帳號:guest(3.137.217.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:王敬中
作者(英文):Jing-Zhong Wang
論文名稱:整體最佳解引導的多樣性控制差分演算法
論文名稱(英文):Whole Best Leaded Diversity Control Differential Evolution Algorithm
指導教授:孫宗瀛
指導教授(英文):Tsung-Ying Sun
口試委員:孫宗瀛
劉東官
謝昇達
蘇仲鵬
江政欽
口試委員(英文):Tsung-Ying Sun
Tung-Kuan Liu
Sheng-Ta Hsieh
Juhng-Perng Su
Cheng-Chin Chiang
學位類別:博士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:810223007
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:223
關鍵詞:差分演算法模糊推論系統多樣性控制廣度多樣性均勻度多樣性
關鍵詞(英文):differential evolution algorithmfuzzy inference systemdiversity controlextent diversityuniform diversity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本研究提出整體最佳解引導的多樣性控制差分演算法(whole best leaded diversity control differential evolution algorithm, WBDDE)來解決差分演算法(differential evolution, DE)在使用上會遇到參數設定、演化停滯、收斂速度過慢等三項問題。WBDDE包含三項機制:整體最佳解(whole best, WB)引導演化、適應性調整廣度多樣性(extent diversity, ED)、控制個體均勻度多樣性(uniform diversity, UD)。
WB比全域最佳解(global best, GB)可以更快得到族群內部的情況,提供更多演化資訊與加快收斂速度。適應性調整ED可以提高個體ED值,也有助於探索突變策略演化出較佳的解。控制UD的機制創造出不同於傳統突變策略的收斂曲線、UD曲線。不但減少演化停滯,也加快收斂速度。
WBDDE與其他DE變化型比較結果可發現WBDDE在合成函數的表現較佳。除解決參數設定,加快收斂速度,減少演化停滯外,WBDDE還有增加DE個體演化資訊、兩面向量測多樣性、驗證單目標最佳化問題演化結果也會受到多樣性的影響以及主動控制多樣性等學術貢獻與特色。
WBDDE是設計用來解決最佳化問題,因此WBDDE可以使用於最佳化問題的應用,例如:排程、系統鑑定等等。
This study proposes the whole best leaded diversity control differential evolution algorithm (WBDDE) to solve three problems when using differential evolution algorithm (DE): parameters setting, evolutionary stagnation, and slow convergent speed when solving optimization problems. WBDDE contains three mechanisms: whole best (WB) leaded evolution, adaptively turning extent diversity (ED) and controlling uniform diversity (UD).
WB gets the evolutionary situations fast, offers more evolutionary information, and increases convergent speed than global best (GB). This adaptive tuning mechanism of ED increases ED and helps with finding superior solutions for exploration mutation strategies. The mechanism of controlling UD creates different paths of convergence curves and UD curves from conventional mutation strategies. This mechanism mitigates the evolutionary stagnation and speeds up the convergence.
Comparing WBDDE with other DE variants, WBDDE has superior performances for composition functions. In addition to increasing convergent speed, mitigating evolutionary stagnation and setting parameters, WBDDE also has other contributions and features: increasing the evolutionary information, measuring diversity in two ways, indicating the performance also being affected by the diversity of individuals for single objective optimization problems.
WBDDE is designed to solve optimization problems so that user can apply WBDDE to any optimization problems, such as scheduling, identified systems, and so forth.
摘要 i
ABSTRACT iii
致謝 v
Contents vii
List of Figures xi
List of Tables xv
List of Abbreviation xix
List of Symbols xxi
Chapter 1 Introduction 1
1-1 Overview 1
1-2 Terminologies in This Dissertation 3
1-3 Motivation 4
1-3-1 Three Common Evolutionary Problems in DE 5
1-3-2 The Relationship between Individual Diversity and Evolution 7
1-4 Contributions and Features 8
1-5 Organization of this dissertation 10
Chapter 2 Background Knowledge 13
2-1 Differential Evolution Algorithm 13
2-1-1 Classical DE Algorithm 14
2-1-2 Exploitative and Explorative Mutation Strategies 16
2-1-3 Explorative, Exploitative Mutation Strategies, and Diversity 19
2-2 Fuzzy Inference System 19
2-3 Evaluated Functions in This Study 22
2-4 Summary 25
Chapter 3 Whole Best Leaded Mutation 27
3-1 Increasing the Mutant Information 27
3-2 The Whole Best Leaded Mutation in DE 29
3-2-1 Center of Solutions, Best Center of Solutions and Whole Best 29
3-2-2 Modified Mutation Strategies and Flow of WB Leaded DE 31
3-3 Experiments 35
3-3-1 Experimental Settings 35
3-3-2 Experimental Results 36
3-3-3 Discussion 39
3-4 Summary 41
Chapter 4 Adaptive Tuning Extent Diversity 73
4-1 Crossover Rate and Extent Diversity 73
4-2 Adaptive Tuning Mechanism of Extent Diversity 75
4-2-1 Evaluation of Adaptive Tuning Extent Diversity 75
4-2-2 Fuzzy Inference System Design 75
4-2-3 The Flow of DE with adaptive tuning mechanism of ED 79
4-3 Experiments 81
4-3-1 Experimental Settings 81
4-3-2 Experimental Results 82
4-3-3 Discussion 86
4-4 Summary 87
Chapter 5 Control Individual Uniform Diversity 119
5-1 Uniform Diversity and Its Measurements 119
5-2 Control Mechanism of Uniform Diversity 122
5-2-1 Proposed Mutation Strategy 122
5-2-2 Fuzzy Inference System Design 124
5-2-3 The Flow of DE with Uniform Diversity Control 126
5-3 Experiments 128
5-3-1 Experimental Settings 128
5-3-2 Experimental Results and Discussion of Different Uniform Diversity Goals 131
5-3-3 Experimental Results and Discussion of Different Mutation Strategies 135
5-4 Summary 138
Chapter 6 Whole Best Leaded Diversity Control Differential Evolution Algorithm 173
6-1 Differential Evolution Variants 173
6-2 Whole Best Leaded Diversity Control Differential Evolution Algorithm 178
6-3 Experiments 180
6-3-1 Experimental Settings 180
6-3-2 Experimental Results and Discussion of Different Uniform Diversity Goals 180
6-3-3 Experimental Results and Discussion of Different DE variants 185
6-4 Summary 188
Chapter 7 Conclusions and Future Works 215
7-1 Conclusions 215
7-2 Future Works 217
References 219
Vita 225
[1] A. P. Engelbrecht, “Introduction to Evolutionary Computation,” Computational Intelligence: An Instruction. 2nd ed., England: John Wiley & Sons, Ltd, 2007, pp.127-142.
[2] K. A. De Jong, “Introduction,” Evolutionary Computation: a Unified Approach, Cambridge, Massachusetts: The MIT Press, 2006, pp.1-20.
[3] C. Darwin, The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. 1859. (Transl.: 葉篤莊, 周建人, 方宗熙 譯, 物種起源. New Taipei City, Taiwan, R.O.C.: CPTW, 2016.)
[4] S. M. Kanshu, Chishiki Zero Kara No DARWIN Shinkaron Nyumon. Japan: Osamu Sakura, 2010 (Transl.: 葉亞璇 譯, 達爾文演化論入門. Taichung, Taiwan, R.O.C.: Morning Star Publishing Inc., 2011).
[5] R. Pollack, and A. Pollack, The Course of Nature: a Book of Drawings on Natural Selection and Its Consequences. CreateSpace Independent Publishing Platform, 2014 (Transl.: 許逸維 譯, 【圖說】物競天擇與自然歷程. Taichung, Taiwan, R.O.C.: Morning Star Publishing Inc., 2015).
[6] 林川雄, 圖解演化學. Taipei, Taiwan, R.O.C.: Wu-Nan Book Inc., 2013.
[7] E. J. Larson, Evolution: The Remarkable History of a Scientific Theory. Modern Library, 2006 (Transl.: 陳恒安 譯,了不起的演化論. New Taipei City, Taiwan, R.O.C.: Rive Gauche Publishing House, 2012).
[8] 陳文盛, 孟德爾之夢:基因的百年歷史. Taipei, Taiwan, R.O.C.: Yuan-Liou Publishing Co., Ltd, 2017.
[9] D. Zaharie, “Control of Population Diversity and Adaptation in Differential Evolution Algorithm,” in Proc. of Mendel 2003, 9th Int. Conf. on Soft Comput., pp. 41-46, Jun. 2003.
[10] P. A. N. Bosman and D. Thierens, “The balance between proximity and diversity in multiobjective evolutionary algorithms,” IEEE Trans. on Evol. Comput., vol. 7, no. 2, pp. 174-188, Apr. 2003.
[11] S. F. Adra and P. J. Fleming, “Diversity Management in Evolutionary Many-Objective Optimization,” IEEE Trans. On Evolut. Comput., vol. 15, no. 2, pp. 183-195, April 2011.
[12] E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic programming: an analysis of measures and correlation with fitness,” IEEE Trans. Evol. Comput., vol. 8, no. 1, pp. 47-62, Feb. 2004.
[13] G. Chen, C. P. Low, and Z. Yang, “Preserving and Exploiting Genetic Diversity in Evolutionary Programming Algorithms,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 661-673, Jun. 2009.
[14] A. Farhang-Mehr and S. Azarm, “Diversity assessment of Pareto optimal solution sets: an entropy approach,” in Proc. 2002 IEEE Cong. Evol. Comput., pp. 723-728, May 12-17, 2002, Honolulu, HI, USA.
[15] Y. Shi and R. C. Eberhart, “Population diversity of particle swarms,” in Proc. 2008 IEEE Cong. Evol. Comput., pp. 1063-1067, Jun. 1-6, 2008, Hong Kong.
[16] B. Luo, J. Zheng, J. Xie, and J. Wu, “Dynamic Crowding Distance? A New Diversity Maintenance Strategy for MOEAs,” 2008 4th Inter. Conf. on Natural Comput., pp. 580-585, Oct. 18-20, 2008, Jinan.
[17] B. Mc Ginley, J. Maher, C. O’Riordan and F. Morgan, “Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection,” IEEE Trans. Evol. Comput., vol. 15, no. 5, pp. 692-714, Oct. 2011.
[18] L. Ben Said, S. Bechikh, and K. Ghedira, “The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making,” IEEE Trans. Evol. Comput., vol. 14, no. 5, pp. 801-818, Oct. 2010.
[19] T. Takahama, and S. Sakai, “Differential Evolution with Dynamic Strategy and Parameter Selection by Detecting Landscape Modality,” in Proc. IEEE Congr. on Evolut. Comput., Jun. 10-15, 2012, Brisbane, Australia
[20] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Trans. on Evolut. Comput., vol. 10, no. 6, pp. 646-657, Dec. 2006
[21] D. Zaharie, “Critical Values for the Control Parameters of Differential Evolution Algorithms,” in Proc. of the 8th Int. Conf. on Soft Computing, Jun. 5-7, 2002, Brno, Czech Republic.
[22] J. Liu, and J. Lampinen, “A Fuzzy Adaptive Differential Evolution Algorithm,” Soft Comput., vol. 9, issue 6, pp.448–462, Jun. 2005.
[23] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958, Oct. 2009.
[24] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization,” IEEE Trans. on Evolut. Comput., vol. 13, no. 2, pp. 398-417, Apr. 2009.
[25] Y. Wang, Z. Cai, and Q. Zhang, “Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters,” IEEE Trans. Evol. Comput., vol.15, no.1, pp.55-66, Feb. 2011.
[26] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren, “Differential evolution algorithm with ensemble of parameters and mutation strategies,” Appl. Soft Comput., vol. 11, issue 2, pp.1679-1696, Mar. 2011.
[27] R. Tanabe, and A. Fukunaga, “Success-history based parameter adaptation for Differential Evolution,” in Proc. IEEE Congr. on Evolut. Comput., pp.71-78, Jun. 20-23, 2013, Cancun, Mexico.
[28] Z.- H. Zhan, J. Zhang, Y. Li, and H. S.- H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst., Man, and Cybern. B, Cybern., vol. 39, no. 6, pp. 1362–1381, Dec. 2009.
[29] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” in IEEE Trans. on Evolut. Comput., vol. 10, no. 6, pp. 646-657, Dec. 2006.
[30] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 124–141, Jul. 1999.
[31] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, ser. Natural Computing. Berlin, Germany: Springer-Verlag, 2003.
[32] J. J. Liang, B.Y. Qu, P. N. Suganthan, and Q. Chen, “Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning based Real-Parameter Single Objective Optimization,” Tech. Rep. 201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, Nov. 2014.
[33] R. Storn and K. V. Price, “Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces,” ICIS, USA, Tech. Rep. TR-95-012, 1995.
[34] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: a Practical Approach to Global Optimization. Berlin Heidelberg, Germany: Springer, 2005.
[35] A. P. Engelbrecht, “Differential Evolution,” Computational Intelligence: An Instruction. 2nd ed., England: John Wiley & Sons, Ltd, 2007, pp.237-260.
[36] A. P. Engelbrecht, “Particle Swarm Optimization,” Computational Intelligence: An Instruction. 2nd ed., England: John Wiley & Sons, Ltd, 2007, pp.289-358.
[37] D. Karaboga, “An ideal based on honey bee swarm for numerical optimization,” Tech. Rep.-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
[38] H. Salimi, “Stochastic Fractal Search: A powerful metaheuristic algorithm,” Knowl.-based Syst., vol. 75, pp.1-18, Feb. 2015.
[39] B. Akay, and D. Karaboga, “A modified artificial bee colony algorithm for real-parameter optimization,” Inform. Sci., vol. 192, pp.120-142, Jun. 2012.
[40] L. A. Zadeh, “Fuzzy Sets,” in Inform. and Control, vol. 8, issue 3, pp. 338-353, Jun. 1965.
[41] 蘇木春, 張孝德, 機器學習:類神經網路、模糊系統以及基因演算法. 3rd ed., Taipei, Taiwan, R.O.C.: Chuan Hwa Book Co., Ltd., 2004.
[42] 孫宗瀛, 楊英魁, Fuzzy控制:理論、實作與應用. Taipei, Taiwan, R.O.C.: Chuan Hwa Book Co., Ltd., 2005.
[43] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall International, Inc., 1995.
[44] L. A. Zadeh, “Fuzzy Algorithms,” in Inform. and Control, vol. 12, issue 2, pp. 94-102, Feb. 1968.
[45] L. A. Zadeh, “The Concept of a Linguistic Variable and Its Application to Approximate Reasoning- I,” in Inform. Sci., vol. 8, issue 3, pp. 199-249, 1975.
[46] L. A. Zadeh, “The Concept of a Linguistic Variable and Its Application to Approximate Reasoning- II,” in Inform. Sci., vol. 8, issue 4, pp. 301-357, 1975.
[47] L. A. Zadeh “Soft Computing and Fuzzy Logic,” in IEEE Softw., vol. 11, issue 6, pp. 48-56, Nov. 1994.
[48] A. P. Engelbrecht, “Fuzzy Sets,” Computational Intelligence: An Instruction. 2nd ed., England: John Wiley & Sons, Ltd, 2007, pp.453-464.
[49] E. H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller,” Int. J. of Man-Mach. Studies, vol. 7, no. 1, pp. 1-13, 1975.
[50] A. P. Engelbrecht, “Fuzzy Logic and Reasoning,” Computational Intelligence: An Instruction. 2nd ed., England: John Wiley & Sons, Ltd, 2007, pp.465-474.
[51] R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye, “Sampling Distribution of Means,” in Probability & Statistics for Engineers & Scientists, 8th ed., Pearson Prentice Hall, 2007, ch.8, sec. 5, pp. 244-254.
[52] K. Suzuki and K. Takehara, Illust Zukai Kakuritsu·Toukei. Tokyo, Japan: Nitto Shoin Honsha Co., Ltd., 2009 (Transl.: 李貞慧 譯, 圖解機率、統計. Taipei, Taiwan, R.O.C.: Cube Press Inc., 2012).
[53] S. Das, A. Konar, and U. K. Chakraborty, “Annealed Differential Evolution,” in Proc. IEEE Congr. on Evolut. Comput., Sep. 25-28, 2007, Singapore.
[54] H. Kita, I. Ono and S. Kobayashi, “Multi-parental Extension of the Unimodal Normal Distribution Crossover for Real-coded Genetic Algorithms,” in Proc. of the 1999 Congr. on Evolut. Comput., Jul. 06-09, 1999, Washington, DC, USA.
[55] I. Ono and S. Kobayashi: “A Real-coded Genetic: Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover,” in Proc. of the 7th Int. Conf. on Genetic Algorithms, Jul. 19-23, 1997, East Lansing, MI, USA.
[56] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp.182-197, Apr. 2002.
[57] C. E. Shannon, “A Mathematical Theory of Communication,” in Bell Syst. Tech. J., vol. 27, pp. 379-423 and pp. 623-656, Jul. and Oct.1948.
[58] X. Cui, M. Li, and T. Fang, “Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles,” in Proc. of the 2001 Cong. on Evol. Comput. (IEEE Cat. No.01TH8546), vol. 2, pp. 1316-1321, May 27-30, 2001, Seoul.
[59] A. Farhang-Mehr and S. Azarm, “Diversity assessment of Pareto optimal solution sets: an entropy approach,” in Proc. of the 2002 Cong. on Evol. Comput., pp. 723-728, May 12-17, 2002, Honolulu, HI.
[60] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,” in Proc. 2nd Int. Conf. Genetic Algorithm, Cambridge, MA, 1987, pp.14-21.
[61] Q. Zhang, “Home Page- Professor Qingfu Zhang,” Available: http://dces.essex.ac.uk/staff/qzhang/. [Accessed Jun. 08, 2018].

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *