|
Bibliography 1. Qu, X.; Alvarez, P. J.; Li, Q., Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47 (12), 3931-46. 2. Qu, X.; Brame, J.; Li, Q.; Alvarez, P. J., Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res. 2013, 46 (3), 834-43. 3. Mohmood, I.; Lopes, C. B.; Lopes, I.; Ahmad, I.; Duarte, A. C.; Pereira, E., Nanoscale materials and their use in water contaminants removal-a review. Environ. Sci. Pollut. Res. 2013, 20 (3), 1239-60. 4. Bora, T.; Dutta, J., Applications of nanotechnology in wastewater treatment--a review. J. nanosci. Nanotech. 2014, 14 (1), 613-26. 5. Bera, R.; Kundu, S.; Patra, A., 2D Hybrid Nanostructure of Reduced Graphene Oxide-CdS Nanosheet for Enhanced Photocatalysis. ACS appl. Mater. Interfaces 2015, 7 (24), 13251-9. 6. Khanchandani, S.; Srivastava, P. K.; Kumar, S.; Ghosh, S.; Ganguli, A. K., Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag2S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Inorg. Chem. 2014, 53 (17), 8902-12. 7. Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J., Graphene in Photocatalysis: A Review. Small (Weinheim an der Bergstrasse, Germany) 2016, 12 (48), 6640-6696. 8. Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Zhang, T., Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Adv. Mater. (Deerfield Beach, Fla.) 2016, 28 (43), 9454-9477. 9. Zhang, P.; Wang, T.; Chang, X.; Gong, J., Effective Charge Carrier Utilization in Photocatalytic Conversions. Acc. Chem. Res. 2016, 49 (5), 911-21. 10. Gude, V. G., Desalination and sustainability - An appraisal and current perspective. Water Res 2016, 89, 87-106. 11. Semiat, R., Energy issues in desalination processes. Environ. Sci. Tech. 2008, 42 (22), 8193-201. 12. Nidheesh, P. V.; Gandhimathi, R.; Ramesh, S. T., Degradation of dyes from aqueous solution by Fenton processes: a review. Environ. Sci. Pollut. Res 2013, 20 (4), 2099-132. 13. Raman, C. D.; Kanmani, S., Textile dye degradation using nano zero valent iron: A review. J. Environ. Manage. 2016, 177, 341-55. 14. Tegli, S.; Cerboneschi, M.; Corsi, M.; Bonnanni, M.; Bianchini, R., Water recycle as a must: decolorization of textile wastewaters by plant-associated fungi. Journal of basic microbiology 2014, 54 (2), 120-32. 15. Rajeshwar, K.; Osugi, M. E.; Chanmanee, W.; Chenthamarakshan, C. R.; Zanoni, M. V. B.; Kajitvichyanukul, P.; Krishnan-Ayer, R., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobio. C: Photochemistry Reviews 2008, 9 (4), 171-192. 16. Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z., A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manage 2018, 227, 395-405. 17. Cooper, R. C., Waste water management and infectious disease. Part II: Impact of waste water treatment. J Environ Health 1975, 37 (4), 342-50. 18. Lund, V.; Fonahn, W.; Pettersen, J. E.; Caugant, D. A.; Ask, E.; Nysaeter, A., Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway. J Water Health 2014, 12 (3), 543-54. 19. Bai, Q. Z.; Chen, H. S.; Ye, Y. C.; Li, J. F.; Mu, X. F.; Cao, W., [Experimental study on the treatment of low level radioactive waste water by inorganic nanofiltration membrane]. Huan Jing Ke Xue 2006, 27 (7), 1334-8. 20. Seiss, M.; Gahr, A.; Niessner, R., Improved AOX degradation in UV oxidative waste water treatment by dialysis with nanofiltration membrane. Water Res 2001, 35 (13), 3242-8. 21. Lee, S. Y.; Park, S. J.; TiO2 photocatalyst for water treatment applications, J Ind Eng Chem 2013, 19, 1761-1769. 22. Lin, S.; Patrik, W; TiO2 photocatalyst for organic pollutant waste water treatment applications, J Ind Eng Chem 2015, 20, 1661-1669.
23. Hidalgo, M. C.; Maicu, M.; Navio, J. A.; Colon, G.; Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition, Catal Today 2007, 129, 43-49. 24. Malato, S.; Blanco, J.; Alarcon, D. C.; Maldonado, M. I.; Fernandez-Ibanez, P.; Gernjak, W.; Photocatalytic decontamination and disinfection of water with solar collectors, Catal Today 2007, 122, 137-149.
25. Lin, Z.; Zhao, L.; Dong, Y.; Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction, Chemosphere 2015, 144, 7-12.
26. Glaze, W. H.; Kang, J. W.; Chapin, D. H.; The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation, Ozone: Sci. Eng. 1987, 9, 335.
27. Oliver, J. H.; Hyunook, K.; Chi, C. P.; Decolorization of Wastewater, Crit. Rev. Environ. Sci. Technol. 2000, 30, 499.
28. Serpone, N.; Emeline, A. V.; Horikoshi, S.; Kuznetsov, V. N.; Ryabchuk, V. K., On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochem. Photobio. Sci. 2012, 11 (7), 1121-1150. 29. Truppi, A.; Petronella, F.; Placido, T.; Margiotta, V.; Lasorella, G.; Giotta, L.; Giannini, C.; Sibillano, T.; Murgolo, S.; Mascolo, G.; Agostiano, A.; Curri, M. L.; Comparelli, R., Gram-scale synthesis of UV-visible light active plasmonic photocatalytic nanocomposite based on TiO2/Au nanorods for degradation of pollutants in water. Applied Catalysis B: Environmental 2018. 30. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W.; Environmental Applications of Semiconductor Photocatalysis, Chem Rev 1995, 95, 69-96.
31. Serpone, N.; Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis, J Photoch Photobio A 1997, 104, 1-12. 32. Khin, M. M.; Nair, A. S.; Babu, V. J.; Murugan, R.; Ramakrishna, S., A review on nanomaterials for environmental remediation. Ener. Environ. Sci. 2012, 5 (8), 8075-8109. 33. Miseki, Y.; Sayama, K., Photocatalytic Water Splitting for Solar Hydrogen Production Using the Carbonate Effect and the Z-Scheme Reaction. Adv. Ener. Mater. 2018, 1801294. 34. Grätzel, M., Dye-sensitized solar cells. J. Photochem. Photobio. C: Photochemistry Reviews 2003, 4 (2), 145-153. 35. Phaniendra, A.; Jestadi, D. B.; Periyasamy, L., Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry: IJCB 2015, 30 (1), 11-26. 36. Xie, W.; Li, R.; Xu, Q., Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep. 2018, 8 (1), 8752. 38. Dahl, M.; Liu, Y.; Yin, Y., Composite Titanium Dioxide Nanomaterials. Chemical Reviews 2014, 114 (19), 9853-9889. 39. Walsh, A.; Yan, Y.; Huda, M. N.; Al-Jassim, M. M.; Wei, S.-H., Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals. Chem. Mater. 2009, 21 (3), 547-551. 40. Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P.-A.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D., Electronic Structure of Monoclinic BiVO4. Chem. Mater. 2014, 26 (18), 5365-5373. 41. Khan, I.; Ali, S.; Mansha, M.; Qurashi, A., Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application. Ultrasonics Sonochemistry 2017, 36, 386-392. 42. Song, J.; Cha, J.; Lee, M. G.; Jeong, H. W.; Seo, S.; Yoo, J. A.; Kim, T. L.; Lee, J.; No, H.; Kim, D. H.; Jeong, S. Y.; An, H.; Lee, B. H.; Bark, C. W.; Park, H.; Jang, H. W.; Lee, S., Template-engineered epitaxial BiVO4 photoanodes for efficient solar water splitting. J. Mater. Chem. A 2017, 5 (35), 18831-18838. 43. Trześniewski, B. J.; Smith, W. A., Photocharged BiVO4 photoanodes for improved solar water splitting. J. Mater. Chem. A 2016, 4 (8), 2919-2926. 44. Pingmuang, K.; Chen, J.; Kangwansupamonkon, W.; Wallace, G. G.; Phanichphant, S.; Nattestad, A., Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes. Sci. Rep. 2017, 7 (1), 8929. 45. Wang, N.; Zhang, X.; Wang, Y.; Yu, W.; Chan, H. L. W.; Microfluidic reactors for photocatalytic water purification, Lab on a Chip 2014, 14, 1074-1082.
46. Ochiai, T.; Fujishima, A. In Photocatalysis and Water Purification; Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp 361-376.
47. Alexiadis, A.; Mazzarino, I.; Design guidelines for fixed-bed photocatalytic reactors, Chemical Engineering and Processing: Process Intensification 2005, 44, 453-459.
48. Bamba, D.; Atheba, P.; Robert, D.; Trokourey, A.; Dongui, B.; Photocatalytic degradation of the diuron pesticide, Environ Chem Lett 2008, 6, 163-167.
49. Chun, H.; Yizhong, W.; Hongxiao, T.; Destruction of phenol aqueous solution by photocatalysis or direct photolysis, Chemosphere 2000, 41, 1205-1209.
50. Romão, J. S.; Hamdy, M. S.; Mul, G.; Baltrusaitis, J.; Photocatalytic decomposition of cortisone acetate in aqueous solution, Journal of hazardous materials 2015, 282, 208-215.
51. Araña, J.; Martı́nez Nieto, J. L.; Herrera Melián, J. A.; Doña Rodrı́guez, J. M.; González Dı́az, O.; Pérez Peña, J.; Bergasa, O.; Alvarez, C.; Méndez, J.; Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories, Chemosphere 2004, 55, 893-904.
52. Chong, M. N.; Jin, B.; Chow, C. W.; Saint, C.; Recent developments in photocatalytic water treatment technology: a review, Water Res 2010, 44, 2997-3027. 53. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32 (1), 33-177. 54. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO Nanostructures for Dye‐Sensitized Solar Cells. Adv. Mater. 2009, 21 (41), 4087-4108. 55. Sayama, K.; Nomura, A.; Arai, T.; Sugita, T.; Abe, R.; Yanagida, M.; Oi, T.; Iwasaki, Y.; Abe, Y.; Sugihara, H., Photoelectrochemical Decomposition of Water into H2 and O2 on Porous BiVO4 Thin-Film Electrodes under Visible Light and Significant Effect of Ag Ion Treatment. J. Phys. Chem. B 2006, 110 (23), 11352-11360. 56. Endriss, H., Bismuth Vanadates. In High Performance Pigments, Wiley-VCH Verlag GmbH & Co. KGaA: 2003, pp 7-12. 57. Bierlein, J. D.; Sleight, A. W., Ferroelasticity in BiVO4. Solid State Commun. 1975, 16 (1), 69-70. 58. Pinczuk, A.; Welber, B.; Dacol, F., Mechanism of the Ferroelastic Transition of BiVO4. Solid State Commun. 1979, 29 (7), 515-518. 59. Manolikas, C.; Amelinckx, S., Ferroelastic domains in BiVO4. Phys. Status Solidi A 1980, 60 (1), 167-172. 60. David, W.; Wood, I., Ferroelastic Phase Transition in BiVO4: VI. Some Comments on the Relationship between Spontaneous Deformation and Domain Walls in Ferroelastics. J. Phys. C: Solid State Phys. 1983, 16 (26), 5149. 61. Lim, A.; Choh, S.; Jang, M., Ferroelastic Phase Transition of BiVO4 Studied by 51V NMR. Ferroelectrics 1989, 94 (1), 389-394. 62. Bhattacharya, A. K.; Mallick, K. K.; Hartridge, A., Phase Transition in BiVO4. Mater. Lett. 1997, 30 (1), 7-13. 63. Hirota, K.; Komatsu, G.; Yamashita, M.; Takemura, H.; Yamaguchi, O., Formation, Characterization and Sintering of Alkoxy-Derived Bismuth Vanadate. Mater. Res. Bull. 1992, 27 (7), 823-830. 64. Kudo, A.; Omori, K.; Kato, H., A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121 (49), 11459-11467. 65. Tokunaga, S.; Kato, H.; Kudo, A., Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater. 2001, 13 (12), 4624-4628. 66. Liang, Y.; Tsubota, T.; Mooij, L. P.; van de Krol, R., Highly Improved Quantum Efficiencies for Thin Film BiVO4 Photoanodes. J. Phys. Chem. C 2011, 115 (35), 17594-17598. 67. Abdi, F. F.; Firet, N.; van de Krol, R., Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W‐Doping. ChemCatChem 2013, 5 (2), 490-496. 68. Prévot, M. S.; Sivula, K., Photoelectrochemical Tandem Cells for Solar Water Splitting. J. Phys. Chem. C 2013, 117 (35), 17879-17893. 69. Wang, G.; Ling, Y.; Li, Y., Oxygen-Deficient Metal Oxide Nanostructures for Photoelectrochemical Water Oxidation and Other Applications. Nanoscale 2012, 4 (21), 6682-6691. 70. Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S., Heterojunction BiVO4/WO3 Electrodes for Enhanced Photoactivity of Water Oxidation. Energy Environ. Sci. 2011, 4 (5), 1781-1787. 71. Lim, A. R.; Choh, S. H.; Jang, M. S., Prominent Ferroelastic Domain Walls in BiVO4 Crystal. J. Phys.: Condens. Matter 1995, 7 (37), 7309. 72. Park, Y.; McDonald, K. J.; Choi, K.-S., Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation. Chem. Soc. Rev. 2013, 42 (6), 2321-2337. 73. Yu, J.; Kudo, A., Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4. Adv. Funct. Mater. 2006, 16 (16), 2163-2169. 74. Payne, D.; Robinson, M.; Egdell, R.; Walsh, A.; McNulty, J.; Smith, K.; Piper, L., The Nature of Electron Lone Pairs in BiVO4. Appl. Phys. Lett. 2011, 98 (21), 212110. 75. Zhao, Z.; Li, Z.; Zou, Z., Electronic Structure and Optical Properties of Monoclinic Clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 2011, 13 (10), 4746-4753. 76. Yang, J.; Wang, D.; Zhou, X.; Li, C., A Theoretical Study on the Mechanism of Photocatalytic Oxygen Evolution on BiVO4 in Aqueous Solution. Chem. Eur. J. 2013, 19 (4), 1320-1326. 77. Bott, A. W., Electrochemistry of Semiconductors. Curr. Sep. 1998, 17, 87-92. 78. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95 (3), 735-758. 79. Zayat, M.; Garcia-Parejo, P.; Levy, D., Preventing UV-Light Damage of Light Sensitive Materials using a Highly Protective UV-Absorbing Coating. Chem. Soc. Rev. 2007, 36 (8), 1270-1281. 80. Abe, R., Recent Progress on Photocatalytic and Photoelectrochemical Water Splitting under Visible Light Irradiation. J. Photochem. Photobiol., C 2010, 11 (4), 179-209. 81. Viswanathan, B.; Subramanian, V.; Lee, J. S., Materials and Processes for Solar Fuel Production. Springer: 2014. 82. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 2009, 38 (1), 253-278. 83. Murugesan, S.; Huda, M. N.; Yan, Y.; Al-Jassim, M. M.; Subramanian, V., Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. J. Phys. Chem. C 2010, 114 (23), 10598-10605. 84. Zhang, L.-W.; Wang, Y.-J.; Cheng, H.-Y.; Yao, W.-Q.; Zhu, Y.-F., Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible-Light-Active Photocatalysts. Adv. Mater. 2009, 21 (12), 1286-1290. 85. Zhang, L.; Chen, D.; Jiao, X., Monoclinic Structured BiVO4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. J. Phys. Chem. B 2006, 110 (6), 2668-2673. 86. Zhao, Y.; Xie, Y.; Zhu, X.; Yan, S.; Wang, S., Surfactant-Free Synthesis of Hyperbranched Monoclinic Bismuth Vanadate and its Applications in Photocatalysis, Gas Sensing, and Lithium-Ion Batteries. Chem. Eur. J. 2008, 14 (5), 1601-1606. 87. Sun, S.; Wang, W.; Zhou, L.; Xu, H., Efficient Methylene Blue Removal over Hydrothermally Synthesized Starlike BiVO4. Ind. Eng. Chem. Res. 2009, 48 (4), 1735-1739. 88. Tan, G.; Zhang, L.; Ren, H.; Wei, S.; Huang, J.; Xia, A., Effects of pH on the Hierarchical Structures and Photocatalytic Performance of BiVO4 Powders Prepared via the Microwave Hydrothermal Method. ACS Appl. Mater. Interfaces 2013, 5 (11), 5186-5193. 89. Kudo, A., Photocatalyst Materials for Water Splitting. Catal. Surv. Asia 2003, 7 (1), 31-38. 90. Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium Dioxide Photocatalysis. J. Photochem. Photobiol., C 2000, 1 (1), 1-21. 91. Teoh, W. Y.; Scott, J. A.; Amal, R., Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. J. Phys. Chem. Lett. 2012, 3 (5), 629-639. 92. Martinez-de La Cruz, A.; Pérez, U. G., Photocatalytic Properties of BiVO4 Prepared by the Co-Precipitation Method: Degradation of Rhodamine B and Possible Reaction Mechanisms under Visible Irradiation. Mater. Res. Bull. 2010, 45 (2), 135-141.
93. Zhou, L.; Wang, W.; Zhang, L.; Xu, H.; Zhu, W., Single-Crystalline BiVO4 Microtubes with Square Cross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property. J. Phys. Chem. C 2007, 111 (37), 13659-13664. 94. Zheng, Y.; Wu, J.; Duan, F.; Xie, Y., Gemini Surfactant Directed Preparation and Photocatalysis of m-BiVO4 Hierarchical Frameworks. Chem. Lett. 2007, 36 (4), 520-521.
95. Zhang, X.; Ai, Z.; Jia, F.; Zhang, L.; Fan, X.; Zou, Z., Selective Synthesis and Visible-Light Photocatalytic Activities of BiVO4 with Different Crystalline Phases. Mater. Chem. Phys. 2007, 103 (1), 162-167.
96. Iwase, A.; Kato, H.; Kudo, A., A Simple Preparation Method of Visible-Light-Driven BiVO4 Photocatalysts from Oxide Starting Materials (Bi2O3 and V2O5) and Their Photocatalytic Activities. J. Sol. Energy Eng. 2010, 132 (2), 021106.
97. Zhou, L.; Wang, W.; Liu, S.; Zhang, L.; Xu, H.; Zhu, W., A Sonochemical Route to Visible-Light-Driven High-Activity BiVO4 Photocatalyst. J. Mol. Catal. A: Chem. 2006, 252 (1), 120-124.
98. Ge, L., Novel Pd/BiVO4 Composite Photocatalysts for Efficient Degradation of Methyl Orange under Visible Light Irradiation. Mater. Chem. Phys. 2008, 107 (2), 465-470.
99. Kohtani, S.; Makino, S.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Matsunaga, T.; Nikaido, O.; Hayakawa, K.; Nakagaki, R., Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO4 and TiO2 Photocatalysts. Chem. Lett. 2002, (7), 660-661.
100. Kohtani, S.; Koshiko, M.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Toriba, A.; Hayakawa, K.; Nakagaki, R., Photodegradation of 4-Alkylphenols using BiVO4 Photocatalyst under Irradiation with Visible Light from a Solar Simulator. Appl. Catal., B 2003, 46 (3), 573-586. 101. Kohtani, S.; Hiro, J.; Yamamoto, N.; Kudo, A.; Tokumura, K.; Nakagaki, R., Adsorptive and Photocatalytic Properties of Ag-loaded BiVO4 on the Degradation of 4-n-Alkylphenols under Visible Light Irradiation. Catal. Commun. 2005, 6 (3), 185-189. 102. Thalluri, S. M.; Hussain, M.; Saracco, G.; Barber, J.; Russo, N., Green-Synthesized BiVO4 Oriented along {040} Facets for Visible-Light-Driven Ethylene Degradation. Ind. Eng. Chem. Res. 2014, 53 (7), 2640-2646. 103. Kohtani, S.; Tomohiro, M.; Tokumura, K.; Nakagaki, R., Photooxidation Reactions of Polycyclic Aromatic Hydrocarbons over pure and Ag-Loaded BiVO4 Photocatalysts. Appl. Catal., B 2005, 58 (3), 265-272. 104. Kohtani, S.; Yoshida, K.; Maekawa, T.; Iwase, A.; Kudo, A.; Miyabe, H.; Nakagaki, R., Loading Effects of Silver Oxides upon Generation of Reactive Oxygen Species in Semiconductor Photocatalysis. Phys. Chem. Chem. Phys. 2008, 10 (20), 2986-2992. 105. Wang, C. H.; Shao, C. L.; Liu, Y. C.; Zhang, L. N. Photocatalytic Properties BiOCl and Bi2O3 Nanofibers Prepared by Electrospinning. Scripta Mater. 2008, 59, 332−335. 106. Zhao, L. J.; Zhang, X. C.; Fan, C. M.; Liang, Z. H.; Han, P. D. First-Principles Study on the Structural, Electronic and Optical Properties of BiOX (X = Cl, Br, I) Crystals. Physica B 2012, 407, 3364−3370. 107. Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres. J. Phys. Chem. C 2008, 112, 747−753. 108. Shenawi-Khalil, S.; Uvarov, V.; Menes, E.; Popov, I.; Sasson, Y. New Efficient Visible Light Photocatalyst Based on Heterojunction of BiOCl−Bismuth Oxyhydrate. Appl. Catal. A 2012, 413−414, 1−9. 109. Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y.; Zhang, J. J. The {001} Facets-Dependent High Photoactivity of BiOCl Nanosheets. Chem. Commun. 2011, 47, 6951−6953. 110. Dong, F.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Room Temperature Synthesis and Highly Enhanced Visible Light Photocatalytic Activity of Porous BiOI/BiOCl Composites Nanoplates Microflowers. J. Hazard. Mater. 2012, 219−220, 26−34. 111. Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. Synthesis and Facet- Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc. 2012, 134, 4473−4476. 112. Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.; Lee, W. I. Heterojunctioned BiOCl/Bi2O3, a New Visible Light Photocatalyst. J. Catal. 2009, 262, 144−149. 113. Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Study of the Electronic Structure and Photocatalytic Activity of the BiOCl Photocatalyst. Appl. Catal. B 2006, 68, 125−129. 114. Guan, M.-L.; Ma, D.-K.; Hu, S.-W.; Chen, Y.-J.; Huang, S.-M. From Hollow Olive-Shaped BiVO4 to n−p Core−Shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light- Responsive Photocatalytic Properties. Inorg. Chem. 2011, 50, 800−805. 115. Michel, C. R.; Contreras, N. L. L.; Martínez-Preciado, A. H. Gas Sensing Properties of Nanostructured Bismuth Oxychloride. Sens. Actuators B 2011, 160, 271−277. 116. Yu, H. B.; Chen, S.; Quan, X.; Zhao, H. M.; Zhang, Y. B. Fabrication of a TiO2−BDD Heterojunction and Its Application as a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI). Environ. Sci. Technol. 2008, 42, 3791−3796. 117. Yan, D. H.; Wang, H. B.; Du, B. X. Introduction to Organic Semiconductor Heterojunctions; Science Press: Beijing, China, 2008. 118. Yan, J.; Zhang, L.; Yang, H.; Tang, Y.; Lu, Z.; Guo, S.; Dai, Y.; Han, Y.; Yao, M., CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation. Sol. Energy 2009, 83 (9), 1534-1539. 119. Gao, X.; Wu, H. B.; Zheng, L.; Zhong, Y.; Hu, Y.; Lou, X. W., Formation of Mesoporous Heterostructured BiVO4/Bi2S3 Hollow Discoids with Enhanced Photoactivity. Angew. Chem., Int. Ed., 2014, 53 (23), 5917-5921. 120. He, Z.; Shi, Y.; Gao, C.; Wen, L.; Chen, J.; Song, S., BiOCl/BiVO4 p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation. J. Phys. Chem. C, 2014, 118 (1), 389-398.
121. Bajaj, R.; Sharma, M.; Bahadur, D., Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans., 2013, 42 (19), 6736-6744. 122. Dong, F.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S. C., Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J. Hazard. Mater.,2012, 219-220, 26-34.
123. Yang, J.-S.; Wu, J.-J. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting, Nano Energy, 2017, 32, 232–240.
124. Lee, M. G.; Moon, C. W.; Park, H.; Sohn, W.; Kang, S. B.; Lee, S.; Choi, K. J.; Jang, H. W. Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled Au nanoparticles, Small, 2017, 13, 1701644.
125. Zhang, L.; Herrmann, L. O.; Baumberg, J. J. Size dependent plasmonic effect on BiVO4 photoanodes for solar water splitting, Sci. Rep., 2015, 5, 16660.
126. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater., 2011, 10, 911–921.
127. Boltasseva, A.; Atwater, H. A. Low-loss plasmonic metamaterials, Science, 2011, 331, 290–291.
128. Huang, Y.; Xu, H.; Yang, H.; Lin, Y.; Lin, H.; Hong, Y. Efficient Charges Separation Using Advanced BiOI-Based Hollow Spheres Decorated with Palladium and Manganese Dioxide Nanoparticles, ACS Sustainable Chem. Eng., 2018, 6, 2751–2757.
129. Huang, Y.; Li, K.; Lin, Y.; Tong, Y.; Liu, H. Enhanced Efficiency of Electron–Hole Separation inBi2O2CO3 for Photocatalysis via Acid treatment, ChemCatChem, 2018, 10, 1982–1987.
130. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933-937.
131. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A., Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews 2005, 105 (4), 1025-1102.
132. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15 (5), 353-389.
133. Kumar, S.; Nann, T., Shape Control of II–VI Semiconductor Nanomaterials. Small 2006, 2 (3), 316-329.
134. Lei, Y.; Wang, G.; Song, S.; Fan, W.; Zhang, H., Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. CrystEngComm 2009, 11 (9), 1857-1862.
135. Ni, X.; Zhao, Q.; Zhang, D.; Zhang, X.; Zheng, H., Novel Hierarchical Nanostructures of Nickel: Self-Assembly of Hexagonal Nanoplatelets. The Journal of Physical Chemistry C 2007, 111 (2), 601-605.
136. Antonietti, M.; Ozin, G. A., Promises and Problems of Mesoscale Materials Chemistry or Why Meso? Chemistry – A European Journal 2004, 10 (1), 28-41.
137. Xu, A.-W.; Ma, Y.; Cölfen, H., Biomimetic mineralization. Journal of Materials Chemistry 2007, 17 (5), 415-449.
138. Yu, S. H.; Colfen, H.; Tauer, K.; Antonietti, M., Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nature materials 2005, 4 (1), 51-55.
139. Oshikiri, M.; Boero, M., Water Molecule Adsorption Properties on the BiVO4 (100) Surface. The Journal of Physical Chemistry B 2006, 110 (18), 9188-9194.
140. Xu, Y.; Lv, M.; Yang, H.; Chen, Q.; Liu, X.; Fengyu, W., BiVO4/MIL-101 composite having the synergistically enhanced visible light photocatalytic activity. RSC Advances 2015, 5 (54), 43473-43479.
141. Jiao, Z.; Yu, H.; Wang, X.; Bi, Y., Ultrathin BiVO4 nanobelts: controllable synthesis and improved photocatalytic oxidation of water. RSC Advances 2016, 6 (77), 73136-73139.
142. Sun, Y.; Wu, C.; Long, R.; Cui, Y.; Zhang, S.; Xie, Y., Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature. Chemical Communications 2009, (30), 4542-4544.
143. Shang, M.; Wang, W.; Ren, J.; Sun, S.; Wang, L.; Zhang, L., A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning. Journal of Materials Chemistry 2009, 19 (34), 6213-6218.
144. Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142−9147.
145. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 70−71.
146. Wei, L.; Zhou, Z.-Y.; Chen, S.-P.; Xu, C.-D.; Su, D.; Schuster, M. E.; Sun, S.-G. Electrochemically Shape-Controlled Synthesis in Deep Eutectic Solvents: Triambic Icosahedral Platinum Nanocrystals with High-Index Facets and Their Enhanced Catalytic Activity. Chem. Commun. 2013, 49, 11152−11154.
147. Hammons, J. A.; Muselle, T.; Ustarroz, J.; Tzedaki, M.; Raes, M.; Hubin, A.; Terryn, H. Stability, Assembly, and Particle/Solvent Interactions of Pd Nanoparticles Electrodeposited from a Deep Eutectic Solvent. J. Phys. Chem. C 2013, 117, 14381−14389.
148. Dong, J.-Y.; Lin, C.-H.; Hsu, Y.-J.; Lu, S.-Y.; Wong, D. S.-H. Single-Crystalline Mesoporous ZnO Nanosheets Prepared with a Green Antisolvent Method Exhibiting Excellent Photocatalytic Efficiencies. CrystEngComm 2012, 14, 4732−4737.
149. Liao, H.-G.; Jiang, Y.-X.; Zhou, Z.-Y.; Chen, S.-P.; Sun, S.-G. Shape-Controlled Synthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies of Structure−Functionality Relationships in Electrocatalysis. Angew. Chem., Int. Ed. 2008, 47, 9100−9103.
150. Chirea, M.; Freitas, A.; Vasile, B. S.; Ghitulica, C.; Pereira, C. M.; Silva, F. Gold Nanowire Networks: Synthesis, Characterization, and Catalytic Activity. Langmuir 2011, 27, 3906−3913.
151. Liu, W.; Yu, Y.; Cao, L.; Su, G.; Liu, X.; Zhang, L.; Wang, Y. Synthesis of Monoclinic Structured BiVO4 Spindly Microtubes in Deep Eutectic Solvent and Their Application for Dye Degradation. J. Hazard. Mater. 2010, 181, 1102−1108.
152. Gutiérrez, M. C.; Rubio, F.; del Monte, F. Resorcinol- Formaldehyde Polycondensation in Deep Eutectic Solvents for the Preparation of Carbons and Carbon−Carbon Nanotube Composites. Chem. Mater. 2010, 22, 2711−2719.
153. Fujishima, A., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
154. Kudo, A.; Miseki, Y., Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38 (1), 253-278.
155. Bard, A. J.; Wrighton, M. S., Thermodynamic Potential for the Anodic Dissolution of n‐Type Semiconductors A Crucial Factor Controlling Durability and Eficiency in Photoelectrochemical Cells and an Imporcant Criterion in the Selection of New Electrode/Electrolyte Systems. J. Electrochem. Soc. 1977, 124 (11), 1706-1710.
156. Gerischer, H., On the Stability of Semiconductor Electrodes against Photodecomposition. J. Electroanal. Chem. Interfacial Electrochem. 1977, 82 (1), 133-143.
157. Darwent, J. R.; Mills, A., Photo-Oxidation of Water Sensitized by WO3 Powder. J. Chem. Soc., Faraday Trans. 2 1982, 78 (2), 359-367.
158. Kudo, A.; Ueda, K.; Kato, H.; Mikami, I., Photocatalytic O2 Evolution under Visible Light Irradiation on BiVO4 in Aqueous AgNO3 Solution. Catal. Lett. 1998, 53 (3-4), 229-230.
159. Yang, L.; Zhou, H.; Fan, T.; Zhang, D., Semiconductor Photocatalysts for Water Oxidation: Current Status and Challenges. Phys. Chem. Chem. Phys. 2014, 16 (15), 6810-6826.
160. Liu, H.; Nakamura, R.; Nakato, Y., Promoted Photo-Oxidation Reactivity of Particulate BiVO4 Photocatalyst Prepared by a Photoassisted Sol-Gel Method. J. Electrochem. Soc. 2005, 152 (11), G856-G861.
161. Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A., Construction of Z-Scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation. Chem. Lett. 2004, 33 (10), 1348-1349.
162. Sasaki, Y.; Iwase, A.; Kato, H.; Kudo, A., The Effect of Co-Catalyst for Z-Scheme Photocatalysis Systems with an Fe3+/Fe2+ Electron Mediator on Overall Water Splitting under Visible Light Irradiation. J. Catal. 2008, 259 (1), 133-137.
163. Sasaki, Y.; Kato, H.; Kudo, A., [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ Electron Mediators for Overall Water Splitting under Sunlight Irradiation using Z-Scheme Photocatalyst System. J. Am. Chem. Soc. 2013, 135 (14), 5441-5449.
164. Iwase, A.; Ng, Y. H.; Ishiguro, Y.; Kudo, A.; Amal, R., Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. J. Am. Chem. Soc. 2011, 133 (29), 11054-11057.
165. Sasaki, Y.; Nemoto, H.; Saito, K.; Kudo, A., Solar Water Splitting using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator. J. Phys. Chem. C 2009, 113 (40), 17536-17542.
166. Rietveld, H., A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2 (2), 65-71.
167. West, A. R., Solid state chemistry and its applications. 2014.
168. Chapman, S. K., Working with a scanning electron microscope. Lodgemark: 1986.
169. Fultz, B.; Howe, J., Transmission Electron Microscopy and Diffractometry of Materials. Springer Berlin Heidelberg: Springer e-books: Imprint: Springer: Springer e-books: Berlin, Heidelberg, 2013.
170. Champness, P. E.; Royal Microscopical, S., Electron diffraction in the transmission electron microscope. BIOS Scientific in association with the Royal Microscopical Society: Oxford, 2001.
171. Pope, E. J. A.; Mackenzie, J. D., Sol-gel processing of silica: II. The role of the catalyst. Journal of Non-Crystalline Solids 1986, 87 (1), 185-198.
172. Christy, A. A.; Gregoriou, V. G.; Ozaki, Y.; Wilson, C. L., Modern Fourier transform infrared spectroscopy. Elsevier: Amsterdam [u.a.], 2001.
173. Wagner, J. M., X-Ray Photoelectron Spectroscopy. 2014.
174. Hong, C.-S.; Wang, Y.; Bush, B., Kinetics and products of the TiO2, photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere 1998, 36 (7), 1653-1667.
175. Guo, H.; Ke, Y.; Wang, D.; Lin, K.; Shen, R.; Chen, J.; Weng, W., Efficient adsorption and photocatalytic degradation of Congo red onto hydrothermally synthesized NiS nanoparticles. Journal of nanoparticle research: an interdisciplinary forum for nanoscale science and technology 2013, 15 (3), 1475-1475.
176. Vasanth Kumar, K.; Porkodi, K.; Selvaganapathi, A., Constrain in solving Langmuir–Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dyes and Pigments 2007, 75 (1), 246-249.
177. Asenjo, N. G.; Santamaría, R.; Blanco, C.; Granda, M.; Álvarez, P.; Menéndez, R., Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon 2013, 55, 62-69.
178. Atitar, M. F.; Bouziani, A.; Dillert, R.; El Azzouzi, M.; Bahnemann, D. W., Photocatalytic degradation of the herbicide imazapyr: do the initial degradation rates correlate with the adsorption kinetics and isotherms? Catalysis Science & Technology 2018, 8 (4), 985-995.
179. Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L., Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc. 2012, 134 (10), 4473-4476.
180. Xi, G.; Ye, J., Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chem. Comm. 2010, 46 (11), 1893-1895.
181. Fu, H.; Pan, C.; Yao, W.; Zhu, Y., Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6. J. Phy. Chem. B 2005, 109 (47), 22432-22439.
182. Wang, D.; Tang, J.; Zou, Z.; Ye, J., Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem. Mater. 2005, 17 (20), 5177-5182.
183. Oshikiri, M.; Boero, M.; Ye, J.; Zou, Z.; Kido, G., Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J. Chem. Phy. 2002, 117 (15), 7313-7318.
184. Zhang, C.; Zhu, Y., Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chem. Mater. 2005, 17 (13), 3537-3545.
185. Booshehri, A. Y.; Chun-Kiat Goh, S.; Hong, J.; Jiang, R.; Xu, R., Effect of depositing silver nanoparticles on BiVO4 in enhancing visible light photocatalytic inactivation of bacteria in water. J. Mater. Chem. A 2014, 2 (17), 6209-6217.
186. Feng, C.; Wang, D.; Jin, B.; Jiao, Z., The enhanced photocatalytic properties of BiOCl/BiVO4 p–n heterojunctions via plasmon resonance of metal Bi. RSC Adv. 2015, 5 (93), 75947-75952.
187. Liu, X.; Su, Y.; Zhao, Q.; Du, C.; Liu, Z., Constructing Bi24O31Cl10/BiOCl heterojunction via a simple thermal annealing route for achieving enhanced photocatalytic activity and selectivity. Sci. Rep. 2016, 6, 28689.
188. Li, B.; Wen, X.; Li, R.; Wang, Z.; Clem, P. G.; Fan, H., Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires. Nature Commun. 2014, 5, 4179.
189. Chen, D.; Wang, K.; Hong, W.; Zong, R.; Yao, W.; Zhu, Y., Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Applied Catalysis B: Environmental 2015, 166-167, 366-373.
190. Kamat, P. V., Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phy. Chem. C 2007, 111 (7), 2834-2860.
191. Chen, L.; Zhang, Q.; Huang, R.; Yin, S.-F.; Luo, S.-L.; Au, C.-T., Porous peanut-like Bi2O3–BiVO4 composites with heterojunctions: one-step synthesis and their photocatalytic properties. Dalton. Trans. 2012, 41 (31), 9513-9518.
192. Xu, X.; Du, M.; Chen, T.; Xiong, S.; Wu, T.; Zhao, D.; Fan, Z., New insights into Ag-doped BiVO4 microspheres as visible light photocatalysts. RSC Adv. 2016, 6 (101), 98788-98796.
193. Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Lee, J.; Cho, M. H., Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–ZnO Nanocomposite. J. Phy. Chem. C 2013, 117 (51), 27023-27030.
194. Chen, F.; Yang, Q.; Sun, J.; Yao, F.; Wang, S.; Wang, Y.; Wang, X.; Li, X.; Niu, C.; Wang, D.; Zeng, G., Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS App. Mater. Interfaces 2016, 8 (48), 32887-32900.
195. Obregón, S.; Caballero, A.; Colón, G., Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity. Applied Catalysis B: Environmental 2012, 117-118, 59-66.
196. Kho, Y. K.; Teoh, W. Y.; Iwase, A.; Mädler, L.; Kudo, A.; Amal, R., Flame Preparation of Visible-Light-Responsive BiVO4 Oxygen Evolution Photocatalysts with Subsequent Activation via Aqueous Route. ACS App. Mater. Interfaces 2011, 3 (6), 1997-2004.
197. Venkatesan, R.; Velumani, S.; Kassiba, A., Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phy. 2012, 135 (2), 842-848.
198. Wang, Z.; Luo, W.; Yan, S.; Feng, J.; Zhao, Z.; Zhu, Y.; Li, Z.; Zou, Z., BiVO4 nano–leaves: Mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation. CrystEngComm. 2011, 13 (7), 2500-2504.
199. Jianqiang, Y.; Akihiko, K., Hydrothermal Synthesis of Nanofibrous Bismuth Vanadate. Chemistry Letters 2005, 34 (6), 850-851.
200. Sun, Y.; Wu, C.; Long, R.; Cui, Y.; Zhang, S.; Xie, Y., Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature. Chem. Comm. 2009, (30), 4542-4544.
201. Adhikari, L.; Larm, N. E.; Bhawawet, N.; Baker, G. A., Rapid Microwave-Assisted Synthesis of Silver Nanoparticles in a Halide-Free Deep Eutectic Solvent. ACS Sustainable Chem. Eng. 2018, 6 (5), 5725-5731.
202. Ju, P.; Wang, Y.; Sun, Y.; Zhang, D., Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation. Dalton Trans. 2016, 45 (11), 4588-602.
203. Tang, D.; Zhang, H.; Huang, H.; Liu, R.; Han, Y.; Liu, Y.; Tong, C.; Kang, Z., Carbon quantum dots enhance the photocatalytic performance of BiVO4 with different exposed facets. Dalton Trans. 2013, 42 (18), 6285-6289.
204. Zhu, X.; Zhang, F.; Wang, M.; Gao, X.; Luo, Y.; Xue, J.; Zhang, Y.; Ding, J.; Sun, S.; Bao, J.; Gao, C., A shuriken-shaped m-BiVO4/ {001}–TiO2 heterojunction: Synthesis, structure and enhanced visible light photocatalytic activity. Applied Catalysis A: General 2016, 521, 42-49.
205. Jaihindh, D. P.; Fu, Y.-P., Facile synthesis of deep eutectic solvent assisted BiOCl/BiVO4@AgNWs plasmonic photocatalysts under visible light enhanced catalytic performance. Catal. Today 2017, 297, 246-254.
206. Ke, D.; Peng, T.; Ma, L.; Cai, P.; Dai, K., Effects of Hydrothermal Temperature on the Microstructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light. Inorg. Chem. 2009, 48 (11), 4685-4691.
207. Gotić, M.; Musić, S.; Ivanda, M.; Šoufek, M.; Popović, S., Synthesis and characterisation of bismuth(III) vanadate. Journal of Molecular Structure 2005, 744-747, 535-540.
208. Stoltzfus, M. W.; Woodward, P. M.; Seshadri, R.; Klepeis, J.-H.; Bursten, B., Structure and Bonding in SnWO4, PbWO4, and BiVO4: Lone Pairs Vs Inert Pairs. Inorg. Chem. 2007, 46 (10), 3839-3850.
209. Ou, M.; Nie, H.; Zhong, Q.; Zhang, S.; Zhong, L., Controllable synthesis of 3D BiVO4 superstructures with visible-light-induced photocatalytic oxidation of NO in the gas phase and mechanistic analysis. Phy. Chem. Chem. Phy. 2015, 17 (43), 28809-28817.
210. Wang, M.; Liu, Q.; Che, Y.; Zhang, L.; Zhang, D., Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol–gel method. J. All. Com 2013, 548, 70-76.
211. Wu, X.; Ng, Y. H.; Wang, L.; Du, Y.; Dou, S. X.; Amal, R.; Scott, J., Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J Mater. Chem. A 2017, 5 (17), 8117-8124.
212. Jovic, V.; Laverock, J.; Rettie, A. J. E.; Zhou, J. S.; Mullins, C. B.; Singh, V. R.; Lamoureux, B.; Wilson, D.; Su, T. Y.; Jovic, B.; Bluhm, H.; Söhnel, T.; Smith, K. E., Soft X-ray spectroscopic studies of the electronic structure of M:BiVO4 (M = Mo, W) single crystals. J Mater. Chem. A 2015, 3 (47), 23743-23753.
213. Palaniselvam, T.; Shi, L.; Mettela, G.; Anjum, D. H.; Li, R.; Katuri, K. P.; Saikaly, P. E.; Wang, P., Vastly Enhanced BiVO4 Photocatalytic OER Performance by NiCoO2 as Cocatalyst. Adv. Mater. Inter. 2017, 4 (19), 1700540.
214. Long, M.; Cai, W.; Cai, J.; Zhou, B.; Chai, X.; Wu, Y., Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation. J. Phy. Chem. B 2006, 110 (41), 20211-20216.
215. Huang, H.; He, Y.; Lin, Z.; Kang, L.; Zhang, Y., Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation. J. Phy. Chem. C 2013, 117 (44), 22986-22994.
216. Zhang, N.; Chen, D.; Niu, F.; Wang, S.; Qin, L.; Huang, Y., Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 2016, 6, 26467.
217. He, X.-L.; Liu, Y.-P.; Gong, K.-N.; Han, Z.-G.; Zhai, X.-L., Copper–Organic Cationic Ring with an Inserted Arsenic–Vanadium Polyanionic Cluster for Efficient Catalytic Cr (VI) Reduction Using Formic Acid. Inor. Chem. 2015, 54 (4), 1215-1217.
218. Han, S.-H.; Bai, J.; Liu, H.-M.; Zeng, J.-H.; Jiang, J.-X.; Chen, Y.; Lee, J.-M., One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction. ACS App. Mater. Inter. 2016, 8 (45), 30948-30955.
219. Fu, G.-T.; Jiang, X.; Wu, R.; Wei, S.-H.; Sun, D.-M.; Tang, Y.-W.; Lu, T.-H.; Chen, Y., Arginine-Assisted Synthesis and Catalytic Properties of Single-Crystalline Palladium Tetrapods. ACS App. Mater. Inter. 2014, 6 (24), 22790-22795.
220. Celebi, M.; Yurderi, M.; Bulut, A.; Kaya, M.; Zahmakiran, M., Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Applied Catalysis B: Environmental 2016, 180, 53-64.
221. Gong, K.; Liu, Y.; Wang, W.; Fang, T.; Zhao, C.; Han, Z.; Zhai, X., Reduced Phosphomolybdates as Molecular Catalysts for Hexavalent Chromium Reduction. Eur. J. Inorg. Chem. 2015, 2015 (32), 5351-5356.
222. Benlin, D.; Tu, X.; Zhao, W.; Wang, X.; Leung, D. Y. C.; Xu, J., A novel three-dimensional heterojunction photocatalyst for the photocatalytic oxidation of crystal violet and reduction of Cr6+. Chemosphere 2018, 211, 10-16.
223. Zhao, D.; Zong, W.; Fan, Z.; Fang, Y.-W.; Xiong, S.; Du, M.; Wu, T.; Ji, F.; Xu, X., Synthesis of carbon-doped nanosheets m-BiVO4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property. Journal of Nanoparticle Research 2017, 19 (4), 124.
224. Xie, B.; Zhang, H.; Cai, P.; Qiu, R.; Xiong, Y., Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 2006, 63 (6), 956-963.
225. Wu, Z.; Yuan, X.; Zeng, G.; Jiang, L.; Zhong, H.; Xie, Y.; Wang, H.; Chen, X.; Wang, H., Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation. Applied Catalysis B: Environmental 2018, 225, 8-21.
226. Zhao, H.; Xia, Q.; Xing, H.; Chen, D.; Wang, H., Construction of Pillared-Layer MOF as Efficient Visible-Light Photocatalysts for Aqueous Cr(VI) Reduction and Dye Degradation. ACS Sustainable Chem. Eng. 2017, 5 (5), 4449-4456.
227. Yin, R.; Ling, L.; Xiang, Y. Y.; Yang, Y. N.; Bokare, A. D.; Shang, C., Enhanced photocatalytic reduction of chromium (VI) by Cu-doped TiO2 under UV-A irradiation. Separation and Purification Technology 2018, 190, 53-59.
228. Lamkhao, S.; Rujijanagul, G.; Randorn, C., Fabrication of g-C3N4 and a promising charcoal property towards enhanced chromium(VI) reduction and wastewater treatment under visible light. Chemosphere 2018, 193, 237-243.
229. Yan, P.; Li, D.; Ma, X.; Xue, J.; Zhang, Y.; Liu, M., Hydrothermal synthesis of Bi2WO6 with a new tungsten source and enhanced photocatalytic activity of Bi2WO6 hybridized with C3N4. Photochem. Photobio. Sci. 2018, 17 (8), 1084-1090.
230. Yuan, Q.; Chen, L.; Xiong, M.; He, J.; Luo, S.-L.; Au, C.-T.; Yin, S.-F., Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light. Chem. Eng. J. 2014, 255, 394-402.
231. Yang, Y.; Wang, G.; Deng, Q.; Ng, D. H. L.; Zhao, H., Microwave-Assisted Fabrication of Nanoparticulate TiO2 Microspheres for Synergistic Photocatalytic Removal of Cr(VI) and Methyl Orange. ACS Appl. Mater. Interfaces 2014, 6 (4), 3008-3015.
232. Rengaraj, S.; Venkataraj, S.; Yeon, J.-W.; Kim, Y.; Li, X. Z.; Pang, G. K. H., Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Applied Catalysis B: Environmental 2007, 77 (1), 157-165.
233. Chen, G.; Sun, M.; Wei, Q.; Ma, Z.; Du, B., Efficient photocatalytic reduction of aqueous Cr(VI) over CaSb2O5(OH)2 nanocrystals under UV light illumination. Applied Catalysis B: Environmental 2012, 125, 282-287.
234. Jin, W.; Wu, G.; Chen, A., Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays. Analyst 2014, 139 (1), 235-241.
|