|
1. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M., Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2004, 2 (1), 43-56. 2. Shih Chi Tseng, S. Y. L., Hsueh Hui Yang, Chaur Tsuen Lo and Kou Cheng Peng, Proteomic study of biocontrol mechanisms of Trichoderma harzianum ETS 323 in response to Rhizoctonia solani. Journal of Agricultural and Food Chemistry 2008, 56 (16), 6914-6922. 3. Guillem Segarra, E. C., Manuel Avilés and Isabel Trillas, Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microbial Ecology 2010, 59 (1), 141-149. 4. Maria F. Nieto Jacobo, J. M. S., Fatima B. Salazar Badillo, Dianne Vi Nguyen, Michael Rostás, Mark Braithwaite, Jorge T. De Souza, Juan F. Jimenez Bremont, Mana Ohkura, Alison Stewart and Artemio Mendoza Mendoza, Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion. Fronteris in Plant Science 2017, 8, 1-18. 5. Shu Ying Liu, C. T. L., Marthandam Asokan Shibu, Yann Lii Leu, Bo Yuan Jen and Kou Cheng Peng, Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. Journal of Agricultural and Food Chemistry 2009, 57 (16), 7288-7292. 6. Shu Ying Liu, C. T. L., Chinpiao Chen, Ming Yih Liu, Jun Hui Chen, Kou Cheng Peng, Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. Journal of Biochemical and Biophysical Methods 2007, 70 (3), 391-395. 7. EristonVieira Gomes, M. d. N. C., RenatoGraciano de Paula, Rafael Ricci de Azevedo, Francilene Lopes da Silva, Eliane F. Noronha, Cirano José Ulhoa, Valdirene Neves Monteiro, Rosa Elena Cardoza, SantiagoGutiérrez and Roberto Nascimento Silva, The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Scientific Reports 2015, 5, 1-13. 8. Tahía Benítez, A. M. R., M. Carmen Limón, Antonio C. Codón, Biocontrol mechanisms of Trichoderma strains. International Microblogy 2004, 7 (4), 249-60. 9. Mari Anne Newman, T. S., Jon T. Nielsen and Gitte Erbs, MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science 2013, 4, 1-14. 10. Djonovic S., Dangott L., Kenerley C., SM1, a 12.6-kDa proteinaceous elicitor produced by Trichoderma virens induces systemic resistance in cotton. Phytopathology 2005, 95 (6), S25-S25. 11. Romana Gaderer, N. L. L., Alexa Frischmann, Michael Sulyok, Rudolf Krska, Benjamin A Horwitz and Verena Seidl Seiboth, Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiology 2015, 15, 2-9. 12. Frankie K Crutcher, L. J. D., C. M. Kenerley, SM3: An intracellular paralog of the proteinaceous elicitor SM1 from Trichoderma virens. Phytopathology 2010, 100, S27-S28. 13. Miguel A. Salas-Marina, M. I. I. J., María A. Islas Osuna, Pablo Delgado Sánchez, Juan F. Jiménez Bremont, Margarita Rodríguez Kessler, María T. Rosales Saavedra, Alfredo Herrera Estrella, and Sergio Casas Flores, The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Frontiers in Plant Science 2015, 6, 1-13. 14. Chi Hua Cheng, B. N. S., Qian Wen Shang, Li Yu Daisy Liu, Kou Cheng Peng, Yan Huey Chen, Fang Fang Chen, Sin Fen Hu, Yu Tai Wang, Hao Ching Wang, Hsin Yi Wu, Chaur Tsuen Lo, and Shih Shun Lin, Gene-to-Gene Network Analysis of the Mediation of Plant Innate Immunity by the Eliciting Plant Response-Like 1 (Epl1) Elicitor of Trichoderma formosa. Molecular Plant Microbe Interactions 2018, 31 (7), 683-691. 15. Chia Ann Yang., C. H. C., Shu Ying Liu, Chaur Tsuen Lo., Jeng Woei Lee, Kou Cheng Peng, Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS J 2011, 278 (18), 3381-94. 16. Shu Ying Liu, C. A. Y., Kou Cheng Peng, Chaur Tsuen Lo, Chi Hua Cheng, Antagonism between Trichoderma harzianum ETS 323 and Botrytis cinerea associated with L-phenylalanine oxidase-induced reactive oxygen species generation. Phytopathology 2011, 101 (6), S106-S106. 17. Chia Ann Yang, C. H. C., Chaur Tsuen Lo, Shu Ying Liu, Jeng Woei Lee and Kou Cheng Peng, A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. Journal of Agricultural and Food Chemistry 2011, 59 (9), 4519-4526. 18. Chetan Keswani, S. M., Birinchi Kumar Sarma, Surya Pratap Singh and Harikesh Bahadur Singh, Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology 2014, 98 (2), 533-544. 19. Francesco Vinale, K. S., Emilio L. Ghisalberti, Michelina Ruocco, Sheridan Woo and Matteo Lorito, Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communications 2012, 7 (11), 1545-1550. 20. José Luis Reino, R. F. G., Rosario Hernández Galán and Isidro G. Collado, Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews 2008, 7, 89-123. 21. Yi Ruu Lin, C. T. L., Shu Ying Liu and Kou Cheng Peng, Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. Journal of Agricultural and Food Chemistry 2012, 60 (9), 2123-2128. 22. Shu Ying Liu, C. K. L., Chaur Tsuen Lo, Hsueh Hui Yang, Kuo Chih Lin and Kou Cheng Peng Chrysophanol is involved in the biofertilization and biocontrol activities of Trichoderma. Physiological and Molecular Plant Pathology 2016, 96, 1-7. 23. https://en.wikipedia.org/wiki/Anthraquinone. 24. Wen Ming Chena, F. S. S., Shih Yi Sheub, Novel L-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzyme and Microbial Technology 2011, 49 (4), 372-9. 25. Sylvie Luche, V. S. a. T. R., Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 2003, 3 (3), 249-253. 26. Mireille Chevallet, S. L. a. T. R., Silver staining of proteins in polyacrylamide gels. Nature Protocol 2006, 1 (4), 1852-1858. 27. Chi Hua Cheng, C. A. Y., Kou Cheng Peng, Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology 2012, 102 (11), 1054-63. 28. Michal Shoresh, I. Y. a. I. C., Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Phytopathology 2005, 95 (1), 76-84. 29. Harman, M. S. a. G. E., The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiology 2008, 147 (4), 2147-2163. 30. Buchenauer, A. E. H. a. H., Actions of 6-Pentyl-alpha-pyrone in Controlling Seedling Blight Incited by Fusarium moniliforme and Inducing Defence Responses in Maize. Journal of Phytopathology 2009, 157 (11-12), 697-707. 31. Marina Tuccl, M. R., Luigi De Masi, Monica De Palma and Matteo Lorito, The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology 2011, 12 (4), 341-354. 32. Walter A. Vargas and J. C. M. a. C. M. K., Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiology 2009, 151 (2), 792-808. 33. Jun Tang, Y. L., KeHe Fu, Xu Yuan, ShiGang Gao, Qiong Wu, ChuanJin Yu, WanJun Shi and Jie Chen, Disruption of hex1 in Trichoderma atroviride leads to loss of Woronin body and decreased tolerance to dichlorvos. Biotechnology Letters 2014, 36 (4), 751-759. 34. Markham, A. J. C. a. P., Woronin bodies rapidly plug septal pores of severedPenicillium chrysogenum hyphae. Experimental Mycology 1985, 80-85. 35. Shanthi Soundararajan, G. J., Xiaolei Li, Marilou Ramos-Pamploña, Nam H. Chua and Naweed I. Naqvi, Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 2004, 16 (6), 1564-1574.
|