|
[1] Abramovskaya, T. V. and Petrov, N. N. (2013). The theory of guaranteed search on graphs. Vestnik St. Petersburg University: Mathematics, 46(2):49{75. [2] Backstrom, L., Boldi, P., Rosa, M., Ugander, J., and Vigna, S. (2011). Four Degrees of Separation. Proceedings of the 4th Annual ACM Web Science Conference, New York, NY, USA. [3] Barriere, L., Flocchini, P., Fomin, F. V., Fraigniaud, P., Nisse, N., Santoro, N., and Thilikos, D. M. (2012). Connected graph searching. Information and Computation, 219:1{16. [4] Barriere, L., Flocchini, P., Fraigniaud, P., and Santoro, N. (2002). Capture of an Intruder by Mobile Agents. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA '02, pages 200{209, New York, NY, USA. ACM. event-place: Winnipeg, Manitoba, Canada. [5] Barriere, L., Fraigniaud, P., Santoro, N., and Thilikos, D. M. (2003). Searching Is Not Jumping. In Bodlaender, H. L., editor, Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, pages 34{45. Springer Berlin Heidelberg. [6] Barriere Figueroa, E., Fraigniaud, P., Santoro, N., and Thilikos Touloupas, D. (2002). Connected and internal graph searching. [7] Berger, F., Gilbers, A., Grune, A., and Klein, R. (2009). How Many Lions Are Needed to Clear a Grid? Algorithms, 2(3):1069{1086. [8] Best, M. J., Gupta, A., Thilikos, D. M., and Zoros, D. (2016). Contraction obstructions for connected graph searching. Discrete Applied Mathematics, 209:27{47. 95 [9] Bienstock, D. and Seymour, P. (1991). Monotonicity in graph searching. Journal of Algorithms, 12(2):239{245. [10] Bjorklund, A., Husfeldt, T., and Khanna, S. (2004). Approximating longest directed paths and cycles. In International Colloquium on Automata, Languages, and Programming, pages 222{233. Springer. [11] Blin, L., Burman, J., and Nisse, N. (2017). Exclusive Graph Searching. Algorith- mica, 77(3):942{969. [12] Blin, L., Fraigniaud, P., Nisse, N., and Vial, S. (2006). Distributed Chasing of Network Intruders. In Flocchini, P. and Gasieniec, L., editors, Structural Information and Communication Complexity, Lecture Notes in Computer Science, pages 70{84, Berlin, Heidelberg. Springer Berlin Heidelberg. [13] Borassi, M., Crescenzi, P., Habib, M., Kosters, W., Marino, A., and Takes, F. (2014). On the Solvability of the Six Degrees of Kevin Bacon Game. In Ferro, A., Luccio, F., and Widmayer, P., editors, Fun with Algorithms, Lecture Notes in Computer Science, pages 52{63, Cham. Springer International Publishing. [14] Borchardt, C. W. (1860). Uber eine Interpolationsformel fur eine Art symmetrischer Functionen und uber deren Anwendung. Math. Abh. der Akademie der Wissenschaften zu Berlin, pages 1{20. [15] Borie, R., Tovey, C., and Koenig, S. (2011). Algorithms and complexity results for graph-based pursuit evasion. Autonomous Robots, 31(4):317. [16] Boruvka, Otakar (1926). O jistem problemu minimalnm. Prace Moravske Prrodovedecke spolecnosti, III(3). [17] Breisch, R. (1967). An intuitive approach to speleotopology. Southwestern Cavers (A publication of the Southwestern Region of the National Speleological Society), 6:72{ 78. [18] Breisch, R. L. (2012). Lost in a Cave - Applying Graph Theory to Cave Exploration. National Speleological Society, Huntsville, Alabama, 1st edition edition. 96 [19] Brooks, R. R., Schwier, J., and Grin, C. (2009). Markovian Search Games in Heterogeneous Spaces. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(3):626{635. [20] Cayley, A. (1889). A Theorem on Trees. Quart. J. Pure Appl. Math., 23:376{378. [21] Cheng, C.-S. (1981). Maximizing the Total Number of Spanning Trees in a Graph: Two Related Problems in Graph Theory and Optimum Design Theory. JOURNAL OF COMBINATORIAL THEOR, pages 240{248. [22] Cheng, P. (2003). A short survey on pursuit-evasion games. [23] Chung, M.-J., Makedon, F., Sudborough, I. H., and Turner, J. (1985). Polynomial Time Algorithms for the MIN CUT Problem on Degree Restricted Trees. SIAM Journal on Computing, 14(1):158{177. Publisher: Society for Industrial and Applied Mathematics. [24] Chung, T. H., Hollinger, G. A., and Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4):299. [25] Coudert, D., Huc, F., and Mazauric, D. (2008). Computing and Updating the Process Number in Trees. In Baker, T. P., Bui, A., and Tixeuil, S., editors, Principles of Distributed Systems, Lecture Notes in Computer Science, pages 546{550, Berlin, Heidelberg. Springer. [26] Coudert, D., Huc, F., and Mazauric, D. (2012). A Distributed Algorithm for Computing the Node Search Number in Trees. Algorithmica, 63(1):158{190. [27] Coudert, D. and Sereni, J.-S. (2011). Characterization of graphs and digraphs with small process numbers. Discrete Applied Mathematics, 159(11):1094{1109. [28] Crescenzi, P., Grossi, R., Habib, M., Lanzi, L., and Marino, A. (2013). On computing the diameter of real-world undirected graphs. Theoretical Computer Science, 514:84{95. [29] Crescenzi, P., Grossi, R., Imbrenda, C., Lanzi, L., and Marino, A. (2010). Finding the Diameter in Real-World Graphs. In de Berg, M. and Meyer, U., editors, 97 Algorithms { ESA 2010, Lecture Notes in Computer Science, pages 302{313, Berlin, Heidelberg. Springer. [30] Crescenzi, P., Grossi, R., Lanzi, L., and Marino, A. (2012). On Computing the Diameter of Real-World Directed (Weighted) Graphs. In Klasing, R., editor, Ex- perimental Algorithms, Lecture Notes in Computer Science, pages 99{110, Berlin, Heidelberg. Springer. [31] Dawes, R. W. (1992). Some pursuit-evasion problems on grids. Information Pro- cessing Letters, 43(5):241{247. [32] Dereniowski, D., Diner, z. Y., and Dyer, D. (2013). Three-fast-searchable graphs. Discrete Applied Mathematics, 161(13):1950{1958. [33] Dereniowski, D., Lingas, A., Osula, D., Persson, M., and Z_ ylinski, P. (2019). Clearing directed subgraphs by mobile agents: Variations on covering with paths. Journal of Computer and System Sciences, 102:57{68. [34] Dereniowski, D., Lingas, A., Persson, M., Urbanska, D., and Z_ ylinski, P. (2017). The Snow Team Problem. In Klasing, R. and Zeitoun, M., editors, Fundamentals of Computation Theory, Lecture Notes in Computer Science, pages 190{203, Berlin, Heidelberg. Springer. [35] Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1:269{271. [36] Dumitrescu, A., Kok, H., Suzuki, I., and Z_ ylinski, P. (2010). Vision-Based Pursuit- Evasion in a Grid. SIAM Journal on Discrete Mathematics, 24(3):1177{1204. [37] Ellis, J. A., Sudborough, H., and Turner, J. S. (1987). Graph Separation and Search Number. All Computer Science and Engineering Research WUCS-87-11, Washington University in St. Louis. [38] Ellis, J. A., Sudborough, I. H., and Turner, J. S. (1994). The Vertex Separation and Search Number of a Graph. Information and Computation, 113(1):50{79. 98 [39] Fomin, F. V. and Golovach, P. A. (2000). Graph Searching and Interval Completion. SIAM Journal on Discrete Mathematics, 13(4):454{464. [40] Fomin, F. V., Golovach, P. A., Kratochvl, J., Nisse, N., and Suchan, K. (2010). Pursuing a fast robber on a graph. Theoretical Computer Science, 411(7):1167{1181. [41] Fomin, F. V., Heggernes, P., and Telle, J. A. (2005a). Graph Searching, Elimination Trees, and a Generalization of Bandwidth. Algorithmica, 41(2):73{87. [42] Fomin, F. V. and Thilikos, D. M. (2008). An annotated bibliography on guaranteed graph searching. Theoretical Computer Science, 399(3):236{245. [43] Fomin, F. V., Thilikos, D. M., and Todinca, I. (2005b). Connected Graph Searching in Outerplanar Graphs. In 7th International Colloquium on Graph Theory (ICGT 2005). [44] Fraigniaud, P. and Nisse, N. (2006). Connected Treewidth and Connected Graph Searching. In Correa, J. R., Hevia, A., and Kiwi, M., editors, LATIN 2006: Theoret- ical Informatics, Lecture Notes in Computer Science, pages 479{490, Berlin, Heidelberg. Springer. [45] Fraigniaud, P. and Nisse, N. (2008). Monotony properties of connected visible graph searching. Information and Computation, 206(12):1383{1393. [46] Gabow, H. and Myers, E. (1978). Finding All Spanning Trees of Directed and Undirected Graphs. SIAM Journal on Computing, 7(3):280{287. [47] Gabow, H. N. and Nie, S. (2008). Finding long paths, cycles and circuits. In International Symposium on Algorithms and Computation, pages 752{763. Springer. [48] Garey, M. R. and Johnson, D. S. (1979). Computers and intractability, volume 174. freeman San Francisco. [49] Golovach, P. A. (1989). A topological invariant in pursuit problems. Dier. Uravn., 25(6):923{929. [50] Golovach, P. A. (1992). Minimal trees of a given search number. Cybernetics and Systems Analysis, 28(4):509{513. 99 [51] Graham, R. L. and Hell, P. (1985). On the History of the Minimum Spanning Tree Problem. Annals of the History of Computing, 7(1):43{57. [52] Hakimi, S. and Green, D. (1964). Generation and Realization of Trees and k- Trees. IEEE Transactions on Circuit Theory, 11(2):247{255. Conference Name: IEEE Transactions on Circuit Theory. [53] Hollinger, G., Kehagias, A., and Singh, S. (2010). GSST: anytime guaranteed search. Autonomous Robots, 29(1):99{118. [54] Imani, N., Sarbazi-Azad, H., and Zomaya, A. Y. (2007). Capturing an intruder in product networks. Journal of Parallel and Distributed Computing, 67(9):1018{1028. [55] Jarnk, V. (1930). O jistem problemu minimalnm. (Z dopisu panu O. Boruvkovi). Prace moravske prrodovedecke spolecnosti, 6(4):57{63. [56] Karger, D., Motwani, R., and Ramkumar, G. D. S. (1997). On approximating the longest path in a graph. Algorithmica, 18(1):82{98. [57] Kehagias, A., Hollinger, G., and Singh, S. (2009). A graph search algorithm for indoor pursuit/evasion. Mathematical and Computer Modelling, 50(9):1305{1317. [58] Kelmans, A. and Chelnokov, V. (1974). A certain polynomial of a graph and graphs with an extremal number of trees. Journal of Combinatorial Theory, 16(3):197{214. [59] Kel'mans, A. K. (1965). The number of trees in a graph. Avtomat. i Telemekh, 26(12):2194{2204. [60] Kirousis, L. M. and Papadimitriou, C. H. (1985). Interval graphs and seatching. Discrete Mathematics, 55(2):181{184. [61] Kirousis, L. M. and Papadimitriou, C. H. (1986). Searching and pebbling. Theo- retical Computer Science, 47:205{218. [62] Klein, K. and Suri, S. (2015). Capture bounds for visibility-based pursuit evasion. Computational Geometry, 48(3):205{220. 100 [63] Kolling, A., Kleiner, A., Lewis, M., and Sycara, K. (2011). Computing and executing strategies for moving target search. In 2011 IEEE International Conference on Robotics and Automation, pages 4246{4253. ISSN: 1050-4729. [64] Kruskal, J. B. (1956). On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society, 7(1):48{50. [65] Lamprou, I. (2018). Mobility Problems in Distributed Search and Combinatorial Games. phd, University of Liverpool. [66] LaPaugh, A. S. (1993). Recontamination Does Not Help to Search a Graph. J. ACM, 40(2):224{245. [67] Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005). Graphs over time: densi- cation laws, shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, KDD '05, pages 177{187, Chicago, Illinois, USA. Association for Computing Machinery. [68] Li, H. and Chong, E. K. P. (2009). Search on lines and graphs. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pages 5780{5785. ISSN: 0191-2216. [69] Lin, C.-F., Navratil, O., and Peng, S.-L. (2018). On the Cooperative Graph Searching Problem. In Tian, C., Nagoya, F., Liu, S., and Duan, Z., editors, Structured Object-Oriented Formal Language and Method, pages 39{47. Springer International Publishing. [70] Loberman, H. and Weinberger, A. (1957). Formal Procedures for Connecting Tern- nals with a Minimum Total Wire Length. Journal of the ACM, 4(4):428{437. [71] Maamoun, M. and Meyniel, H. (1987). On a game of policemen and robber. Discrete Applied Mathematics, 17(3):307{309. 101 [72] Mayeda, W. and Seshu, S. (1965). Generation of Trees without Duplications. IEEE Transactions on Circuit Theory, 12(2):181{185. Conference Name: IEEE Transactions on Circuit Theory. [73] Megiddo, N., Hakimi, S. L., Garey, M. R., Johnson, D. S., and Papadimitriou, C. H. (1988). The Complexity of Searching a Graph. J. ACM, 35(1):18{44. [74] Nisse, N. (2009). Connected graph searching in chordal graphs. Discrete Applied Mathematics, 157(12):2603{2610. [75] Nisse, N. (2014). Algorithmic complexity: Between Structure and Knowledge How Pursuit-evasion Games help. thesis, Universite Nice Sophia Antipolis. [76] Nisse, N. (2019). Network Decontamination. In Flocchini, P., Prencipe, G., and Santoro, N., editors, Distributed Computing by Mobile Entities: Current Research in Moving and Computing, Lecture Notes in Computer Science, pages 516{548. Springer International Publishing, Cham. [77] P. A. Golovach (1992). Minimal trees with a given vertex-search number. Diskr. Mat., 4(2):52{60. [78] Parsons, T. D. (1978). Pursuit-evasion in a graph. In Alavi, Y. and Lick, D. R., editors, Theory and Applications of Graphs, Lecture Notes in Mathematics, pages 426{441, Berlin, Heidelberg. Springer. [79] Peng, S.-L., Ho, C.-W., Hsu, T.-s., Ko, M.-T., and Tang, C. Y. (1998). A Linear- Time Algorithm for Constructing an Optimal Node-Search Strategy of a Tree. In Hsu, W.-L. and Kao, M.-Y., editors, Computing and Combinatorics, Lecture Notes in Computer Science, pages 279{289. Springer Berlin Heidelberg. [80] Petrov, N. N. (1982). A problem of pursuit in the absence of information on the pursued. Dier. Uravn., 18(8):1345{1352. [81] Petrov, N. N. (1983). On the dierential game "Casacks-robbers". Dierentsial'nye Uravneniya, 19(8):1366{1374. 102 [82] Prim, R. C. (1957). Shortest connection networks and some generalizations. The Bell System Technical Journal, 36(6):1389{1401. Conference Name: The Bell System Technical Journal. [83] Scheer, P. (1990). A Linear Algorithm for the Pathwidth of Trees. In Bodendiek, P. D. R. and Henn, P. D. R., editors, Topics in Combinatorics and Graph Theory, pages 613{620. Physica-Verlag HD. [84] Sheng-Lung Peng (1999). A Study of Graph Searching on Special Graphs. Dissertation, National Tsing Hua University. [85] Smith, J. D. H. (1987). Minimal trees of given search number. Discrete Mathemat- ics, 66(1):191{202. [86] Sugihara, K. and Suzuki, I. (1989). Optimal Algorithms for a Pursuit-Evasion Problem in Grids. SIAM Journal on Discrete Mathematics, 2(1):126{143. [87] Takahashi, A., Ueno, S., and Kajitani, Y. (1995). Mixed searching and properpath- width. Theoretical Computer Science, 137(2):253{268. [88] Takes, F. W. and Kosters, W. A. (2011). Determining the diameter of small world networks. In Proceedings of the 20th ACM international conference on Information and knowledge management, CIKM '11, pages 1191{1196, Glasgow, Scotland, UK. Association for Computing Machinery. [89] Thilikos, D. M. (2000). Algorithms and obstructions for linear-width and related search parameters. Discrete Applied Mathematics, 105(1{3):239{271. [90] Yang, B., Dyer, D., and Alspach, B. (2005). Sweeping Graphs with Large Clique Number. In Fleischer, R. and Trippen, G., editors, Algorithms and Computation, Lecture Notes in Computer Science, pages 908{920. Springer Berlin Heidelberg. [91] Yang, B., Dyer, D., and Alspach, B. (2009). Sweeping graphs with large clique number. Discrete Mathematics, 309(18):5770{5780. |