帳號:guest(3.128.95.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Dhayanantha Prabu Jaihindh
作者(英文):Dhayanantha Prabu Jaihindh
論文名稱:以深共晶溶劑合成具層狀奈米結構的可見光釩酸鉍基光觸媒並應用於有機污染物去除之研究
論文名稱(英文):Bismuth Vanadate -Based Visible-Light Driven Photocatalysts with Hierarchical Nanostructures Synthesized through Deep Eutectic Solvents for Organic Pollutant Removal
指導教授:傅彥培
指導教授(英文):Yen-Pei Fu
口試委員:傅彥培
翁明壽
陳怡嘉
劉哲文
胡安仁
口試委員(英文):Yen-Pei Fu
Ming-Show Wong
Yi-Jia Chen
Je-Wen Liou
An-Ren Hu
學位類別:博士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:810322002
出版年(民國):107
畢業學年度:107
語文別:英文
論文頁數:130
關鍵詞(英文):Deep eutectic solventsBismuth based photocatalystsp-n heterojunctionorganic pollutant removalCr(VI) removalelectrochemical sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏收藏:0
Photocatalysis is a series of advanced light-induced redox reaction processes resulting in the degradation and mineralization of organic pollutants in the presence of oxygen and water. Due to their capability to destroy contaminants under mild conditions, photocatalytic processes have attracted considerable attention in the field of waste-water treatment. However, photocatalytic reactions using the traditional pure TiO2 photocatalyst suffer from low energy efficiencies under solar irradiation. This low efficiency in the utilization of solar energy lies in its incapability in absorbing visible lights and also the high recombination rate of photo-excited species in photocatalysts. In addition, difficulties in the separation of fluids from micro- or nano-scale catalysts in large scale systems substantially impact cost efficiency in practice.
In this thesis, strategies are explored which address these issues in order to improve the feasibility of solar photocatalysis. The preparation photocatalytic transition metal-oxide semiconductor materials are investigated, namely bismuth-based heterogeneous photocatalysts using Deep eutectic solvents (DESs) as green solvents. This research is focused on the design of visible-light-active metal-oxide photocatalysts to increase the absorption of visible light and to decrease the rates of electron-hole recombination, resulting in a high photocatalytic efficiency in regards to the degradation of organic pollutants. In First study deals synthesis of BiOCl/BiVO4 n- p heterojunction photocatalysts was synthesized using DESs reline (Choline chloride: Urea, 1:2) via simple one-pot sol-gel method at room temperature. BiOCl/BiVO4 sheet like structure was characterized and experimentally investigated for the degradation of Methylene blue, rhodamine B under visible light irradiation and also the mechanism was investigated using scavenger experiment. To improve the photocatalytic activity and electron-hole pair recombination time, the silver nanowires combined with BiOCl/BiVO4. Here, we report a one dimensional (1D) AgNWs combined with BiOCl/BiVO4 photocatalysts. The BiOCl/BiVO4@5% Ag NWs photocatalysts exhibited the highest photoactivity, and the degradation efficiency of MB and RhB was 97% and 96% as compared to bare BiVO4 and BiOCl/BiVO4, respectively. The appearance of elemental AgNWs during the photocatalytic reaction would be in favor to enhanced visible light absorption, the facilitated photoinduced electrons transfer, and the enhanced separation of photoinduced electron−hole pairs contributed to the improvement of photocatalytic activities.
Also, BiOCl/BiVO4@AgNWs photocatalysts are attributed to the formation of p-n heterojunctions between BiOCl and BiVO4, leading to an effective separation of photo-generated electron hole pair. The significantly enhanced photocatalytic activity should be ascribed to the


fabrication of a BiOCl/BiVO4 heterojunction, which can result in an efficient interfacial charge transfer, and it can be proved by Photoluminescence, Linear Sweep Voltammetry and Electrochemical Impedance Spectroscopy.
The second study proposed, the preparation of hierarchically nanostructured shuriken like bismuth vanadate (BiVO4) as a bifunctional catalyst for photocatalytic degradation and electrochemical detection of highly toxic hexavalent chromium (Cr(VI)) using the green Deep Eutectic Solvent reline by Solvothermal method, which allows morphology control in one of the less energy-intensive routes. The reline solvents leads the role of a latent supramolecular catalysts where the enhance in reaction rate from solvent driven pre-organization of the reactant is most remarkable. The SEM results showed a good dispersion of BiVO4 catalyst and the HR-TEM revealed an average particle size of ca. 5–10 nm. As a result, the BiVO4 exhibited good photocatalytic activity under UV-light about 95% reduction of Cr(VI) to Cr(III) was observed in 160 min. The recyclability of BiVO4 catalyst exhibited an appreciable reusability and stability of the catalyst towards the photocatalytic reduction of Cr(VI). Also, the BiVO4-modified screen printed carbon electrode (BiVO4/SPCE) displayed an excellent electrochemical performance towards the electrochemical detection of Cr(VI). Besides, the BiVO4/SPCE demonstrated tremendous electrocatalytic activity, lower linear range (0.01–264.5 µM), detection limit (0.0035
µM) and good storage stability towards the detection of Cr(VI). Importantly, the BiVO4 modified electrode was also found to be a good recovery in water samples for practical applications. The shape dependent nanostructured BiVO4 catalyst could also be used an effective electrode material for energy storage and hybrid capacitor in future.

Keywords: Deep eutectic solvents, Bismuth based photocatalysts, p-n heterojunction, organic pollutant removal, Cr(VI) removal, electrochemical sensing

Table of the contents
Abstract I
Acknowledgement III
Table of the contents VII
List of Tables IX
List of Figures X
List of Publication in Ph.D program XIV
Chapter 1: General Introduction 1
1.1 Background 3
1.2 Water Treatment 4
1.2.1 Conventional wastewater treatment technology and their drawbacks ……5 1.2.2 Advanced oxidation process 6
1.2.3 Photocatalysts 7
1.2.4 Photocatalytic phenomena and applications 8
1.2.5 Photocatalysis: reactors and operational parameters 11
1.2.5.1 Reactors 11
1.2.5.2 Operational parameters 12
1.3 Objectives .13
Chapter 2: Literature review 15
2.1 Introduction 17
2.2 Bismuth Vanadate crystal structures and electronic properties 17
2.2.1 Bismuth Vanadate (BiVO4) 17
2.2.2 Crystal Structure and Phase Transition 18
2.2.3 Electronic Structure 20
2.3 Photocatalytic Applications of BiVO4 under Visible Light 22
2.3.1 Photocatalysis 22
2.3.2 Basic Principles of Photocatalytic Reactions 24
2.3.3 Organic degradation 27
2.4 Limitations of BiVO4 and Overcome the Problems 30
2.5 Preparation Hierarchical nanostructures of BiVO4 and Challenges 32
2.5.1 What is Deep Eutectic Solvents? 32

2.5.2 DESs in Nanostructure synthesis 35
2.6 BiVO4 in Water Splitting 36
2.6.1 Powder Suspension System 36
2.7 Conclusion 42
Chapter 3: Materials and Characterization 45
3.1 Synthesis Routes 47
3.1.1 Sol–Gel Method 47
3.1.2 Solvothermal/hydrothermal method 48
3.2 Characterization techniques 49
3.2.1 Structural and morphological studies 50
3.2.2 X-ray diffraction (XRD) 50
3.2.3 Scanning electron microscopy (SEM) 51
3.2.4 Transmission electron microscopy (TEM) 52
3.2.5 UV/Vis. Spectroscopy 53
3.2.6 Fourier transform infrared (FTIR) 54
3.2.7 X-ray photoelectron spectroscopy (XPS) 55
3.2.8 Photoluminescence (PL) 56
3.3 Photoelectrochemical measurements 57
3.4. Photocatalytic activity 58
3.5 Photocatalytic degradation kinetics 59
Chapter 4: Facile synthesis of deep eutectic solvent assisted BiOCl/BiVO4@AgNWs plasmonic photocatalysts under visible light enhanced catalytic performance .61
4.1 Experimental 63
4.1.1 Synthesis of BiVO4 and BiOCl/BiVO4 by sol-gel method 63
4.1.2 Preparation of silver nanowires (AgNWs) 63
4.1.3 Deposition of BiVO4@AgNWS, BiOCl/BiVO4@AgNWs 64

4.2 Materials characterization 64
4.3 Photocatalytic activity 64
4.4 Photoelectrochemical Measurement 65
4.5 Results and discussion 65

4.5.1 XRD characterization 65
4.5.2 Band gap 66
4.5.3 SEM images 67
4.5.4 Photoluminescence property 68
4.5.5 TEM images 69
4.6 Photocatalytic MB dye degradation 69
4.6.1 The photocatalytic mechanism 72
4.7 Photoelectrochemical studies 75
4.8 Conclusion 78
Chapter 5: Facile Synthesis of Hierarchically Nanostructured Bismuth Vanadate: An …. 79 Efficient Photocatalyst for Degradation and Detection of Hexavalent Chromium
5.1 Experimental 81
5.1.1 Solvothermal preparation of BiVO4 81
5.1.2 Materials characterization 82
5.1.3 Photocatalytic experiments 83
5.1.4 Electrochemical sensing of Cr(VI) at BiVO4/SPCE 83
5.2 Results and discussion 84
5.2.1 Hydrothermal method prepared BiVO4 characterization 84
5.3 Photocatalytic chromium (VI) reduction 93
5.4 Reduction mechanism of Cr (Ⅵ) in presence of BiVO4 94
5.5 Electrocatalytic activity of BiVO4/SPCE 98
5.5.1 Effect of scan rate 99
5.5.2 Electrochemical determination of Cr(VI) by chronoamperometry ………101
5.5.3 Selectivity, stability and reproducibility of the catalyst 102
5.6 Conclusion 103
Chapter 6: Overall Conclusion 105
6.2 Introduction 107
6.2 Discussion 107
6.3 Suggestions for future work 109
Bibliography 111
Bibliography
1. Qu, X.; Alvarez, P. J.; Li, Q., Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47 (12), 3931-46.
2. Qu, X.; Brame, J.; Li, Q.; Alvarez, P. J., Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res. 2013, 46 (3), 834-43.
3. Mohmood, I.; Lopes, C. B.; Lopes, I.; Ahmad, I.; Duarte, A. C.; Pereira, E., Nanoscale materials and their use in water contaminants removal-a review. Environ. Sci. Pollut. Res. 2013, 20 (3), 1239-60.
4. Bora, T.; Dutta, J., Applications of nanotechnology in wastewater treatment--a review. J. nanosci. Nanotech. 2014, 14 (1), 613-26.
5. Bera, R.; Kundu, S.; Patra, A., 2D Hybrid Nanostructure of Reduced Graphene Oxide-CdS Nanosheet for Enhanced Photocatalysis. ACS appl. Mater. Interfaces 2015, 7 (24), 13251-9.
6. Khanchandani, S.; Srivastava, P. K.; Kumar, S.; Ghosh, S.; Ganguli, A. K., Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag2S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Inorg. Chem. 2014, 53 (17), 8902-12.
7. Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J., Graphene in Photocatalysis: A Review. Small (Weinheim an der Bergstrasse, Germany) 2016, 12 (48), 6640-6696.
8. Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Zhang, T., Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Adv. Mater. (Deerfield Beach, Fla.) 2016, 28 (43), 9454-9477.
9. Zhang, P.; Wang, T.; Chang, X.; Gong, J., Effective Charge Carrier Utilization in Photocatalytic Conversions. Acc. Chem. Res. 2016, 49 (5), 911-21.
10. Gude, V. G., Desalination and sustainability - An appraisal and current perspective. Water Res 2016, 89, 87-106.
11. Semiat, R., Energy issues in desalination processes. Environ. Sci. Tech. 2008, 42 (22), 8193-201.
12. Nidheesh, P. V.; Gandhimathi, R.; Ramesh, S. T., Degradation of dyes from aqueous solution by Fenton processes: a review. Environ. Sci. Pollut. Res 2013, 20 (4), 2099-132.
13. Raman, C. D.; Kanmani, S., Textile dye degradation using nano zero valent iron: A review. J. Environ. Manage. 2016, 177, 341-55.
14. Tegli, S.; Cerboneschi, M.; Corsi, M.; Bonnanni, M.; Bianchini, R., Water recycle as a must: decolorization of textile wastewaters by plant-associated fungi. Journal of basic microbiology 2014, 54 (2), 120-32.
15. Rajeshwar, K.; Osugi, M. E.; Chanmanee, W.; Chenthamarakshan, C. R.; Zanoni, M. V. B.; Kajitvichyanukul, P.; Krishnan-Ayer, R., Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobio. C: Photochemistry Reviews 2008, 9 (4), 171-192.
16. Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z., A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manage 2018, 227, 395-405.
17. Cooper, R. C., Waste water management and infectious disease. Part II: Impact of waste water treatment. J Environ Health 1975, 37 (4), 342-50.
18. Lund, V.; Fonahn, W.; Pettersen, J. E.; Caugant, D. A.; Ask, E.; Nysaeter, A., Detection of Legionella by cultivation and quantitative real-time polymerase chain reaction in biological waste water treatment plants in Norway. J Water Health 2014, 12 (3), 543-54.
19. Bai, Q. Z.; Chen, H. S.; Ye, Y. C.; Li, J. F.; Mu, X. F.; Cao, W., [Experimental study on the treatment of low level radioactive waste water by inorganic nanofiltration membrane]. Huan Jing Ke Xue 2006, 27 (7), 1334-8.
20. Seiss, M.; Gahr, A.; Niessner, R., Improved AOX degradation in UV oxidative waste water treatment by dialysis with nanofiltration membrane. Water Res 2001, 35 (13), 3242-8.
21. Lee, S. Y.; Park, S. J.; TiO2 photocatalyst for water treatment applications, J Ind Eng Chem
2013, 19, 1761-1769.
22. Lin, S.; Patrik, W; TiO2 photocatalyst for organic pollutant waste water treatment applications, J Ind Eng Chem 2015, 20, 1661-1669.

23. Hidalgo, M. C.; Maicu, M.; Navio, J. A.; Colon, G.; Photocatalytic properties of surface
modified platinised TiO2: Effects of particle size and structural composition, Catal Today 2007,
129, 43-49.
24. Malato, S.; Blanco, J.; Alarcon, D. C.; Maldonado, M. I.; Fernandez-Ibanez, P.; Gernjak,
W.; Photocatalytic decontamination and disinfection of water with solar collectors, Catal Today
2007, 122, 137-149.

25. Lin, Z.; Zhao, L.; Dong, Y.; Quantitative characterization of hydroxyl radical generation in
a goethite-catalyzed Fenton-like reaction, Chemosphere 2015, 144, 7-12.

26. Glaze, W. H.; Kang, J. W.; Chapin, D. H.; The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation, Ozone: Sci. Eng. 1987, 9, 335.

27. Oliver, J. H.; Hyunook, K.; Chi, C. P.; Decolorization of Wastewater, Crit. Rev. Environ. Sci. Technol. 2000, 30, 499.

28. Serpone, N.; Emeline, A. V.; Horikoshi, S.; Kuznetsov, V. N.; Ryabchuk, V. K., On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochem. Photobio. Sci. 2012, 11 (7), 1121-1150.
29. Truppi, A.; Petronella, F.; Placido, T.; Margiotta, V.; Lasorella, G.; Giotta, L.; Giannini, C.; Sibillano, T.; Murgolo, S.; Mascolo, G.; Agostiano, A.; Curri, M. L.; Comparelli, R., Gram-scale synthesis of UV-visible light active plasmonic photocatalytic nanocomposite based on TiO2/Au nanorods for degradation of pollutants in water. Applied Catalysis B: Environmental 2018.
30. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W.; Environmental
Applications of Semiconductor Photocatalysis, Chem Rev 1995, 95, 69-96.

31. Serpone, N.; Relative photonic efficiencies and quantum yields in heterogeneous
photocatalysis, J Photoch Photobio A 1997, 104, 1-12.
32. Khin, M. M.; Nair, A. S.; Babu, V. J.; Murugan, R.; Ramakrishna, S., A review on nanomaterials for environmental remediation. Ener. Environ. Sci. 2012, 5 (8), 8075-8109.
33. Miseki, Y.; Sayama, K., Photocatalytic Water Splitting for Solar Hydrogen Production Using the Carbonate Effect and the Z-Scheme Reaction. Adv. Ener. Mater. 2018, 1801294.
34. Grätzel, M., Dye-sensitized solar cells. J. Photochem. Photobio. C: Photochemistry Reviews 2003, 4 (2), 145-153.
35. Phaniendra, A.; Jestadi, D. B.; Periyasamy, L., Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry: IJCB 2015, 30 (1), 11-26.
36. Xie, W.; Li, R.; Xu, Q., Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep. 2018, 8 (1), 8752.
38. Dahl, M.; Liu, Y.; Yin, Y., Composite Titanium Dioxide Nanomaterials. Chemical Reviews 2014, 114 (19), 9853-9889.
39. Walsh, A.; Yan, Y.; Huda, M. N.; Al-Jassim, M. M.; Wei, S.-H., Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals. Chem. Mater. 2009, 21 (3), 547-551.
40. Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P.-A.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D., Electronic Structure of Monoclinic BiVO4. Chem. Mater. 2014, 26 (18), 5365-5373.
41. Khan, I.; Ali, S.; Mansha, M.; Qurashi, A., Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application. Ultrasonics Sonochemistry 2017, 36, 386-392.
42. Song, J.; Cha, J.; Lee, M. G.; Jeong, H. W.; Seo, S.; Yoo, J. A.; Kim, T. L.; Lee, J.; No, H.; Kim, D. H.; Jeong, S. Y.; An, H.; Lee, B. H.; Bark, C. W.; Park, H.; Jang, H. W.; Lee, S., Template-engineered epitaxial BiVO4 photoanodes for efficient solar water splitting. J. Mater. Chem. A 2017, 5 (35), 18831-18838.
43. Trześniewski, B. J.; Smith, W. A., Photocharged BiVO4 photoanodes for improved solar water splitting. J. Mater. Chem. A 2016, 4 (8), 2919-2926.
44. Pingmuang, K.; Chen, J.; Kangwansupamonkon, W.; Wallace, G. G.; Phanichphant, S.; Nattestad, A., Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes. Sci. Rep. 2017, 7 (1), 8929.
45. Wang, N.; Zhang, X.; Wang, Y.; Yu, W.; Chan, H. L. W.; Microfluidic reactors for photocatalytic water purification, Lab on a Chip 2014, 14, 1074-1082.

46. Ochiai, T.; Fujishima, A. In Photocatalysis and Water Purification; Wiley-VCH Verlag
GmbH & Co. KGaA, 2013, pp 361-376.

47. Alexiadis, A.; Mazzarino, I.; Design guidelines for fixed-bed photocatalytic reactors,
Chemical Engineering and Processing: Process Intensification 2005, 44, 453-459.

48. Bamba, D.; Atheba, P.; Robert, D.; Trokourey, A.; Dongui, B.; Photocatalytic degradation
of the diuron pesticide, Environ Chem Lett 2008, 6, 163-167.

49. Chun, H.; Yizhong, W.; Hongxiao, T.; Destruction of phenol aqueous solution by
photocatalysis or direct photolysis, Chemosphere 2000, 41, 1205-1209.

50. Romão, J. S.; Hamdy, M. S.; Mul, G.; Baltrusaitis, J.; Photocatalytic decomposition of
cortisone acetate in aqueous solution, Journal of hazardous materials 2015, 282, 208-215.

51. Araña, J.; Martı́nez Nieto, J. L.; Herrera Melián, J. A.; Doña Rodrı́guez, J. M.; González
Dı́az, O.; Pérez Peña, J.; Bergasa, O.; Alvarez, C.; Méndez, J.; Photocatalytic degradation of
formaldehyde containing wastewater from veterinarian laboratories, Chemosphere 2004, 55,
893-904.

52. Chong, M. N.; Jin, B.; Chow, C. W.; Saint, C.; Recent developments in photocatalytic
water treatment technology: a review, Water Res 2010, 44, 2997-3027.
53. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32 (1), 33-177.
54. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO Nanostructures for Dye‐Sensitized Solar Cells. Adv. Mater. 2009, 21 (41), 4087-4108.
55. Sayama, K.; Nomura, A.; Arai, T.; Sugita, T.; Abe, R.; Yanagida, M.; Oi, T.; Iwasaki, Y.; Abe, Y.; Sugihara, H., Photoelectrochemical Decomposition of Water into H2 and O2 on Porous BiVO4 Thin-Film Electrodes under Visible Light and Significant Effect of Ag Ion Treatment. J. Phys. Chem. B 2006, 110 (23), 11352-11360.
56. Endriss, H., Bismuth Vanadates. In High Performance Pigments, Wiley-VCH Verlag GmbH & Co. KGaA: 2003, pp 7-12.
57. Bierlein, J. D.; Sleight, A. W., Ferroelasticity in BiVO4. Solid State Commun. 1975, 16 (1), 69-70.
58. Pinczuk, A.; Welber, B.; Dacol, F., Mechanism of the Ferroelastic Transition of BiVO4. Solid State Commun. 1979, 29 (7), 515-518.
59. Manolikas, C.; Amelinckx, S., Ferroelastic domains in BiVO4. Phys. Status Solidi A 1980, 60 (1), 167-172.
60. David, W.; Wood, I., Ferroelastic Phase Transition in BiVO4: VI. Some Comments on the Relationship between Spontaneous Deformation and Domain Walls in Ferroelastics. J. Phys. C: Solid State Phys. 1983, 16 (26), 5149.
61. Lim, A.; Choh, S.; Jang, M., Ferroelastic Phase Transition of BiVO4 Studied by 51V NMR. Ferroelectrics 1989, 94 (1), 389-394.
62. Bhattacharya, A. K.; Mallick, K. K.; Hartridge, A., Phase Transition in BiVO4. Mater. Lett. 1997, 30 (1), 7-13.
63. Hirota, K.; Komatsu, G.; Yamashita, M.; Takemura, H.; Yamaguchi, O., Formation, Characterization and Sintering of Alkoxy-Derived Bismuth Vanadate. Mater. Res. Bull. 1992, 27 (7), 823-830.
64. Kudo, A.; Omori, K.; Kato, H., A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc. 1999, 121 (49), 11459-11467.
65. Tokunaga, S.; Kato, H.; Kudo, A., Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater. 2001, 13 (12), 4624-4628.
66. Liang, Y.; Tsubota, T.; Mooij, L. P.; van de Krol, R., Highly Improved Quantum Efficiencies for Thin Film BiVO4 Photoanodes. J. Phys. Chem. C 2011, 115 (35), 17594-17598.
67. Abdi, F. F.; Firet, N.; van de Krol, R., Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W‐Doping. ChemCatChem 2013, 5 (2), 490-496.
68. Prévot, M. S.; Sivula, K., Photoelectrochemical Tandem Cells for Solar Water Splitting. J. Phys. Chem. C 2013, 117 (35), 17879-17893.
69. Wang, G.; Ling, Y.; Li, Y., Oxygen-Deficient Metal Oxide Nanostructures for Photoelectrochemical Water Oxidation and Other Applications. Nanoscale 2012, 4 (21), 6682-6691.
70. Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S., Heterojunction BiVO4/WO3 Electrodes for Enhanced Photoactivity of Water Oxidation. Energy Environ. Sci. 2011, 4 (5), 1781-1787.
71. Lim, A. R.; Choh, S. H.; Jang, M. S., Prominent Ferroelastic Domain Walls in BiVO4 Crystal. J. Phys.: Condens. Matter 1995, 7 (37), 7309.
72. Park, Y.; McDonald, K. J.; Choi, K.-S., Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation. Chem. Soc. Rev. 2013, 42 (6), 2321-2337.
73. Yu, J.; Kudo, A., Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4. Adv. Funct. Mater. 2006, 16 (16), 2163-2169.
74. Payne, D.; Robinson, M.; Egdell, R.; Walsh, A.; McNulty, J.; Smith, K.; Piper, L., The Nature of Electron Lone Pairs in BiVO4. Appl. Phys. Lett. 2011, 98 (21), 212110.
75. Zhao, Z.; Li, Z.; Zou, Z., Electronic Structure and Optical Properties of Monoclinic Clinobisvanite BiVO4. Phys. Chem. Chem. Phys. 2011, 13 (10), 4746-4753.
76. Yang, J.; Wang, D.; Zhou, X.; Li, C., A Theoretical Study on the Mechanism of Photocatalytic Oxygen Evolution on BiVO4 in Aqueous Solution. Chem. Eur. J. 2013, 19 (4), 1320-1326.
77. Bott, A. W., Electrochemistry of Semiconductors. Curr. Sep. 1998, 17, 87-92.
78. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95 (3), 735-758.
79. Zayat, M.; Garcia-Parejo, P.; Levy, D., Preventing UV-Light Damage of Light Sensitive Materials using a Highly Protective UV-Absorbing Coating. Chem. Soc. Rev. 2007, 36 (8), 1270-1281.
80. Abe, R., Recent Progress on Photocatalytic and Photoelectrochemical Water Splitting under Visible Light Irradiation. J. Photochem. Photobiol., C 2010, 11 (4), 179-209.
81. Viswanathan, B.; Subramanian, V.; Lee, J. S., Materials and Processes for Solar Fuel Production. Springer: 2014.
82. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 2009, 38 (1), 253-278.
83. Murugesan, S.; Huda, M. N.; Yan, Y.; Al-Jassim, M. M.; Subramanian, V., Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. J. Phys. Chem. C 2010, 114 (23), 10598-10605.
84. Zhang, L.-W.; Wang, Y.-J.; Cheng, H.-Y.; Yao, W.-Q.; Zhu, Y.-F., Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible-Light-Active Photocatalysts. Adv. Mater. 2009, 21 (12), 1286-1290.
85. Zhang, L.; Chen, D.; Jiao, X., Monoclinic Structured BiVO4 Nanosheets:  Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. J. Phys. Chem. B 2006, 110 (6), 2668-2673.
86. Zhao, Y.; Xie, Y.; Zhu, X.; Yan, S.; Wang, S., Surfactant-Free Synthesis of Hyperbranched Monoclinic Bismuth Vanadate and its Applications in Photocatalysis, Gas Sensing, and Lithium-Ion Batteries. Chem. Eur. J. 2008, 14 (5), 1601-1606.
87. Sun, S.; Wang, W.; Zhou, L.; Xu, H., Efficient Methylene Blue Removal over Hydrothermally Synthesized Starlike BiVO4. Ind. Eng. Chem. Res. 2009, 48 (4), 1735-1739.
88. Tan, G.; Zhang, L.; Ren, H.; Wei, S.; Huang, J.; Xia, A., Effects of pH on the Hierarchical Structures and Photocatalytic Performance of BiVO4 Powders Prepared via the Microwave Hydrothermal Method. ACS Appl. Mater. Interfaces 2013, 5 (11), 5186-5193.
89. Kudo, A., Photocatalyst Materials for Water Splitting. Catal. Surv. Asia 2003, 7 (1), 31-38.
90. Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium Dioxide Photocatalysis. J. Photochem. Photobiol., C 2000, 1 (1), 1-21.
91. Teoh, W. Y.; Scott, J. A.; Amal, R., Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. J. Phys. Chem. Lett. 2012, 3 (5), 629-639.
92. Martinez-de La Cruz, A.; Pérez, U. G., Photocatalytic Properties of BiVO4 Prepared by the Co-Precipitation Method: Degradation of Rhodamine B and Possible Reaction Mechanisms under Visible Irradiation. Mater. Res. Bull. 2010, 45 (2), 135-141.

93. Zhou, L.; Wang, W.; Zhang, L.; Xu, H.; Zhu, W., Single-Crystalline BiVO4 Microtubes with Square Cross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property. J. Phys. Chem. C 2007, 111 (37), 13659-13664.
94. Zheng, Y.; Wu, J.; Duan, F.; Xie, Y., Gemini Surfactant Directed Preparation and Photocatalysis of m-BiVO4 Hierarchical Frameworks. Chem. Lett. 2007, 36 (4), 520-521.

95. Zhang, X.; Ai, Z.; Jia, F.; Zhang, L.; Fan, X.; Zou, Z., Selective Synthesis and Visible-Light Photocatalytic Activities of BiVO4 with Different Crystalline Phases. Mater. Chem. Phys. 2007, 103 (1), 162-167.

96. Iwase, A.; Kato, H.; Kudo, A., A Simple Preparation Method of Visible-Light-Driven BiVO4 Photocatalysts from Oxide Starting Materials (Bi2O3 and V2O5) and Their Photocatalytic Activities. J. Sol. Energy Eng. 2010, 132 (2), 021106.

97. Zhou, L.; Wang, W.; Liu, S.; Zhang, L.; Xu, H.; Zhu, W., A Sonochemical Route to Visible-Light-Driven High-Activity BiVO4 Photocatalyst. J. Mol. Catal. A: Chem. 2006, 252 (1), 120-124.

98. Ge, L., Novel Pd/BiVO4 Composite Photocatalysts for Efficient Degradation of Methyl Orange under Visible Light Irradiation. Mater. Chem. Phys. 2008, 107 (2), 465-470.

99. Kohtani, S.; Makino, S.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Matsunaga, T.; Nikaido, O.; Hayakawa, K.; Nakagaki, R., Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO4 and TiO2 Photocatalysts. Chem. Lett. 2002, (7), 660-661.

100. Kohtani, S.; Koshiko, M.; Kudo, A.; Tokumura, K.; Ishigaki, Y.; Toriba, A.; Hayakawa, K.; Nakagaki, R., Photodegradation of 4-Alkylphenols using BiVO4 Photocatalyst under Irradiation with Visible Light from a Solar Simulator. Appl. Catal., B 2003, 46 (3), 573-586.
101. Kohtani, S.; Hiro, J.; Yamamoto, N.; Kudo, A.; Tokumura, K.; Nakagaki, R., Adsorptive and Photocatalytic Properties of Ag-loaded BiVO4 on the Degradation of 4-n-Alkylphenols under Visible Light Irradiation. Catal. Commun. 2005, 6 (3), 185-189.
102. Thalluri, S. M.; Hussain, M.; Saracco, G.; Barber, J.; Russo, N., Green-Synthesized BiVO4 Oriented along {040} Facets for Visible-Light-Driven Ethylene Degradation. Ind. Eng. Chem. Res. 2014, 53 (7), 2640-2646.
103. Kohtani, S.; Tomohiro, M.; Tokumura, K.; Nakagaki, R., Photooxidation Reactions of Polycyclic Aromatic Hydrocarbons over pure and Ag-Loaded BiVO4 Photocatalysts. Appl. Catal., B 2005, 58 (3), 265-272.
104. Kohtani, S.; Yoshida, K.; Maekawa, T.; Iwase, A.; Kudo, A.; Miyabe, H.; Nakagaki, R., Loading Effects of Silver Oxides upon Generation of Reactive Oxygen Species in Semiconductor Photocatalysis. Phys. Chem. Chem. Phys. 2008, 10 (20), 2986-2992.
105. Wang, C. H.; Shao, C. L.; Liu, Y. C.; Zhang, L. N. Photocatalytic Properties BiOCl and Bi2O3 Nanofibers Prepared by Electrospinning. Scripta Mater. 2008, 59, 332−335.
106. Zhao, L. J.; Zhang, X. C.; Fan, C. M.; Liang, Z. H.; Han, P. D. First-Principles Study on the Structural, Electronic and Optical Properties of BiOX (X = Cl, Br, I) Crystals. Physica B 2012, 407, 3364−3370.
107. Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres. J. Phys. Chem. C 2008, 112, 747−753.
108. Shenawi-Khalil, S.; Uvarov, V.; Menes, E.; Popov, I.; Sasson, Y. New Efficient Visible Light Photocatalyst Based on Heterojunction of BiOCl−Bismuth Oxyhydrate. Appl. Catal. A 2012, 413−414, 1−9.
109. Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y.; Zhang, J. J. The {001} Facets-Dependent High Photoactivity of BiOCl Nanosheets. Chem. Commun. 2011, 47, 6951−6953.
110. Dong, F.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Room Temperature Synthesis and Highly Enhanced Visible Light Photocatalytic Activity of Porous BiOI/BiOCl Composites Nanoplates Microflowers. J. Hazard. Mater. 2012, 219−220, 26−34.
111. Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. Synthesis and Facet- Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc. 2012, 134, 4473−4476.
112. Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.; Lee, W. I. Heterojunctioned BiOCl/Bi2O3, a New Visible Light Photocatalyst. J. Catal. 2009, 262, 144−149.
113. Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Study of the Electronic Structure and Photocatalytic Activity of the BiOCl Photocatalyst. Appl. Catal. B 2006, 68, 125−129.
114. Guan, M.-L.; Ma, D.-K.; Hu, S.-W.; Chen, Y.-J.; Huang, S.-M. From Hollow Olive-Shaped BiVO4 to n−p Core−Shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light- Responsive Photocatalytic Properties. Inorg. Chem. 2011, 50, 800−805.
115. Michel, C. R.; Contreras, N. L. L.; Martínez-Preciado, A. H. Gas Sensing Properties of Nanostructured Bismuth Oxychloride. Sens. Actuators B 2011, 160, 271−277.
116. Yu, H. B.; Chen, S.; Quan, X.; Zhao, H. M.; Zhang, Y. B. Fabrication of a TiO2−BDD Heterojunction and Its Application as a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI). Environ. Sci. Technol. 2008, 42, 3791−3796.
117. Yan, D. H.; Wang, H. B.; Du, B. X. Introduction to Organic Semiconductor Heterojunctions; Science Press: Beijing, China, 2008.
118. Yan, J.; Zhang, L.; Yang, H.; Tang, Y.; Lu, Z.; Guo, S.; Dai, Y.; Han, Y.; Yao, M., CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation. Sol. Energy 2009, 83 (9), 1534-1539.
119. Gao, X.; Wu, H. B.; Zheng, L.; Zhong, Y.; Hu, Y.; Lou, X. W., Formation of Mesoporous Heterostructured BiVO4/Bi2S3 Hollow Discoids with Enhanced Photoactivity. Angew. Chem., Int. Ed., 2014, 53 (23), 5917-5921.
120. He, Z.; Shi, Y.; Gao, C.; Wen, L.; Chen, J.; Song, S., BiOCl/BiVO4 p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation. J. Phys. Chem. C, 2014, 118 (1), 389-398.

121. Bajaj, R.; Sharma, M.; Bahadur, D., Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Trans., 2013, 42 (19), 6736-6744.
122. Dong, F.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S. C., Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J. Hazard. Mater.,2012, 219-220, 26-34.

123. Yang, J.-S.; Wu, J.-J. Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting, Nano Energy, 2017, 32, 232–240.

124. Lee, M. G.; Moon, C. W.; Park, H.; Sohn, W.; Kang, S. B.; Lee, S.; Choi, K. J.; Jang, H. W. Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled Au nanoparticles, Small, 2017, 13, 1701644.

125. Zhang, L.; Herrmann, L. O.; Baumberg, J. J. Size dependent plasmonic effect on BiVO4 photoanodes for solar water splitting, Sci. Rep., 2015, 5, 16660.

126. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater., 2011, 10, 911–921.

127. Boltasseva, A.; Atwater, H. A. Low-loss plasmonic metamaterials, Science, 2011, 331, 290–291.

128. Huang, Y.; Xu, H.; Yang, H.; Lin, Y.; Lin, H.; Hong, Y. Efficient Charges Separation Using Advanced BiOI-Based Hollow Spheres Decorated with Palladium and Manganese Dioxide Nanoparticles, ACS Sustainable Chem. Eng., 2018, 6, 2751–2757.

129. Huang, Y.; Li, K.; Lin, Y.; Tong, Y.; Liu, H. Enhanced Efficiency of Electron–Hole Separation inBi2O2CO3 for Photocatalysis via Acid treatment, ChemCatChem, 2018, 10, 1982–1987.

130. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933-937.

131. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A., Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews 2005, 105 (4), 1025-1102.

132. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15 (5), 353-389.

133. Kumar, S.; Nann, T., Shape Control of II–VI Semiconductor Nanomaterials. Small 2006, 2 (3), 316-329.

134. Lei, Y.; Wang, G.; Song, S.; Fan, W.; Zhang, H., Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. CrystEngComm 2009, 11 (9), 1857-1862.

135. Ni, X.; Zhao, Q.; Zhang, D.; Zhang, X.; Zheng, H., Novel Hierarchical Nanostructures of Nickel:  Self-Assembly of Hexagonal Nanoplatelets. The Journal of Physical Chemistry C 2007, 111 (2), 601-605.

136. Antonietti, M.; Ozin, G. A., Promises and Problems of Mesoscale Materials Chemistry or Why Meso? Chemistry – A European Journal 2004, 10 (1), 28-41.

137. Xu, A.-W.; Ma, Y.; Cölfen, H., Biomimetic mineralization. Journal of Materials Chemistry 2007, 17 (5), 415-449.

138. Yu, S. H.; Colfen, H.; Tauer, K.; Antonietti, M., Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nature materials 2005, 4 (1), 51-55.

139. Oshikiri, M.; Boero, M., Water Molecule Adsorption Properties on the BiVO4 (100) Surface. The Journal of Physical Chemistry B 2006, 110 (18), 9188-9194.

140. Xu, Y.; Lv, M.; Yang, H.; Chen, Q.; Liu, X.; Fengyu, W., BiVO4/MIL-101 composite having the synergistically enhanced visible light photocatalytic activity. RSC Advances 2015, 5 (54), 43473-43479.

141. Jiao, Z.; Yu, H.; Wang, X.; Bi, Y., Ultrathin BiVO4 nanobelts: controllable synthesis and improved photocatalytic oxidation of water. RSC Advances 2016, 6 (77), 73136-73139.

142. Sun, Y.; Wu, C.; Long, R.; Cui, Y.; Zhang, S.; Xie, Y., Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature. Chemical Communications 2009, (30), 4542-4544.

143. Shang, M.; Wang, W.; Ren, J.; Sun, S.; Wang, L.; Zhang, L., A practical visible-light-driven Bi2WO6 nanofibrous mat prepared by electrospinning. Journal of Materials Chemistry 2009, 19 (34), 6213-6218.

144. Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142−9147.

145. Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 70−71.

146. Wei, L.; Zhou, Z.-Y.; Chen, S.-P.; Xu, C.-D.; Su, D.; Schuster, M. E.; Sun, S.-G. Electrochemically Shape-Controlled Synthesis in Deep Eutectic Solvents: Triambic Icosahedral Platinum Nanocrystals with High-Index Facets and Their Enhanced Catalytic Activity. Chem. Commun. 2013, 49, 11152−11154.

147. Hammons, J. A.; Muselle, T.; Ustarroz, J.; Tzedaki, M.; Raes, M.; Hubin, A.; Terryn, H. Stability, Assembly, and Particle/Solvent Interactions of Pd Nanoparticles Electrodeposited from a Deep Eutectic Solvent. J. Phys. Chem. C 2013, 117, 14381−14389.

148. Dong, J.-Y.; Lin, C.-H.; Hsu, Y.-J.; Lu, S.-Y.; Wong, D. S.-H. Single-Crystalline Mesoporous ZnO Nanosheets Prepared with a Green Antisolvent Method Exhibiting Excellent Photocatalytic Efficiencies. CrystEngComm 2012, 14, 4732−4737.

149. Liao, H.-G.; Jiang, Y.-X.; Zhou, Z.-Y.; Chen, S.-P.; Sun, S.-G. Shape-Controlled Synthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies of Structure−Functionality Relationships in Electrocatalysis. Angew. Chem., Int. Ed. 2008, 47, 9100−9103.

150. Chirea, M.; Freitas, A.; Vasile, B. S.; Ghitulica, C.; Pereira, C. M.; Silva, F. Gold Nanowire Networks: Synthesis, Characterization, and Catalytic Activity. Langmuir 2011, 27, 3906−3913.

151. Liu, W.; Yu, Y.; Cao, L.; Su, G.; Liu, X.; Zhang, L.; Wang, Y. Synthesis of Monoclinic Structured BiVO4 Spindly Microtubes in Deep Eutectic Solvent and Their Application for Dye Degradation. J. Hazard. Mater. 2010, 181, 1102−1108.

152. Gutiérrez, M. C.; Rubio, F.; del Monte, F. Resorcinol- Formaldehyde Polycondensation in Deep Eutectic Solvents for the Preparation of Carbons and Carbon−Carbon Nanotube Composites. Chem. Mater. 2010, 22, 2711−2719.

153. Fujishima, A., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.

154. Kudo, A.; Miseki, Y., Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev. 2009, 38 (1), 253-278.

155. Bard, A. J.; Wrighton, M. S., Thermodynamic Potential for the Anodic Dissolution of n‐Type Semiconductors A Crucial Factor Controlling Durability and Eficiency in Photoelectrochemical Cells and an Imporcant Criterion in the Selection of New Electrode/Electrolyte Systems. J. Electrochem. Soc. 1977, 124 (11), 1706-1710.

156. Gerischer, H., On the Stability of Semiconductor Electrodes against Photodecomposition. J. Electroanal. Chem. Interfacial Electrochem. 1977, 82 (1), 133-143.

157. Darwent, J. R.; Mills, A., Photo-Oxidation of Water Sensitized by WO3 Powder. J. Chem. Soc., Faraday Trans. 2 1982, 78 (2), 359-367.

158. Kudo, A.; Ueda, K.; Kato, H.; Mikami, I., Photocatalytic O2 Evolution under Visible Light Irradiation on BiVO4 in Aqueous AgNO3 Solution. Catal. Lett. 1998, 53 (3-4), 229-230.

159. Yang, L.; Zhou, H.; Fan, T.; Zhang, D., Semiconductor Photocatalysts for Water Oxidation: Current Status and Challenges. Phys. Chem. Chem. Phys. 2014, 16 (15), 6810-6826.

160. Liu, H.; Nakamura, R.; Nakato, Y., Promoted Photo-Oxidation Reactivity of Particulate BiVO4 Photocatalyst Prepared by a Photoassisted Sol-Gel Method. J. Electrochem. Soc. 2005, 152 (11), G856-G861.

161. Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A., Construction of Z-Scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation. Chem. Lett. 2004, 33 (10), 1348-1349.

162. Sasaki, Y.; Iwase, A.; Kato, H.; Kudo, A., The Effect of Co-Catalyst for Z-Scheme Photocatalysis Systems with an Fe3+/Fe2+ Electron Mediator on Overall Water Splitting under Visible Light Irradiation. J. Catal. 2008, 259 (1), 133-137.

163. Sasaki, Y.; Kato, H.; Kudo, A., [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ Electron Mediators for Overall Water Splitting under Sunlight Irradiation using Z-Scheme Photocatalyst System. J. Am. Chem. Soc. 2013, 135 (14), 5441-5449.

164. Iwase, A.; Ng, Y. H.; Ishiguro, Y.; Kudo, A.; Amal, R., Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. J. Am. Chem. Soc. 2011, 133 (29), 11054-11057.

165. Sasaki, Y.; Nemoto, H.; Saito, K.; Kudo, A., Solar Water Splitting using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator. J. Phys. Chem. C 2009, 113 (40), 17536-17542.

166. Rietveld, H., A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2 (2), 65-71.

167. West, A. R., Solid state chemistry and its applications. 2014.

168. Chapman, S. K., Working with a scanning electron microscope. Lodgemark: 1986.

169. Fultz, B.; Howe, J., Transmission Electron Microscopy and Diffractometry of Materials. Springer Berlin Heidelberg: Springer e-books: Imprint: Springer: Springer e-books: Berlin, Heidelberg, 2013.

170. Champness, P. E.; Royal Microscopical, S., Electron diffraction in the transmission electron microscope. BIOS Scientific in association with the Royal Microscopical Society: Oxford, 2001.

171. Pope, E. J. A.; Mackenzie, J. D., Sol-gel processing of silica: II. The role of the catalyst. Journal of Non-Crystalline Solids 1986, 87 (1), 185-198.

172. Christy, A. A.; Gregoriou, V. G.; Ozaki, Y.; Wilson, C. L., Modern Fourier transform infrared spectroscopy. Elsevier: Amsterdam [u.a.], 2001.

173. Wagner, J. M., X-Ray Photoelectron Spectroscopy. 2014.

174. Hong, C.-S.; Wang, Y.; Bush, B., Kinetics and products of the TiO2, photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere 1998, 36 (7), 1653-1667.

175. Guo, H.; Ke, Y.; Wang, D.; Lin, K.; Shen, R.; Chen, J.; Weng, W., Efficient adsorption and photocatalytic degradation of Congo red onto hydrothermally synthesized NiS nanoparticles. Journal of nanoparticle research: an interdisciplinary forum for nanoscale science and technology 2013, 15 (3), 1475-1475.

176. Vasanth Kumar, K.; Porkodi, K.; Selvaganapathi, A., Constrain in solving Langmuir–Hinshelwood kinetic expression for the photocatalytic degradation of Auramine O aqueous solutions by ZnO catalyst. Dyes and Pigments 2007, 75 (1), 246-249.

177. Asenjo, N. G.; Santamaría, R.; Blanco, C.; Granda, M.; Álvarez, P.; Menéndez, R., Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon 2013, 55, 62-69.

178. Atitar, M. F.; Bouziani, A.; Dillert, R.; El Azzouzi, M.; Bahnemann, D. W., Photocatalytic degradation of the herbicide imazapyr: do the initial degradation rates correlate with the adsorption kinetics and isotherms? Catalysis Science & Technology 2018, 8 (4), 985-995.

179. Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L., Synthesis and Facet-Dependent Photoreactivity of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc. 2012, 134 (10), 4473-4476.

180. Xi, G.; Ye, J., Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chem. Comm. 2010, 46 (11), 1893-1895.

181. Fu, H.; Pan, C.; Yao, W.; Zhu, Y., Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6. J. Phy. Chem. B 2005, 109 (47), 22432-22439.

182. Wang, D.; Tang, J.; Zou, Z.; Ye, J., Photophysical and Photocatalytic Properties of a New Series of Visible-Light-Driven Photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem. Mater. 2005, 17 (20), 5177-5182.

183. Oshikiri, M.; Boero, M.; Ye, J.; Zou, Z.; Kido, G., Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J. Chem. Phy. 2002, 117 (15), 7313-7318.

184. Zhang, C.; Zhu, Y., Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chem. Mater. 2005, 17 (13), 3537-3545.

185. Booshehri, A. Y.; Chun-Kiat Goh, S.; Hong, J.; Jiang, R.; Xu, R., Effect of depositing silver nanoparticles on BiVO4 in enhancing visible light photocatalytic inactivation of bacteria in water. J. Mater. Chem. A 2014, 2 (17), 6209-6217.

186. Feng, C.; Wang, D.; Jin, B.; Jiao, Z., The enhanced photocatalytic properties of BiOCl/BiVO4 p–n heterojunctions via plasmon resonance of metal Bi. RSC Adv. 2015, 5 (93), 75947-75952.

187. Liu, X.; Su, Y.; Zhao, Q.; Du, C.; Liu, Z., Constructing Bi24O31Cl10/BiOCl heterojunction via a simple thermal annealing route for achieving enhanced photocatalytic activity and selectivity. Sci. Rep. 2016, 6, 28689.

188. Li, B.; Wen, X.; Li, R.; Wang, Z.; Clem, P. G.; Fan, H., Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires. Nature Commun. 2014, 5, 4179.

189. Chen, D.; Wang, K.; Hong, W.; Zong, R.; Yao, W.; Zhu, Y., Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Applied Catalysis B: Environmental 2015, 166-167, 366-373.

190. Kamat, P. V., Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. J. Phy. Chem. C 2007, 111 (7), 2834-2860.

191. Chen, L.; Zhang, Q.; Huang, R.; Yin, S.-F.; Luo, S.-L.; Au, C.-T., Porous peanut-like Bi2O3–BiVO4 composites with heterojunctions: one-step synthesis and their photocatalytic properties. Dalton. Trans. 2012, 41 (31), 9513-9518.

192. Xu, X.; Du, M.; Chen, T.; Xiong, S.; Wu, T.; Zhao, D.; Fan, Z., New insights into Ag-doped BiVO4 microspheres as visible light photocatalysts. RSC Adv. 2016, 6 (101), 98788-98796.

193. Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Lee, J.; Cho, M. H., Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–ZnO Nanocomposite. J. Phy. Chem. C 2013, 117 (51), 27023-27030.

194. Chen, F.; Yang, Q.; Sun, J.; Yao, F.; Wang, S.; Wang, Y.; Wang, X.; Li, X.; Niu, C.; Wang, D.; Zeng, G., Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS App. Mater. Interfaces 2016, 8 (48), 32887-32900.

195. Obregón, S.; Caballero, A.; Colón, G., Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity. Applied Catalysis B: Environmental 2012, 117-118, 59-66.

196. Kho, Y. K.; Teoh, W. Y.; Iwase, A.; Mädler, L.; Kudo, A.; Amal, R., Flame Preparation of Visible-Light-Responsive BiVO4 Oxygen Evolution Photocatalysts with Subsequent Activation via Aqueous Route. ACS App. Mater. Interfaces 2011, 3 (6), 1997-2004.

197. Venkatesan, R.; Velumani, S.; Kassiba, A., Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phy. 2012, 135 (2), 842-848.

198. Wang, Z.; Luo, W.; Yan, S.; Feng, J.; Zhao, Z.; Zhu, Y.; Li, Z.; Zou, Z., BiVO4 nano–leaves: Mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation. CrystEngComm. 2011, 13 (7), 2500-2504.

199. Jianqiang, Y.; Akihiko, K., Hydrothermal Synthesis of Nanofibrous Bismuth Vanadate. Chemistry Letters 2005, 34 (6), 850-851.

200. Sun, Y.; Wu, C.; Long, R.; Cui, Y.; Zhang, S.; Xie, Y., Synthetic loosely packed monoclinic BiVO4 nanoellipsoids with novel multiresponses to visible light, trace gas and temperature. Chem. Comm. 2009, (30), 4542-4544.

201. Adhikari, L.; Larm, N. E.; Bhawawet, N.; Baker, G. A., Rapid Microwave-Assisted Synthesis of Silver Nanoparticles in a Halide-Free Deep Eutectic Solvent. ACS Sustainable Chem. Eng. 2018, 6 (5), 5725-5731.

202. Ju, P.; Wang, Y.; Sun, Y.; Zhang, D., Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation. Dalton Trans. 2016, 45 (11), 4588-602.

203. Tang, D.; Zhang, H.; Huang, H.; Liu, R.; Han, Y.; Liu, Y.; Tong, C.; Kang, Z., Carbon quantum dots enhance the photocatalytic performance of BiVO4 with different exposed facets. Dalton Trans. 2013, 42 (18), 6285-6289.

204. Zhu, X.; Zhang, F.; Wang, M.; Gao, X.; Luo, Y.; Xue, J.; Zhang, Y.; Ding, J.; Sun, S.; Bao, J.; Gao, C., A shuriken-shaped m-BiVO4/ {001}–TiO2 heterojunction: Synthesis, structure and enhanced visible light photocatalytic activity. Applied Catalysis A: General 2016, 521, 42-49.

205. Jaihindh, D. P.; Fu, Y.-P., Facile synthesis of deep eutectic solvent assisted BiOCl/BiVO4@AgNWs plasmonic photocatalysts under visible light enhanced catalytic performance. Catal. Today 2017, 297, 246-254.

206. Ke, D.; Peng, T.; Ma, L.; Cai, P.; Dai, K., Effects of Hydrothermal Temperature on the Microstructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light. Inorg. Chem. 2009, 48 (11), 4685-4691.

207. Gotić, M.; Musić, S.; Ivanda, M.; Šoufek, M.; Popović, S., Synthesis and characterisation of bismuth(III) vanadate. Journal of Molecular Structure 2005, 744-747, 535-540.

208. Stoltzfus, M. W.; Woodward, P. M.; Seshadri, R.; Klepeis, J.-H.; Bursten, B., Structure and Bonding in SnWO4, PbWO4, and BiVO4:  Lone Pairs Vs Inert Pairs. Inorg. Chem. 2007, 46 (10), 3839-3850.

209. Ou, M.; Nie, H.; Zhong, Q.; Zhang, S.; Zhong, L., Controllable synthesis of 3D BiVO4 superstructures with visible-light-induced photocatalytic oxidation of NO in the gas phase and mechanistic analysis. Phy. Chem. Chem. Phy. 2015, 17 (43), 28809-28817.

210. Wang, M.; Liu, Q.; Che, Y.; Zhang, L.; Zhang, D., Characterization and photocatalytic properties of N-doped BiVO4 synthesized via a sol–gel method. J. All. Com 2013, 548, 70-76.

211. Wu, X.; Ng, Y. H.; Wang, L.; Du, Y.; Dou, S. X.; Amal, R.; Scott, J., Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J Mater. Chem. A 2017, 5 (17), 8117-8124.

212. Jovic, V.; Laverock, J.; Rettie, A. J. E.; Zhou, J. S.; Mullins, C. B.; Singh, V. R.; Lamoureux, B.; Wilson, D.; Su, T. Y.; Jovic, B.; Bluhm, H.; Söhnel, T.; Smith, K. E., Soft X-ray spectroscopic studies of the electronic structure of M:BiVO4 (M = Mo, W) single crystals. J Mater. Chem. A 2015, 3 (47), 23743-23753.

213. Palaniselvam, T.; Shi, L.; Mettela, G.; Anjum, D. H.; Li, R.; Katuri, K. P.; Saikaly, P. E.; Wang, P., Vastly Enhanced BiVO4 Photocatalytic OER Performance by NiCoO2 as Cocatalyst. Adv. Mater. Inter. 2017, 4 (19), 1700540.

214. Long, M.; Cai, W.; Cai, J.; Zhou, B.; Chai, X.; Wu, Y., Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation. J. Phy. Chem. B 2006, 110 (41), 20211-20216.

215. Huang, H.; He, Y.; Lin, Z.; Kang, L.; Zhang, Y., Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation. J. Phy. Chem. C 2013, 117 (44), 22986-22994.

216. Zhang, N.; Chen, D.; Niu, F.; Wang, S.; Qin, L.; Huang, Y., Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 2016, 6, 26467.

217. He, X.-L.; Liu, Y.-P.; Gong, K.-N.; Han, Z.-G.; Zhai, X.-L., Copper–Organic Cationic Ring with an Inserted Arsenic–Vanadium Polyanionic Cluster for Efficient Catalytic Cr (VI) Reduction Using Formic Acid. Inor. Chem. 2015, 54 (4), 1215-1217.

218. Han, S.-H.; Bai, J.; Liu, H.-M.; Zeng, J.-H.; Jiang, J.-X.; Chen, Y.; Lee, J.-M., One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction. ACS App. Mater. Inter. 2016, 8 (45), 30948-30955.

219. Fu, G.-T.; Jiang, X.; Wu, R.; Wei, S.-H.; Sun, D.-M.; Tang, Y.-W.; Lu, T.-H.; Chen, Y., Arginine-Assisted Synthesis and Catalytic Properties of Single-Crystalline Palladium Tetrapods. ACS App. Mater. Inter. 2014, 6 (24), 22790-22795.

220. Celebi, M.; Yurderi, M.; Bulut, A.; Kaya, M.; Zahmakiran, M., Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Applied Catalysis B: Environmental 2016, 180, 53-64.

221. Gong, K.; Liu, Y.; Wang, W.; Fang, T.; Zhao, C.; Han, Z.; Zhai, X., Reduced Phosphomolybdates as Molecular Catalysts for Hexavalent Chromium Reduction. Eur. J. Inorg. Chem. 2015, 2015 (32), 5351-5356.

222. Benlin, D.; Tu, X.; Zhao, W.; Wang, X.; Leung, D. Y. C.; Xu, J., A novel three-dimensional heterojunction photocatalyst for the photocatalytic oxidation of crystal violet and reduction of Cr6+. Chemosphere 2018, 211, 10-16.

223. Zhao, D.; Zong, W.; Fan, Z.; Fang, Y.-W.; Xiong, S.; Du, M.; Wu, T.; Ji, F.; Xu, X., Synthesis of carbon-doped nanosheets m-BiVO4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property. Journal of Nanoparticle Research 2017, 19 (4), 124.

224. Xie, B.; Zhang, H.; Cai, P.; Qiu, R.; Xiong, Y., Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere 2006, 63 (6), 956-963.

225. Wu, Z.; Yuan, X.; Zeng, G.; Jiang, L.; Zhong, H.; Xie, Y.; Wang, H.; Chen, X.; Wang, H., Highly efficient photocatalytic activity and mechanism of Yb3+/Tm3+ codoped In2S3 from ultraviolet to near infrared light towards chromium (VI) reduction and rhodamine B oxydative degradation. Applied Catalysis B: Environmental 2018, 225, 8-21.

226. Zhao, H.; Xia, Q.; Xing, H.; Chen, D.; Wang, H., Construction of Pillared-Layer MOF as Efficient Visible-Light Photocatalysts for Aqueous Cr(VI) Reduction and Dye Degradation. ACS Sustainable Chem. Eng. 2017, 5 (5), 4449-4456.

227. Yin, R.; Ling, L.; Xiang, Y. Y.; Yang, Y. N.; Bokare, A. D.; Shang, C., Enhanced photocatalytic reduction of chromium (VI) by Cu-doped TiO2 under UV-A irradiation. Separation and Purification Technology 2018, 190, 53-59.

228. Lamkhao, S.; Rujijanagul, G.; Randorn, C., Fabrication of g-C3N4 and a promising charcoal property towards enhanced chromium(VI) reduction and wastewater treatment under visible light. Chemosphere 2018, 193, 237-243.

229. Yan, P.; Li, D.; Ma, X.; Xue, J.; Zhang, Y.; Liu, M., Hydrothermal synthesis of Bi2WO6 with a new tungsten source and enhanced photocatalytic activity of Bi2WO6 hybridized with C3N4. Photochem. Photobio. Sci. 2018, 17 (8), 1084-1090.

230. Yuan, Q.; Chen, L.; Xiong, M.; He, J.; Luo, S.-L.; Au, C.-T.; Yin, S.-F., Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light. Chem. Eng. J. 2014, 255, 394-402.

231. Yang, Y.; Wang, G.; Deng, Q.; Ng, D. H. L.; Zhao, H., Microwave-Assisted Fabrication of Nanoparticulate TiO2 Microspheres for Synergistic Photocatalytic Removal of Cr(VI) and Methyl Orange. ACS Appl. Mater. Interfaces 2014, 6 (4), 3008-3015.

232. Rengaraj, S.; Venkataraj, S.; Yeon, J.-W.; Kim, Y.; Li, X. Z.; Pang, G. K. H., Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Applied Catalysis B: Environmental 2007, 77 (1), 157-165.

233. Chen, G.; Sun, M.; Wei, Q.; Ma, Z.; Du, B., Efficient photocatalytic reduction of aqueous Cr(VI) over CaSb2O5(OH)2 nanocrystals under UV light illumination. Applied Catalysis B: Environmental 2012, 125, 282-287.

234. Jin, W.; Wu, G.; Chen, A., Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays. Analyst 2014, 139 (1), 235-241.
(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *