帳號:guest(18.189.186.114)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃任遠
作者(英文):Ren-Yuan Huang
論文名稱:應用於藍牙低功耗系統之內部諧振電流注入混頻器和基底電阻基底偏壓低雜訊放大器
論文名稱(英文):Design of an Internal-Resonant-Current-Bleeding Mixer and a Body-Resistor-Body-Bias Low Noise Amplifier for Bluetooth Low Energy Systems
指導教授:翁若敏
陳美娟
指導教授(英文):Ro-Min Weng
Mei-Juan Chen
口試委員:邱煥凱
林宗賢
黃崇禧
口試委員(英文):Hwann-Kaeo Chiou
Tsung-Hsien Lin
Chorng-Sii Hwang
學位類別:博士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:810223005
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:95
關鍵詞:基底電阻結構CMOS積體電路雙混合耦合內部諧振電流注入低電壓正交壓控振盪器單平衡混頻器
關鍵詞(英文):body-resistor structureCMOS integrated circuitsdual-hybrid- couplinginternal-resonant-current-bleedinglow voltagequadrature voltage-controlled oscillatorsingle-balanced mixer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
近年來,無線收發器通常使用正交振幅調變(Quadrature Amplitude Modulation, QAM)來實現無線通信系統中的高數據傳輸速率,並且已經開發並發布了許多短程無線個人區域網 (Wireless Personal Area Network, WPAN)技術。對攜帶型無線設備的日益增長的需求推動了無線技術的快速發展,其中藍牙、Wi-Fi和Zigbee是無線個人區域網中最常用的。在設計這些產品的時候其設計終旨是邁向低成本、低功耗和低電壓的方向努力,以最小化無線個人區域系統晶片。
本論文首先提出了低功耗、低相位雜訊的正交壓控振盪器(Quadrature voltage-controlled oscillator, QVCO)。採用雙混合耦合(Dual-Hybrid-Coupling, DHC) 技術來增加輸出電壓擺幅。應用二次諧波濾波器消除相位雜訊並抑制相位誤差。擬議的DHC-QVCO採用低成本標準的180nm CMOS製程技術實現。振盪頻率在19.8至21.5 GHz ;調整範圍是8.5%;20.6 GHz的頻率偏移1 MHz時其相位雜訊達到-100.1 dBc/Hz。相位誤差和增益誤差分別為4.29度和3.2 dB。核心電路從1.5V電源僅消耗5.15mW的功率。設計的雙混合耦合正交壓控振盪器展示了低功耗、低相位雜訊。
第二是提出新穎的內共振電流注入單平衡混頻器(internal-resonant-current- bleeding, IRCB),用於藍牙低功耗 (Bluetooth Low Energy, BLE)系統,通過同時使用電流注入(Current-Bleeding , CB)技術和LO開關基底偏壓技術,所提出的內部共振電流注入單平衡混頻器以低功耗實現了高轉換增益和高線性度,此外可以通過添加內部電感器和電容器來消除寄生電容的影響。轉換增益為16.9 dB;三階交調點為4.1-dBm;在1.8V電源下的功耗為0.99 mW。
本論文提出了一種在180nm CMOS製程技術中結合基底電阻結構和基底偏壓技術的低壓低雜訊放大器,使用基底電阻結構和基底偏壓技術不僅可以改善電壓而且可以降低雜訊指數。在2.4GHz其功率增益和雜訊指數分別為13 dB和3.5 dB;操作電壓0.6V其功耗為1.62 mW。
In recent years, transceivers usually use Quadrature Amplitude Modulation (QAM) to achieve high data transfer rate in wireless communication systems. Moreover, numerous short-range wireless personal area network (WPAN) technologies have been developed and published. The increasing demands on portable wireless devices provide a motivation for the development of wireless chip. Among them, Bluetooth, Wi-Fi and Zigbee were the most commonly used in WPAN. To design of these products, compact size, low power, and low voltage were driven towards to minimize the full-integration cost of WPAN system on chip.
A low power and low phase noise quadrature voltage-controlled oscillator (QVCO) was presented for short range radar systems in this dissertation. A dual-hybrid-coupling (DHC) technique is adopted to increase the output voltage swing. The second harmonic filters are applied to eliminate the phase noise as well as to suppress the phase error. The proposed DHC-QVCO was implemented with a low cost standard 180-nm CMOS process technology. The oscillation frequency was operated between 19.8 and 21.5-GHz. The tuning range was 8.5 %. The phase noise achieves -100.1 dBc/Hz at 1-MHz offset from a carrier frequency of 20.6 GHz. The phase error and gain error are 4.29 degree and 3.2 dB, respectively. The core circuit consumes only 5.15 mW from a power supply of 1.5 V. The designed DHC-QVCO has demonstrated the advantages of low power, low phase noise, and wide tuning range for K-band applications.
In this dissertation, a novel internal-resonant-current-bleeding (IRCB) structure for mixer was presented for application in Bluetooth Low Energy (BLE) systems. By using both a current-bleeding (CB) technique and an LO switching body-biased method, the proposed internal-resonant-current-bleeding structure for mixer achieves high conversion gain and high linearity with low power consumption. Moreover, the effects of parasitic capacitances can be cancelled by adding internal inductors and capacitors. The conversion gain of the differential intermediate frequency ports are 16.9 dB. The input third-order intercept point is 4.1 dBm. The power consumption is 0.99 mW with 1.8 V supply.
A low voltage body-resistor-body-bias (BRBB) low noise amplifier incorporates with tsmc 180-nm CMOS process technology was proposed. Using body-resistor structure and body-bias technology not only was adopted to improve the supply voltage, but also to lower the NF. The power gain and NF were and 13 dB and 3.5 dB at 2.4GHz, respectively. The power consumption was 1.62-mW from a power supply 0.6 V supply.
Chapter 1 Background and Motivations 1
1.1 Motivation 1
1.2 Quadrature amplitude modulation 3
1.3 Bluetooth Low Energy Receiver 4
Chapter 2 K-Band Low Power Dual-Hybrid-Coupling Quadrature Voltage-Controlled Oscillator 15
2.1 Dual-Hybrid-Coupling QVCO Design 17
2.1.1 Dual-Hybrid-Coupling Path 19
2.1.2 The Second Harmonic Filter 25
2.2 Simulated and Measured Results 26
2.3 Summary 37
Chapter 3 A Sub-mW Single-balanced Mixer for Bluetooth Low Energy Systems 39
3.1 Proposed High Gain High Linearity Mixer 42
3.1.1 Internal-Resonant-Current-Bleeding Structure 43
3.1.2 LO Switching Body-Biased Method 48
3.2 Simulated and Measured Results 50
3.3 Summary 58
Chapter 4 Low Voltage Body-Resistor-Body-Bias Low Noise Amplifier for Bluetooth Low Energy Systems 59
4.1 Proposed Low-Voltage LNA Design 59
4.1.1 Body-Resistor Structure 61
4.1.2 Body-Bias Technology 63
4.1.3 Noise Analysis 65
4.2 Simulated and Measured Results 75
4.3 Summary 83
Chapter 5 Conclusion 85
REFERENCES 87
[1] Bluetooth specification, volume 6 (low energy controller), bluetooth SIG, eec. 2009.
[2] Bluetooth Special Interest Group “Bluetooth Low Energy Regulatory Aspects,” Apr. 2011.
[3] J. F. Ensworth and M. S. Reynolds, “BLE-backscatter: ultralow-power IoT nodes compatible with bluetooth 4.0 low energy (BLE) smartphones and tablets,” IEEE Trans. Microwave Theory Tech., vol. 65, no. 9, pp. 3360-3368, Apr. 2017.
[4] S. Yang, J. Yin, Haidong Yi, et al, “A 0.2-V energy-harvesting BLE transmitter with a micropower manager achieving 25% system efficiency at 0-dbm output and 5.2-nW sleep power in 28-nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1351-1362, Jan. 2019.
[5] F.-W. Kuo, S. B. Ferreira, H.-N. R. Chen, et al, “A bluetooth low-energy transceiver with 3.7-mw all-digital transmitter, 2.75-mw high-if discrete-time receiver, and TX/RX switchable on-chip matching network,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1305-1313, June 2006.
[6] I. Yildirim, E. Basar, and Ibrahim Altunbas, “Quadrature channel modulation,” IEEE Microw. Wireless Compon. Lett., vol. 6, no. 6, pp. 790-793, Aug. 2017.
[7] H. Wang, H. Mohammadnezhad, and P. Heydari, “Analysis and design of high-order QAM direct-modulation transmitter for high-speed point-to-point mm-wave wireless links,” IEEE J. Solid-State Circuits, vol. 54, no. 11, pp. 3161-3179, Aug. 2019.
[8] J. Choma and W.-K. Chen, “Feedback networks: theory and circuit applications. Singapore: World Scientific,” World Scientific Pub, 2007.
[9] Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, 2nd Edition, 2004.
[10] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[11] M.-D. Wei, S.-F. Chang, C.-S. Chen, “A low phase-poise QVCO with integrated back-gate coupling and source resistive degeneration technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 398-400, June 2009.
[12] J.-W. Wu, H.-H. Wu, K.-C. Hsu, C.-C. Chen, “A back-gate coupling quadrature voltage-control oscillator embedded with self body-bias schema,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 3, pp. 146-148, Mar. 2013.
[13] C. T. Fu, H. C. Luong, “A 0.8-V CMOS quadrature LC VCO using capacitive coupling,” Proc. IEEE. Conf. Asian Solid-State Circuits, Jeju, Korea , Nov. 2007, pp. 436--439.
[14] H. Tong, S. Cheng, Y.-C. Lo, et al, “An LC quadrature VCO using capacitive source degeneration coupling to eliminate bi-modal oscillation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 9, pp. 1871-1879, Sep. 2012.
[15] A. Mazzanti and P. Andreani, “A time-variant analysis of fundamental 1/f$^3$ phase noise in CMOS parallel LC-tank quadrature oscillators,” IEEE Trans. Circuits Syst. I, Reg. Papers1, vol. 56, no. 10, pp. 2173-2180, Oct. 2009.
[16] S.-Y. Lee, L.-H. Wang, and Y.-H. Lin, “A CMOS quadrature VCO with subharmonic and injection-locked techniques,” IEEE Trans. Circuits Syst. II, Exp. Briefs2, vol. 57, no. 11, pp. 843-847, Nov. 2010.
[17] S. Saberi and J. Paramesh, “A 11.5-22GHz dual-resonance transformer-coupled quadrature VCO”. Proc. IEEE Conf. Radio Freq. Integr. Circuits Symp., Baltimore, USA , June 2011, pp. 1-4.
[18] X. Ding, J. Wu, and C. Chen, “A low-power 0.6-V quadrature VCO with a coupling current reuse technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs2, vol. 66, no. 2, pp. 202-206, Feb. 2019.
[19] A. Mazzanti, F. Svelto, and P. Andreani, “On the amplitude and phase errors of quadrature LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1305-1313, June 2006.
[20] I-S. Shen, T.-C. Huang, and C. F. Jou, “A low phase noise quadrature VCO using symmetrical tail current-shaping technique,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 399-401, July 2010.
[21] I-S. Shen, C.-F Jou, “A X-Band capacitor-coupled QVCO using sinusoidal current bias technique,” IEEE Trans. Microw. Theory Techn. vol. 60, no. 2, pp. 318-328, Feb. 2012.
[22] S. Rudrapati and S. Gupta, “A wide operating range LC quadrature phase VCO with seamless tunability,” IEEE Trans. Circuits Syst. II, Exp. Briefs2, vol. 65, no. 12, pp. 1914-1918, Dec. 2018.
[23] Y.-S. Lin, C.-C. Wang, P.-W. Yu, et al, “Low-phase-noise 0.63-V, 1.7-mW, 11.55-GHz quadrature voltage controlled oscillator with intrinsic-tuned technique in 0.18-m complimentary metal oxide semi-conductor,” IET Microw. Antennas Propag., vol. 6, no. 13, pp. 1437-1442, May 2012.
[24] Ro-Min Weng, Ren-Yuan Huang, and Yao-Chang Chiang, “K-band low-power dual-hybrid-coupling quadrature voltage-controlled oscillator,” IET Microwaves, Antennas & Propagation, vol. 14, no. 1, pp. 75-81, Jan. 2020.
[25] B. Soltanian and P. Kinget, “A low phase noise quadrature LC VCO using capacitive common-source coupling,” Proc. Int. Conf. European Solid-State Circuits, Montreux, Switzerland, Feb 2006, pp. 436--439.
[26] C.-T. Lu, H.-H. Hsieh, and L.-H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits Syst. I, Reg. Papers1, vol. 57, no. 4, pp. 793-802, Apr. 2010.
[27] B. Soltanian and P. Kinget, “A low phase noise quadrature LC VCO using capacitive common-source coupling'. Proc. European Solid-State Circuits Conf., Baltimore, Switzerland, Sept. 2006, pp. 436-439.
[28] X. Yi, C. C. Boon, H. Liu, et al, “A 57.9-to-68.3 GHz 24.6 mW frequency synthesizer with in-phase injection-coupled QVCO in 65 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 347-359, Feb. 2014.
[29] N.-C. Kuo, J.-C. Chien, and A. M. Niknejad, “Design and analysis on bidirectionally and passively coupled QVCO with nonlinear Coupler,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1130-1141, Apr. 2015.
[30] H.-Y. Chang, C.-C. Chan, S.-M. Li, et al, “Design and analysis of CMOS low-phase-noise low quadrature error V-band subharmonically injection-locked quadrature FLL,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2851-2866, June 2018.
[31] P. Andreani, A. Bonfanti, L. Romanò, et al, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002.
[32] A. Hajimiri, and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[33] E. Hegazi, H. Sjöland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits., vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
[34] A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[35] M.-H. Li, Y.-H. Liao, and H.-Y. Chang, “A K-band low power high accuracy quadrature VCO using gate-modulated coupling and transformer feedback technique'. Proc. Int. Conf.Asia Pacific Microw., Sendai, Japan, Nov. 2014, pp. 895-897.
[36] M. Vigilante and P. Reynaert, “Analysis and design of an E-band transformer-coupled low-noise quadrature VCO in 28-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1122-1132, Apr. 2016.
[37] S. Wang and C.-Y. Xiao, “A 7/24-GHz CMOS VCO with high band ratio using a current-source switching topology,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 63, no. 5, pp. 790-795, May 2016.
[38] J. Masuch and M. Delgado-Restituto, “A 1.1 mW RX 81.4 dBm sensitivity CMOS transceiver for bluetooth low energy,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1660-1673, Apr. 2013.
[39] J. F. Ensworth and M. S. Reynolds, “BLE-Backscatter: Ultralow-Power IoT Nodes Compatible With Bluetooth 4.0 Low Energy (BLE) Smartphones and Tablets,” IEEE Trans. Microwave Theory Tech., vol. 65, no. 9, pp. 3360-3368, Apr. 2017.
[40] M. B. Aimonetto and F. Fiori, "Investigation on the susceptibility of BLE receivers to power switching noise," IEEE Trans. Electromagn. Compat., vol. 60, no. 5, pp. 1529-1538, Oct. 2018.
[41] S. Zhou and M.-C. F. Chang, "A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver, ” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1084-1093, May 2005.
[42] T. Xi, Sherry Huang, et al., "A new passive CMOS mixer with LO shaping technique for mmWave applications, ” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 6, pp. 455-457, June 2016.
[43] H.-M. Oh, Jae-Sun Kim, et al., "A 2.4--GHz high conversion gain passive mixer using Q -boosted -type LCL matching networks in 90-nm CMOS, ” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 8, pp. 736-738, Aug. 2017.
[44] T. T. Nguyen, Alfred Riddle, et al., "Development of wideband and high IIP3 millimeter--wave mixers,” IEEE Trans. Microw. Theory Techn. ., vol. 65, no. 8, pp. 3071-3079, Aug. 2017.
[45] J.-H. Tsai, H. Xiao, J.-H. Cheng and R.-A. Chang, “Ultra-low-LO-power X-band down-conversion ring mixer using weak-inversion biasing technique,” Electronics Lett., vol. 54, no. 3, pp. 130-132, Feb. 2018.
[46] J.-Y. Lee, and T.-Y. Yun, “Low-Flicker-Noise and High-Gain Mixer Using a Dynamic Current-Bleeding Technique,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 8, pp. 733-735, Aug. 2017.
[47] W. K. Chong, H. Ramiah, and N. Vitee, “A 0.12-mm2 2.4-GHz CMOS Inductorless HighIsolation Subharmonic Mixer With EffectiveCurrent-Reuse Transconductance,” IEEE Trans. Microw. Theory Techn. ,vol. 63, no. 8, pp. 2427-2437, Aug. 2015.
[48] G. H. Tan, H. Ramiah, et al., “A 0.35-V 520 W 2.4-GHz Current-Bleeding Mixer With Inductive-Gate and Forward-BodyBias, Achieving >13-dB Conversion Gainand >55-dB Port-to-Port Isolation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 4, pp. 1284-1293, Apr. 2017.
[49] P. Qin and Q. Xue “A low-voltage folded-switching mixer using area-efficient CCG transconductor,” IEEE Trans. Circuits Syst. II, Exp. Briefs2, vol. 64, no. 8, pp. 877-881, Aug. 2017.
[50] S.-G. Lee and J.-K. Choi, “Current-reuse bleeding mixer, ” Electronics Lett., vol. 36, no. 8, pp. 696-697, Apr. 2000.
[51] J.-Y. Lee, J.-Y. Park, and T.-Y. Yun, “Flicker Noise Improved CMOS Mixer Using Feedback Current Bleeding,” IEEE Microw. Wireless Compon. Lett, vol. 27, no. 8, pp. 730-732, Aug. 2017.
[52] C.-R. Wu, H.-H. Hsieh, et al., “An ultra-wideband distributed active mixer MMIC in 0.18 m CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 4, pp. 625-632, Apr. 2007.
[53] S. Kong, C.-Y. Kim, et al., “A K-band UWB low-noise CMOS mixer with bleeding path Gm-boosting techniquer,” IEEE Trans. Circuits Syst. II, Exp. Briefs2, vol. 60, no. 3, pp. 117-121, Mar. 2013.
[54] C. J. Lee and C. S. Park, “A D-band gain-boosted current bleeding down-conversion mixer in 65 nm CMOS for chip-to-chip communication,” IEEE Microw. Wireless Compon. Lett. vol. 26, no. 3, pp. 143-145, Feb. 2016.
[55] J.-Y. Lee, Y.-M. Kang, S.-K. Lee, and T.-Y. Yun, “High-gain low-noise Ku-band mixer with inverting transconductance technique,” IET Microw. Antennas Propag., vol. 7, no. 2, pp. 141--145, Jan. 2013.
[56] H. Rashtian, A. H. M. Shirazi, and S. Mirabbasi,“ Improving linearity of CMOS Gilbert-cell mixers using body biasing,” in Int. Midwest Symposium on Circuits and Systems Conf., 2012, pp. 61-64.
[57] H. Rashtian and S. Mirabbasi, “Applications of body biasing in multistage CMOS low-noise amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers1,vol. 61, no. 6, pp. 1638-1645, Jan. 2014.
[58] B. K. Esfeh, V. Kilchytska, et al, “Back-gate bias effect on UTBB-FDSOI non-linearity performance,” in Int. European Solid-State Device Research Conf., 2017, pp. 11-14.
[59] J.-Y. Lee and T.-Y. Yun, “A dynamic current‐bleeding technique for a low‐noise and high‐gain CMOS mixer” Microwave and Optical Technology Letters, vol. 59, pp. 1267-1271, June 2017.
[60] 財團法人國家實驗研究院台灣半導體研究中心對外服務收費方式與說明 (https://www.tsri.org.tw/soc/pdf/service_fee.pdf)
[61] C.-Y. Lin, C.-P. Liang, et al, “Compact composite noise-reduction LNA for UWB WPAN and WBAN applications,” IET Microw. Antennas Propag., vol. 12, no. 6, pp. 903-908, May 2018.
[62] M. Yaghoobi, M. Yavari, “A 55–64-GHz Low-Power Small-Area LNA in 65-nm CMOS With 3.8-dB Average NF and~12.8-dB Power Gain,” IEEE Microw. Wireless Compon. Lett. vol. 29, no. 2, pp. 128-130, Feb. 2019.
[63] D. Wu, R. Huang et al, “A 0.4-V Low Noise Amplifier Using Forward Body Bias Technology for 5 GHz Application,” IEEE Microw. Wireless Compon. Lett. vol. 17, no. 7, pp. 543-545, July 2007.
[64] C.-M. Li, M.-T. Li, “A Low-Power Self-Forward-Body-Bias CMOS LNAfor 3–6.5-GHz UWB Receivers,” IEEE Microw. Wireless Compon. Lett. vol. 20, no. 2, pp. 100-102, Feb. 2010.
[65] Behzad Razavi, RF Microelectronics, Prentice-Hall, 1997.
[66] J. Jussila and P. Sivonen, " A 1.2-V Highly Linear Balanced Noise-Cancelling LNA in 0.13-m CMOS, ” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 579-587, Mar. 2008.
[67] S. Kim, and K. Kwon, “A 50-MHz–1-GHz 2.3-dB NF Noise-Cancelling Balun-LNA Employing a Modified Current-Bleeding Technique and Balanced Loads,” IEEE Trans. Circuits Syst. I, Reg. Papers1,vol. 66, no. 2, pp. 546-554, Feb. 2019.
[68] Q. M. Abubaker and L. Albasha, “Balun LNA Thermal Noise Analysis and Balancing With Common-Source Degeneration Resistor,” IEEE Access, vol. 8, pp. 64949-64957, Mar. 2020.
[69] L. Liu, Z. Lu, K. Zhang, et al, “Wideband balun-LNA exploiting noise cancellation and gm'' compensation technique,” Electron. Lett., vol. 52, no. 8, pp. 673-674, Apr. 2016.
[70] S. Tiwari and J. Mukherjee, “An inductorless noise cancelling wideband balun LNA with dual shunt feedback and current reuse,” in Proc. IEEE 62nd Int. Midwest Symp. Circuits Syst., Dallas, TX, USA, Aug. 2019, pp. 432-435.
(此全文20250721後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *