic Components by Layer-Wise Slurry Deposition. J. Am. Ceram. Soc., 2006, 89, 3076–3080.
G. Chryssolouris, Laser Machining–Theory and Practice, corrected ed.; Springer: New York, 1991.
S. O. Kasap, Principles of Electronic Materials and Devices, 3rd ed.; McGraw-Hill: New York, 2005.
F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th ed.; John Wiley & Sons: New York, 2001.
J. M. HcHale and A. Navrotsky, A. J. Perrotta, Effects of Increased Surface Area and Chemisorbed H2O on the Relative Stability of Nanocrystalline γ-Al2O3 and α-Al2O3. J. Phys. Chem. B, 1997, 101, 603–613.
H. Sakate, F. Sakuma, and A. Ono, Observation of Al2O3 Melting and Freezing Plateaus Using A Cavity-Type Tungsten Crucible. Metrologia, 1995, 32, 129–131.
D. B. Chrisey, and G. K. Hubler, Pulsed Laser Deposition of Thin Films, 1st ed.; John Wiley & Sons: New York, 1994.
NIST Thermochemical Tables; National Institute of Standards and Technology (NIST): Gaithersburg, MD, 1985, p 158.
D. M. Krol, K. B. Lyons, S. A. Brawer, and C. R. Kurkjian, High-Temperature Light Scattering and the Glass Transition in Vitreous Silica. Phys. Rev. B, 1986, 33, 4196–4202.
A. K. Chakraborty, Reinvestigation of Al–Si Spinel Phase in Diphasic Al2O3–SiO2 Gel. J. Am. Ceram. Soc., 2005, 88, 134–140.
J. A. Vreeling, Y. T. Pei, B. Wind, V. Ocelı́k, and J. Th. M. De Hosson, Formation of γ-Al2O3 in Reaction Coatings Produced with Lasers. Scr. Mater., 2001, 44, 643–649.
S. Ansell, S. Krishnan, J. K. R. Weber, J. J. Felten, P. C. Nordine, M. A. Beno, D. L. Price, and M. L. Saboungi, Structure of Liquid Aluminum Oxide. Phys. Rev. Lett., 1997, 78, 464–466.
X. Ma, J. Li, Z. Peng, B. Ma, X. Li, W. Pan, and L. Qi, Interpenetrating Network-Structured Al2O3−Y3Al5O12 Eutectic Composite Grown by Containerlessly Directional Solidification Process. Cryst. Growth Des., 2015, 15, 5652–5655.
G. Busca, Structural, surface, and catalytic properties of aluminas. Adv. Catal., 2014, 57, 319-404.
L. M. B. Hickey, E. Martins, J. E. Román, W. S. Brocklesby, and J. S. Wilkinson, Fluorescence of Ti3+ Ions Thermally Diffused into Sapphire. Opt. Lett., 1996, 21, 597–599.
R. C. Powell, B. DiBartolo, B. Birang, and C. S. Naiman, Temperature Dependence of the Widths and Positions of the Rand N Lines in Heavily Doped Ruby. J. Appl. Phys., 1966, 37, 4973–4978.
J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, Nature of the Luminescence from YAG:Cr3+. J. Phys. C: Solid State Phys., 1974, 7, 2241–2248.
C. Batchelor, W. J. Chung, S. Shen, and A. Jha, Enhanced Room-Temperature Emission in Cr4+ Ions Containing Alumino-Silicate Glasses. Appl. Phys. Lett., 2003, 82, 4035–4037.
B. Struve and G. Huber, The Effect of the Crystal Field Strength on the Optical Spectra of Cr3+ in Gallium Garnet Laser Crystals. Appl. Phys. B: Photophys. Laser Chem., 1985, 36, 195–201.
M. Baronskiy, A. Rastorguev, A. Zhuzhgov, A. Kostyukov, O. Krivoruchko, and V. Snytnikov, Photoluminescence and Raman Spectroscopy Studies of Low-Temperature γ-Al2O3 Phases Synthesized from Different Precursors. Opt. Mater., 2016, 53, 87–93.
S. Liu, L. Zhang, Y. Fan, J. Luo, P. Zhang, and L. An, Ultraviolet Irradiation-Induced Photoluminescence Degradationin γ-Al2O3-alumina Nanoparticles. Appl. Phys. Lett., 2006, 89, 051911.
B. G. Draeger, G. P. Summers, Defects in Unirradiated α-Al2O3. Phys. Rev. B, 1979, 19, 1172–1177.
D. I. Tetelbaum, A. N. Mikhaylov, A. I. Belov, A. V. Ershov, E. A. Pitirimova, S. M. Plankina, V. N. Smirnov, A. I. Kovalev, R. Turan, S. Yerci, T. G. Finstad, S. Foss, Properties of Al2O3: NC-Si Nanostructures Formed by Implantation of Silicon Ions into Sapphire and Amorphous Films of Aluminum Oxide. Phys. Solid State, 2009, 51, 385–392.
N. Ichinose, K. Shimamura, Y. Kaneko, E. A. G. Villora, and K. Aoki, Light Emitting Element and Method of Making Same, U. S. Patent 7,629,615 December 8th 2009.
Y. Kikuchi, H. Sudo, and N. Kuzuu, Thermal expansion of vitreous silica: Correspondence between dilatation curve and phase transitions in crystalline silica. J. Appl. Phys., 1997, 82, 4121-4123.
W. R. Liu, Y. H. Li, W. F. Hsieh, C. H. Hsu, W. C. Lee, M. Hong and J. Kwo, Correlation between crystal structure and photoluminescence for epitaxial ZnO on Si (1 1 1) using a γ-Al2O3 buffer layer. J. Phys. D: Appl. Phys., 2008, 41, 065105.
G. Ghosh, Temperature dispersion of refractive indexes in some silicate fiber glasses. IEEE Photon. Technol. Lett., 1994, 6, 431–433.
T. Wermelinger, C. Borgia, C. Solenthaler and R. Spolenak, 3-D Raman Spectroscopy Measurements of the Symmetry of Residual Stress Fields in Plastically Deformed Sapphire Crystals. Acta Mater., 2007, 55, 4657–4665.
P. V. Thomas, V. Ramakrishnan and V. K. Vaidyan, Oxidation studies of aluminum thin films by Raman spectroscopy. Thin Solid Films, 1989, 170, 35–40.
M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura and K. Hirao, Thermal and shock induced modification inside a silica glass by focused femtosecond laser pulse J. Appl. Phys., 2011, 109, 023503.
M. Okuno, N. Zotov, M. Schmücker and H. Schneider, Structure of SiO2-Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies. J. Non-Cryst. Solids, 2005, 351, 1032–1038.
T. Seuthe, M. Grehn, A. Mermillod-Blondin, H. J. Eichler, J. Bonse and M. Eberstein, Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy. Opt. Mater. Express, 2013, 3, 755–764.
W. L. Konijnendijk and M. Stevels, The structure of borosilicate glasses studied by Raman scattering. J. Non-Cryst. Solids, 1976, 20, 193–224.
P. F. McMillan, A. Grzechnik and H. Chotalla, Structural characterization of SiO2–CsAlO2 and SiO2–RbAlO2 glasses. J. Non-Cryst. Solids, 1998, 226, 239–248.
A. K. Yaday and P. A. Singh, A Review on Structure of Glasses by Raman Spectroscopy. J. Non-Cryst. Solids, 2015, 6, 67583–67609.
Y. Zhou, J. Chen, O. M. Bakr, and H. T. Sun, Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater. 2018, 30, 6589-6613.
N. K. Kumawat, X. K. Liu, D. Kabra, and F. Gao, Blue perovskite light-emitting diodes: progress, challenges and future directions. Nanoscale, 2019, 11, 2109-2120.
Z. Wang, Z. Shi, T. Li, Y. Chen, and W. Huang, Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angew. Chem. Int. Ed., 2017, 56, 1190-1212.
L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15, 3692-3696.
X. K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang, R. H. Friend, and F. Gao, Metal halide perovskites for light-emitting diodes. Nat. Mater., 2021, 20, 10-21.
K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, and W. Li, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245-248.
J. Deng, J. Li, Z. Yang, and M. Wang, All-inorganic lead halide perovskites: a promising choice for photovoltaics and detectors. J. Mater. Chem. C, 2019, 7, 12415-12440.
J. Shamsi, A. S. Urban, M. Imran, L. De Trizio, and L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev., 2019, 119, 3296-3348.
Q. Zhang, Q. Shang, R. Su, T. T. H. Do, and Q. Xiong, Halide perovskite semiconductor lasers: materials, cavity design, and low threshold. Nano Letters, 2021, 21, 1903-1914.
Y. Jia, R. A. Kerner, A. J. Grede, B. P. Rand, and N C. Giebink, Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor. Nat. Photonics, 2017, 11, 784-788.
T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, Continuous-Wave Lasing in Cesium Lead Bromide Perovskite Nanowires. Adv. Opt. Mater., 2018, 6, 1700982.
L. Jiang, R. Liu, R. Su, Y. Yu, H. Xu, Y. Wei, Z. K. Zhou, and X. Wang, Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield, Nanoscale, 2018, 10, 13565-13571.
G. L. Whitworth, J. R. Harwell, D. N. Miller, G. J. Hedley, W. Zhang, H. J. Snaith, G. A. Turnbull, and I. D. W. Samuel, Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites, Opt. Express, 2016, 21, 23677-23684.
P. Brenner, M. Stulz, D. Kapp, T. Abzieher, U. W. Paetzold, A. Quintilla, I. A. Howard, H. Kalt, and U. Lemmer, Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Appl. Phys. Lett., 2016, 109, 141106.
P. J. Cegielski, A. L. Giesecke, S. Neutzner, C. Porschatis, M. Gandini, D. Schall, C. A. R. Perini, J. Bolten, S. Suckow, S. Kataria, B. Chmielak, T. Wahlbrink, A. Petrozza, and M. C. Lemme, Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication, Nano Lett., 2018, 18, 6915-6923.
P. J. Cegielski, S. Neutzner, C. Porschatis, H. Lerch, J. Bolten, S. Suckow, A. Ram S. Kandada, B. Chmielak, A. Petrozza, T. Wahlbrink, and A. L. Giesecke, Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Opt. Express, 2017, 25, 13199-13206.
C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, Germany 2003.
C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem., 2013, 52, 9019-9038.
Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, Structure of YAG Crystals Doped/Substitued with Erbium and Ytterbium. Inorg. Chem., 2004, 43, 7656-7664.
A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev., 1939, 56, 978-982.
J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull., 1968, 3, 37-46.
G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013, 342, 344-347.
G. Grancini, V. D'Innocenzo, E. R. Dohner, N. Martino, A. R. Srimath Kandada, E. Mosconi, F. De Angelis, H. I. Karunadasa, E. T. Hokee, and A. Petrozza, CH3NH3PbI3 perovskite single crystals: surface photophysics and their interaction with the environment. Chem. Sci., 2015, 5, 7305-7310.
Y. Wang, K. S. Leck, V. D. Ta, R. Chen, V. Nalla, Y. Gao, T. He, H. V. Demir, and H. Sun, Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi-Continuous Pumping. Adv. Mater., 2015, 27, 169-175.
N. Kurahashi, V. C. Nguyen, F. Sasaki, and H. Yanagi, Whispering gallery mode lasing in lead halide perovskite crystals grown in microcapillary. Appl. Phys. Lett., 2018, 113, 011107.
B. Zhou, Y. Zhong, M. Jiang, J. Zhang, H. Dong, L. Chen, H. Wu, W. Xie, and L. Zhang, Linearly polarized lasing based on coupled perovskite microspheres. Nanoscale, 2020, 10, 5805-5811.
H. Zhang, C. Zhao, S. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Chen, H. Akiyama, and J. Chu, Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition. Chem. Eng. J., 2020, 389, 124395.
S. Sun, S. Xiao, and Q. Song, Distributed Feedback Laser Based on SingleCrystal Perovskite. J. Phys.: Conf. Ser., 2017, 844, 012022.
S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. Z. Sum, and A. Nurmikko, A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films. ACS Nano, 2016, 10, 3959-3967.
Y. J. Li, Y. Lv, C. L. Zou, W. Zhang, J. Yao, and Y. S. Zhao, Output Coupling of Perovskite Lasers from Embedded Nanoscale Plasmonic Waveguides. J. Am. Chem. Soc., 2016, 138, 2122-2125.
H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Zhu, Lead halide perovskite nanowire lasers with lowlasing thresholds and high quality factors. Nat. Mater., 2015, 14, 636-642.
S. Chen and A. Nurmikko, Excitonic gain and laser emission from mixed-cation halide perovskite thin films. Optica, 2018, 5, 1141-1149.
X. Fan and S. H. Yun, The potential of optofluidic biolasers. Nat. Methods, 2014, 11, 141-147.
X. Fan and I. M White, Optofluidic microsystems for chemical and biological analysis. Nat. Photon., 2011, 5, 591-597.
Q. Chen, M. Ritt, S. Sivaramakrishnan, Y. Sun, and X. Fan, Optofluidic lasers with a single molecular layer of gain. Lab Chip, 2014, 14, 4590-4595.
S. S. Yan, S. C. Su, An Q. Chen, Yan Y. Wu, Hai Zhu, and S. P. Wang, Flexible ultrahigh Q-factor bottle-like microcavity laser. J. Phys.: D Appl. Phys., 2018, 51, 065107.
J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, and G. Qian, Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun., 2013, 4, 2719.
M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity. Adv. Mater., 2002, 14, 317-321.
A. Alberti, C. Bongiorno, E. Smecca, I. Deretzis, A. L. Magna, and C. Spinella, Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation. Nat. Commun. 2019, 10, 2196.
F. Yuan, Z. Wu, H. Dong, J. Xi, K. Xi, G. Divitini, B. Jiao, X. Hou, S. Wang, and Q. Gong, High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. J. Phys. Chem., C 2017, 121, 15318-15325.
H. Yu, X. Cheng, Y. Wang, Y. Liu, K. Rong, Z. Li, Y. Wan, W. Gong, K. Watanabe, T. Taniguchi, and S. Wang, Waterproof perovskite-hexagonal boron nitride hybrid nanolasers with low lasing thresholds and high operating temperature. ACS Photonics, 2018, 5, 4520-4528.
C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, and C. Adachi, Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53-57.
K. Y. Hsu, M. H. Yang, D. Y. Jheng, C. C. Lai, S. L. Huang, K. Mennemann, and V. Dietrich, Cladding YAG crystal fibers with high-index glasses for reducing the number of guided modes. Opt. Mater. Express, 2013, 3, 813-820.
M. C. Pujo, A. Maitre, J. Carreaud, R. Boulesteix, A. Brenier, G. Alombert-Goget, Y. Guyot, J. J. Carvajal, R. M. Solé, J. Massons, A. Oleaga, A. Salazar, I. Gallardo, P. Moreno, J. R. V. de Aldana, M. Aguiló, and F. Diaz, Thermal and Optical Characterization of Undoped and Neodymium-Doped Y3ScAl4O12 Ceramics. J. Phys. Chem. C, 2014, 118, 13781-13789.
Y. Sato and T. Taira, The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method. Opt. Express, 2006, 14, 10528-10536.
B. T. Do and A. V. Smith, Deterministic single shot and multiple shots bulk damage thresholds for doped and undoped crystalline and ceramic YAG. Proc. SPIE, 2009, 7504, 75041O.
C. H. Henager, Jr. and W. T. Pawlewicz, Thermal conductivities of thin, sputtered optical films. Appl. Opt., 1993, 32, 91-101.
J. Zhao and J. Sullivan, Structural modification of silica glass by laser scanning. J. Appl. Phys., 2004, 95, 5475-5482.
B. T. Do and A. V. Smith, Bulk optical damage thresholds for doped and undoped, crystalline and ceramic yttrium aluminum garnet. Appl. Opt., 2009, 18, 3509-3514.
Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu, and N. P. Padture, Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A, 2015, 3, 8178-8184.
X. Mettan, R. Pisoni, P. Matus, A. Pisoni, J. Jaćimović, B. Náfrádi, M. Spina, D. Pavuna, L. Forró, and E. Horváth, Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. C, 2015, 119, 11506.
A. Pisoni, J. Jaćimović, O. S. Barišić, M. Spina, R. Gaál, L. Forró, and E. Horváth, Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. J. Phys. Chem. Lett., 2014, 5, 2488-2492.
A. Kovalsky, L. Wang, X. Guo, J. S. Dyck, and C. Burda, Temperature-Dependent Thermal Conductivity Study of MAPbI3: Using Mild Aging To Reach a Thermal Percolation Threshold for Greatly Improved Heat Transport J. Phys. Chem. C, 2018, 122, 13243-13249.
A. Kovalsky, L. Wang, G. T. Marek, C.s Burda, and J. S. Dyck, Thermal Conductivity of CH3NH3PbI3 and CsPbI3: Measuring the Effect of the Methylammonium Ion on Phonon Scattering. J. Phys. Chem. C, 2017, 121,3228-3233.
X. Qian, X. Gu, and R. Yang, Lattice thermal conductivity of organic-inorganic hybrid perovskite CH3NH3PbI3. Appl. Phys. Lett., 2016, 108, 063902.
N. Onodayamamuro, T. Matsuo, and H. Suga, Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II)† J. Phys. Chem. Solids, 1990, 51, 1383-1395.
C. J. Glassbrenner, and Glen A. Slack, Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point. Phys. Rev., 1964, 134, A1058-A1069.
I. Henins, Precision Density Measurement of Silicon. J. Res. Natl. Bur. Stand. A. Phys. Chem., 1964, 68A, 529-533.
H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Denielson, Thermal Conductivity of Silicon from 300 to 1400°K. Phys. Rev., 1963, 130, 1743-1748.
X. Lv, Y. Pan, Z. Jia, Z. Li, H. Zhang, and X. Ni, Laser-induced damage threshold of silicon under combined millisecond and nanosecond laser irradiation J. Appl. Phys., 2017, 121, 113102.
B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, L. Zhang, Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS Nano, 2017, 11, 10681-10688.
J. Feng, X. Yan, Y. Zhang, X. Wang, Y. Wu, B. Su, H. Fu, and L Jiang, “Liquid Knife” to Fabricate Patterning Single-Crystalline Perovskite Microplates toward High-Performance Laser Arrays. Adv. Mater., 2016, 28, 3732-3741.
K. Park, J. W. Lee, J. D. Kim, N. S. Han, D. M. Jang, S. Jeong, J. Park, and J. K. Song, Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. J. Phys. Chem. Lett., 2016, 7, 3703-3710.
F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett., 2014, 5, 1421-1426.
S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun., 2015, 6, 8056.
J. R. Harwell, G. L. Whitworth, G. A. Turnbull, I. D. W. Samuel, Green Perovskite Distributed Feedback Lasers. Sci. Rep., 2017, 7, 11727.
S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl Acad. Sci. USA, 2016, 113, 1993-1998.
S. Chen, C. Zhang, J. Lee, J. Han, and A. Nurmikko, High-Q, Low-Threshold Monolithic Perovskite Thin-Film Vertical-Cavity Lasers. Adv. Mater., 2017, 29, 1604781.
W. Du, S. Zhang, J. Shi, J. Chen, Z. Wu, Y. Mi, Z. Liu, Y. Li, X. Sui, R. Wang, X. Qiu, T. Wu, Y. Xiao, Q. Zhang, and X. Liu, Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot Cavity. ACS Photon., 2018, 5, 2051-2059.
X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, and T. C. Sum, Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room‐Temperature Lasing. Adv. Sci., 2016, 3, 1600137.
X. Wang, M. Shoaib, X. Wang, X. Zhang, M. He, Z. Luo, W. Zheng, H. Li, T. Yang, X. Zhu, L. Ma, and A. Pan, High-Quality In-Plane Aligned CsPbX3 Perovskite Nanowire Lasers with Composition-Dependent Strong Exciton-Photon Coupling. ACS Nano, 2018, 2, 6170-6178.
J. Wang, P. Da, Z. Zhang, S. Luo, L. Liao, Z. Sun, X. Shen, S. Wu, G. Zheng, and Z. Chen, Lasing from lead halide perovskite semiconductor microcavity system. Nanoscale, 2018, 10, 10371-10376.
B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan and L. Zhang, Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. J. Mater. Chem. C, 2018, 6, 11740-11748.
S. Chen and A. Nurmikko, Stable Green Perovskite Vertical-Cavity Surface-Emitting Lasers on Rigid and Flexible Substrates. ACS Photon., 2017, 4, 2486-2494.
G. Li, T. Che, X. Ji, S. Liu, Y. Hao, Y. Cui and S. Liu, Record-Low-Threshold Lasers Based on Atomically Smooth Triangular Nanoplatelet Perovskite. Adv. Funct. Mater., 2019, 29, 1805553.
P. Perumal, C. S. Wang, K. M. Boopathi, G. Haider, W. C. Liao, and Y. F. Chen, Whispering Gallery Mode Lasing from Self-Assembled Hexagonal Perovskite Single Crystals and Porous Thin Films Decorated by Dielectric Spherical Resonators. ACS Photon, 2016, 4, 146-155.
Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. Nano Lett., 2014, 14, 5995-6001.
Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, and R. Li, Robust Subwavelength Single-Mode Perovskite Nanocuboid Laser. ACS Nano, 2018, 12, 5923-5931.
Y. Mi, Z. Liu, Q. Shang, X. Niu, J. Shi, S. Zhang, J. Chen, W. Du, Z. Wu, R. Wang, X. Qiu, X. Hu, Q. Zhang, T. Wu, and X. Liu, Fabry–Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities. Small, 2018, 14, 1703136.
Z. F. Shi, X. G. Sun, D. Wu, T. T. Xu, Y. T. Tian, Y. T. Zhang, X. J. Li, and G. T. Du, Near-infrared random lasing realized in aperovskite CH3NH3PbI3thin film. J. Phys. Chem. C, 2016, 4, 8373-8379.
B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, and L. Zhang, High-Temperature Upconverted Single-Mode Lasing in 3D Fully Inorganic Perovskite Microcubic Cavity. ACS Photon., 2019, 6, 793-801.
C. Tian, T. Guo, S. Zhao, W. Zhai, C. Ge, and G. Ran, Low-threshold room-temperature continuous-wave optical lasing of single-crystalline perovskite in a distributed reflector microcavity. RSC Adv., 2019, 9, 35984-35989.
J. Moon, M. Alahbakhshi, A. Gharajeh, S. Kwon, R. Haroldson, Z. Li, R. Hawkins, M. J Kim, W. Hu, A. Zakhidov, and Q. Gu, Environmentally stable room temperature continuous wave lasing in defect-passivated perovskite, https://arXiv.org/abs/1909.10097v2, accessed: July, 2021.
Z. Li, J. Moon, A. Gharajeh, R. Haroldson, R. Hawkins, W. Hu, A. Zakhidov, and Q. Gu, Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano, 2018, 12, 10968-10976.
L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, and H. Zhong, Ultralow-Threshold and Color-Tunable Continuous-Wave Lasing at Room-Temperature from In Situ Fabricated Perovskite Quantum Dots. J. Phys. Chem. Lett., 2019, 10, 3248-3253.
Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing, G. Xing, B. Shen, X. Liu, and Q. Zhang, Role of the Exciton–Polariton in a Continuous-Wave Optically Pumped CsPbBr3 Perovskite Laser. Nano Lett., 2020, 20, 6636-6643.
L. Xu, Y. Meng, C. Xu and P. Chen, Room temperature two-photon-pumped random lasers in FAPbBr3/polyethylene oxide (PEO) composite perovskite thin film. RSC Adv., 2018, 8, 36910-36914.
D. Han, M. Imran, M. Zhang, S. Chang, X. Wu, X. Zhang, J. Tang, M. Wang, S. Ali, X. Li, G. Yu, J. Han, L. Wang, B. Zou, and H. Zhong, Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process. ACS Nano, 2018, 12, 8808-8816.
A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X-Y. Zhu, How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun., 2019, 10, 265.
S. Chen. and A. Nurmikko, Excitonic gain and laser emission from mixed-cation halide perovskite thin films. Optica, 2018, 5, 1141-1149.
T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes and D. Cahen, Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater., 2016, 1, 15007.
W. Ke, and M. G. Kanatzidis, Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun., 2019, 10, 965.
J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent and J. Tang, Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541-545.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *