帳號:guest(18.191.238.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉佳旻
作者(英文):Chia-Min Liu
論文名稱:哈氏木黴菌所分泌分子於生物防治作用的機制
論文名稱(英文):Biocontrol molecular mechanisms of Trichoderma harzianum secreted molecules
指導教授:彭國証
指導教授(英文):Kou-Cheng Peng
口試委員:劉振倫
彭國証
李崇仁
楊雪慧
林光慧
口試委員(英文):Chen-Lun Liu
Kou-Cheng Peng
Chung-Jen Lee
Hsueh-Hui Yang
Guang-Huey Lin
學位類別:博士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:810413101
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:63
關鍵詞:木黴菌生物防治左旋胺基酸氧化酶抗性
關鍵詞(英文):TrichodermaL-amino acid oxidasebiocontrolresistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏收藏:0
木黴菌是目前廣泛應用於農業的生物防治劑。其許多的生物防治機制,已被證實與木黴菌所分泌的分子有關係,這些分子大部分具有抗生素活性、誘導植物抗性和促進生長等特性。哈氏木黴菌細胞外蛋白質–L-氨基酸氧化酶 (Th-LAAO)已被純化,其生物化學也被鑑定。在本次調查中進一步鑑定生物學功能。 Th-LAAO可以誘導甘藍抵抗灰黴菌感染,尤其是用Th-LAAO處理甘藍3天後可以將灰黴菌感染面積降低至1%,在許多防禦相關基因測試中,我們發現植物的基因會透過減少H2O2增加抗壞血酸過氧化物酶(APX)的基因表達。先前實驗室研究證明,哈氏木黴透過增加光合作用、蔗糖生產和運輸相關基因表現來促進甘藍生長。Th-LAAO透過促進Rubisco、Rubisco activase 和 ATP synthase以上光合作用相關的基因表達增加2.54, 2.18, 1.41倍以及蔗糖運輸蛋白1(SUC1)7.6倍而在蔗糖運輸蛋白2 (SUC2)、蔗糖運輸蛋白3 (SUC3)和蔗糖磷酸合成酶 (SPS)中沒有表現出非常相似的特性。對於分泌的代謝產物,哈氏木黴的pachybasin, 大黃酚chrysophanol已經顯示出具抗革蘭氏陰性細菌和灰黴病菌的抗生素活性。哈氏木黴能承受這些分子的毒性,為了瞭解其中分子機制,將IC50大黃酚(30 ppm)測試於哈氏木黴菌,在螢光顯微鏡下,大黃酚處理的哈氏木黴菌絲體比對照組產生更多的H2O2。在處理30 ppm大黃酚後,在哈氏木黴菌中reactive oxygen species (ROS)相關的超氧化物歧化酶 (SOD)表達的變化增加43%(1天)和59%(3天)。處理3天後,過氧化物酶(PEX)表達增加0.23mmol / min / mL(35%)。處理3天後過氧化氫酶(CAT)降至3.04mmol / min / mL(26%),但穀胱甘肽-S-轉移酶(GST)表達沒有顯著變化。因此,哈氏木黴增加SOD和PEX以加速菌絲體中ROS的減少,這可能保護細胞膜的完整性相關。同時,透過二維蛋白質電泳分析測定了哈氏木黴細胞內蛋白質的變異。改變的主要蛋白質是Hexagonal protein (HEX1), nitroreductase (NAD), transaldolase (TRAD)。據文獻回顧,HEX1蛋白的功能可以防止細胞膜損傷和細胞質流失,從而增強維持細胞膜的完整性。SHMT在阿拉伯芥(Arabidopsis thaliana)的抗性增加中具有相對功能。這項研究暨一步了解哈氏木黴分子促進甘藍生長、免疫誘導分子機制;同時保護自身免受抗生素對自身的不利影響的部分分子機制。
Trichoderma spp. are widely used biocontrol agents in agriculture. Among many proposed mechanisms, secreted molecules possess antibiotic activities, induction of resistance of and growth promotion of host being most significant. An extracellular protein of Trichoderma harzianum L-amino acid oxidase (Th-LAAO) has been purified and characterized in biochemistry. Its biological functions were further characterized in this investigation. Th-LAAO treated cabbage 3 days can reduce the Botrytis cinerea infection area down to 1%. The role in cabbage resistance against B. cinerea is contributed to, among many tested defense related genes, increment gene expression in ascorbic peroxidase by reducing H2O2. Previous research in this laboratory showed T. harzianum promoted cabbage growth by increasing genes related photosynthesis and sucrose production and transportation. Th-LAAO showed very similar properties by promoting photosynthesis related genes expression in Rubisco, Rubisco activase and ATP synthase to 2.54, 2.18, 1.41-fold, as well as in sucrose transporter 1 (SUC1) 7.6 fold but not in sucrose transporter 2 (SUC2), sucrose transporter 3 (SUC3) and sucrose phosphate synthase(SPS). To the secreted metabolites chrysophanol of T. harzianum, has been shown antibiotic activities against Gram-negative bacteria and B. cinerea. How does T. harzianum endure these secreted molecules toxicity produced by itself? To discern this, IC50 of chrysophanol, 30 ppm, was applied in T. harzianum culture. Chrysophanol treated T. harzianum mycelia generated more H2O2 than the control group under fluorescent microscope. The change of the reactive oxygen species (ROS) related enzymes superoxide dismutase (SOD) expression was up to 43% (1 day) and 59% (3 days) in T. harzianum after the treatment of 30 ppm chrysophanol. The peroxide (PEX) expression was up to 0.23 mmol/min/mL (35%) after 3 days of the treatment. The catalase (CAT) was down to 3.04 mmol/min/mL (26%) after 3 days of the treatment but there was not significant change in glutathione S-transferase (GST) expression. Therefore, T. harzianum increased the SOD and PEX enzymes to accelerate ROS diminishing in the mycelia that might protect cell membrane integrity. Meanwhile, variations in T. harzianum intracellular proteins were determined by proteome. The major proteins changed are Hexagonal protein (HEX1), nitroreductase (NAD), transaldolase (TRAD) and serine hydroxymethyl transferase (SHMT). The function of HEX1 protein was reported to prevent the cell membrane damage and cytoplasm lose that might enhance the cell membrane. Moreover, SHMT exhibit relative function in resistance increase in Arabidopsis thaliana. This investigation demonstrated possible mechanisms of T. harzianum secreted molecules to benefit cabbage growth meanwhile to protect itself from detrimental effects.
1. Introduction 9
2. Materials and methods 13
2.1. Chemical reagent 13
2.2. Fungi Cultivation 13
2.3. Chemical Chrysophanol 13
2.4. Chrysophanol IC50 of Trichoderma determination. 13
2.5. Chrysophanol treated T. harzianum ETS 323 for proteome 14
2.5.1 Chrysophanol treated with T. harzianum ETS 323 14
2.5.2 Extraction of cytoplasm protein and the protein assay 14
2.6. Brassica oleracea var. capitate (cabbage) cultivation 16
2.7. Th-LAAO purification 16
2.8. Gel stain 17
2.9. 2D-PAGE for the intracellular protein 18
2.10. In-gel digestion and ESI-QUAD-TOF. 18
2.11. Three ways interaction of Th-LAAO, B. oleracea var. capitate and B. cinerea interaction 19
2.12. B. oleracea var. capitate total RNA preparation 20
2.13. cDNA preparation 20
2.14. Reverse transcription-quantitative real-time polymerase chain (RT-qPCR) 21
2.14.1. The primer design of B. oleracea var. capitate 21
2.14.2. The primer design of T. harzianum ETS 323 23
2.15. Observation of ROS fluorescent stain to mycelia 23
2.16. ROS activity 24
2.17. Statistical Analysis 27
3. Results 29
Part I 29
3.1. Th-LAAO enhance cabbage disease resistance. 29
3.2. The Photosynthesis-related genes expression of cabbage increase by treating Th-LAAO 29
3.3. Th-LAAO stimulates the expression of sucrose transport-related genes 30
3.4. Cabbage defense related genes expression in three way interaction 30
Part II 31
3.5. IC50 of Chrysophanol to T. harzianum ETS 323 31
3.6. T. harzianum ETS 323 morphologic change by chrysophanol treatment 31
3.7. Proteome investigation of chrysophanol treated T. harzianum ETS 323 32
3.8. Gene expression of chrysophanol treated T. harzianum ETS 323 32
3.9. ROS H2O2 expression of Chrysophanol treated T. harzianum ETS 323 32
3.10. The enzyme assay of chrysophanol treated T. harzianum ETS 323 ROS 33
4. Discussion 35
5. Conclusion 39
6. Reference 41
7. Figure and result 45
8. Appendix 61

1. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M., Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2004, 2 (1), 43-56.
2. Shih Chi Tseng, S. Y. L., Hsueh Hui Yang, Chaur Tsuen Lo and Kou Cheng Peng, Proteomic study of biocontrol mechanisms of Trichoderma harzianum ETS 323 in response to Rhizoctonia solani. Journal of Agricultural and Food Chemistry 2008, 56 (16), 6914-6922.
3. Guillem Segarra, E. C., Manuel Avilés and Isabel Trillas, Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microbial Ecology 2010, 59 (1), 141-149.
4. Maria F. Nieto Jacobo, J. M. S., Fatima B. Salazar Badillo, Dianne Vi Nguyen, Michael Rostás, Mark Braithwaite, Jorge T. De Souza, Juan F. Jimenez Bremont, Mana Ohkura, Alison Stewart and Artemio Mendoza Mendoza, Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion. Fronteris in Plant Science 2017, 8, 1-18.
5. Shu Ying Liu, C. T. L., Marthandam Asokan Shibu, Yann Lii Leu, Bo Yuan Jen and Kou Cheng Peng, Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. Journal of Agricultural and Food Chemistry 2009, 57 (16), 7288-7292.
6. Shu Ying Liu, C. T. L., Chinpiao Chen, Ming Yih Liu, Jun Hui Chen, Kou Cheng Peng, Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. Journal of Biochemical and Biophysical Methods 2007, 70 (3), 391-395.
7. EristonVieira Gomes, M. d. N. C., RenatoGraciano de Paula, Rafael Ricci de Azevedo, Francilene Lopes da Silva, Eliane F. Noronha, Cirano José Ulhoa, Valdirene Neves Monteiro, Rosa Elena Cardoza, SantiagoGutiérrez and Roberto Nascimento Silva, The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Scientific Reports 2015, 5, 1-13.
8. Tahía Benítez, A. M. R., M. Carmen Limón, Antonio C. Codón, Biocontrol mechanisms of Trichoderma strains. International Microblogy 2004, 7 (4), 249-60.
9. Mari Anne Newman, T. S., Jon T. Nielsen and Gitte Erbs, MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science 2013, 4, 1-14.
10. Djonovic S., Dangott L., Kenerley C., SM1, a 12.6-kDa proteinaceous elicitor produced by Trichoderma virens induces systemic resistance in cotton. Phytopathology 2005, 95 (6), S25-S25.
11. Romana Gaderer, N. L. L., Alexa Frischmann, Michael Sulyok, Rudolf Krska, Benjamin A Horwitz and Verena Seidl Seiboth, Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiology 2015, 15, 2-9.
12. Frankie K Crutcher, L. J. D., C. M. Kenerley, SM3: An intracellular paralog of the proteinaceous elicitor SM1 from Trichoderma virens. Phytopathology 2010, 100, S27-S28.
13. Miguel A. Salas-Marina, M. I. I. J., María A. Islas Osuna, Pablo Delgado Sánchez, Juan F. Jiménez Bremont, Margarita Rodríguez Kessler, María T. Rosales Saavedra, Alfredo Herrera Estrella, and Sergio Casas Flores, The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Frontiers in Plant Science 2015, 6, 1-13.
14. Chi Hua Cheng, B. N. S., Qian Wen Shang, Li Yu Daisy Liu, Kou Cheng Peng, Yan Huey Chen, Fang Fang Chen, Sin Fen Hu, Yu Tai Wang, Hao Ching Wang, Hsin Yi Wu, Chaur Tsuen Lo, and Shih Shun Lin, Gene-to-Gene Network Analysis of the Mediation of Plant Innate Immunity by the Eliciting Plant Response-Like 1 (Epl1) Elicitor of Trichoderma formosa. Molecular Plant Microbe Interactions 2018, 31 (7), 683-691.
15. Chia Ann Yang., C. H. C., Shu Ying Liu, Chaur Tsuen Lo., Jeng Woei Lee, Kou Cheng Peng, Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS J 2011, 278 (18), 3381-94.
16. Shu Ying Liu, C. A. Y., Kou Cheng Peng, Chaur Tsuen Lo, Chi Hua Cheng, Antagonism between Trichoderma harzianum ETS 323 and Botrytis cinerea associated with L-phenylalanine oxidase-induced reactive oxygen species generation. Phytopathology 2011, 101 (6), S106-S106.
17. Chia Ann Yang, C. H. C., Chaur Tsuen Lo, Shu Ying Liu, Jeng Woei Lee and Kou Cheng Peng, A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. Journal of Agricultural and Food Chemistry 2011, 59 (9), 4519-4526.
18. Chetan Keswani, S. M., Birinchi Kumar Sarma, Surya Pratap Singh and Harikesh Bahadur Singh, Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology 2014, 98 (2), 533-544.
19. Francesco Vinale, K. S., Emilio L. Ghisalberti, Michelina Ruocco, Sheridan Woo and Matteo Lorito, Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communications 2012, 7 (11), 1545-1550.
20. José Luis Reino, R. F. G., Rosario Hernández Galán and Isidro G. Collado, Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews 2008, 7, 89-123.
21. Yi Ruu Lin, C. T. L., Shu Ying Liu and Kou Cheng Peng, Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. Journal of Agricultural and Food Chemistry 2012, 60 (9), 2123-2128.
22. Shu Ying Liu, C. K. L., Chaur Tsuen Lo, Hsueh Hui Yang, Kuo Chih Lin and Kou Cheng Peng Chrysophanol is involved in the biofertilization and biocontrol activities of Trichoderma. Physiological and Molecular Plant Pathology 2016, 96, 1-7.
23. https://en.wikipedia.org/wiki/Anthraquinone.
24. Wen Ming Chena, F. S. S., Shih Yi Sheub, Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzyme and Microbial Technology 2011, 49 (4), 372-9.
25. Sylvie Luche, V. S. a. T. R., Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 2003, 3 (3), 249-253.
26. Mireille Chevallet, S. L. a. T. R., Silver staining of proteins in polyacrylamide gels. Nature Protocol 2006, 1 (4), 1852-1858.
27. Chi Hua Cheng, C. A. Y., Kou Cheng Peng, Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology 2012, 102 (11), 1054-63.
28. Michal Shoresh, I. Y. a. I. C., Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Phytopathology 2005, 95 (1), 76-84.
29. Harman, M. S. a. G. E., The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiology 2008, 147 (4), 2147-2163.
30. Buchenauer, A. E. H. a. H., Actions of 6-Pentyl-alpha-pyrone in Controlling Seedling Blight Incited by Fusarium moniliforme and Inducing Defence Responses in Maize. Journal of Phytopathology 2009, 157 (11-12), 697-707.
31. Marina Tuccl, M. R., Luigi De Masi, Monica De Palma and Matteo Lorito, The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology 2011, 12 (4), 341-354.
32. Walter A. Vargas and J. C. M. a. C. M. K., Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology 2009, 151 (2), 792-808.
33. Jun Tang, Y. L., KeHe Fu, Xu Yuan, ShiGang Gao, Qiong Wu, ChuanJin Yu, WanJun Shi and Jie Chen, Disruption of hex1 in Trichoderma atroviride leads to loss of Woronin body and decreased tolerance to dichlorvos. Biotechnology Letters 2014, 36 (4), 751-759.
34. Markham, A. J. C. a. P., Woronin bodies rapidly plug septal pores of severedPenicillium chrysogenum hyphae. Experimental Mycology 1985, 80-85.
35. Shanthi Soundararajan, G. J., Xiaolei Li, Marilou Ramos-Pamploña, Nam H. Chua and Naweed I. Naqvi, Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 2004, 16 (6), 1564-1574.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *