帳號:guest(3.144.39.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:楊昕翰
作者(英文):Hsin-Han Yang
論文名稱:正丁烯基苯酞於血管平滑肌細胞型態轉換及動靜脈廔管狹窄治療之應用
論文名稱(英文):The Application of N-Butylidenephthalide in the Phenotypic Switching of Vascular Smooth Muscle Cells and the Treatment for Arteriovenous Fistula Stenosis
指導教授:邱紫文
指導教授(英文):Tzyy-Wen Chiou
口試委員:李佳洪
徐邦治
邱紫文
韓鴻志
李茹萍
口試委員(英文):Chia-Hung Lee
Bang-Gee Hsu
Tzyy-Wen Chiou
Horng-Jyh Harn
Ru-Ping Lee
學位類別:博士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:810413102
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:58
關鍵詞:正丁烯基苯酞血管平滑肌細胞型態轉換血小板衍生生長因子腺苷單磷酸活化蛋白質激酶自體動靜脈廔管狹窄
關鍵詞(英文):n-ButylidenephthalideVSMCs phenotypic switchPDGF-bbAMPKmTORstenosis; arteriovenous fistula
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
血管異常性重塑,例如動脈粥狀硬化或血管內膜異常增生造成之血管狹窄,為導致梗塞性腦中風、心肌梗塞或自體動靜脈廔管失敗之主要原因。其中,血管平滑肌細胞的型態轉換在疾病進程扮演關鍵作用。在先前研究中,正丁烯基苯酞在粥狀動脈硬化細胞及動物模式中被證實可抑制血管平滑肌細胞的增殖並促進其細胞凋亡。本研究進一步探討血小板衍生生長因子誘導血管平滑肌細胞模式,及在自體動靜脈廔管動物模式中探討正丁烯基苯酞對血管平滑肌細胞型態之影響。於細胞模式中,本研究觀察到正丁烯基苯酞可抑制血小板衍生生長因子誘導的血管平滑肌細胞增殖,並使其停滯在G0/G1期。此外,亦發現正丁烯基苯酞可抑制血小板衍生生長因子引發之血管平滑肌細胞骨架之重組、增強平滑肌肌動蛋白及膠原蛋白表現量,並抑制血小板衍生生長因子誘導加強的細胞遷移能力。於大鼠自體動靜脈廔管模式中,血栓、血管狹窄、以及增強的血管平滑肌細胞肌動蛋白與膠原蛋白表現量皆受到正丁烯基苯酞的抑制,表示正丁烯基苯酞可抑制血小板衍生生長因子誘導之型態轉換及遷移。此外,研究發現正丁烯基苯酞對平滑肌細胞型態轉換的抑制作用來自於腺苷單磷酸活化蛋白質激酶之活化與哺乳動物雷帕黴素靶蛋白之抑制。藉由基因沉默方式抵消正丁烯基苯酞對腺苷單磷酸活化蛋白質激酶的作用後,發現血小板衍生生長因子誘導血管平滑肌細胞之型態轉換現象被加劇,證實了正丁烯基苯酞可透過腺苷單磷酸活化蛋白質激酶訊息傳遞路徑調控血管平滑肌細胞型態轉換,有助於成為具血管保護潛力之新藥。
The aberrant vascular remodeling, such as atherosclerosis or abnormal neointimal hyperplasia, is the main cause of ischemic stroke, myocardial infarction or failure of arteriovenous fistula. The phenotypic switch of vascular smooth muscle cells (VSMCs) plays a pivotal role in the pathological development. In our previous study, n-butylidenephthalide (BP) was reported to have anti-proliferating and apoptotic effects on VSMCs. The purpose of the current study is to further investigate its role in platelet-derived growth factor (PDGF-bb)-induced VSMC phenotypic modulation in an arteriovenous fistula model. In vitro, we observed that BP inhibited the PDGF-bb-induced cytoskeleton reorganization of the VSMCs. The enhanced expression of vimentin and collagen I, as well as the migration ability induced by PDGF-bb, were also inhibited by BP. By cell cycle analysis, we found that BP inhibited the PDGF-bb-induced VSMCs proliferation and arrested the VSMCs in the G0/G1 phase. In an arteriovenous fistula rat model, the formation of stenosis, which was coupled with a thrombus, and the expression of vimentin and collagen I in VSMCs, were also inhibited by administration of BP, indicating that BP inhibited the PDGF-bb-induced phenotypic switch and the migration of VSMCs. Besides, the inhibitory effects of BP on the phenotypic switch were found to accompany the activated 5’ AMP-activated protein kinase (AMPK) as well as the inhibited phosphorylation of mTOR. Knockdown of AMPK by gene silencing conflicted the effects of BP and further exacerbated the PDGF-bb-induced VSMCs phenotypic switch, confirming the modulating effect that BP exerted on the VSMCs by this pathway. These findings suggest that BP may contribute to the vasculoprotective potential in vasculature.
一、中文摘要 1
二、英文摘要 3
三、前言 7
1. 末期腎臟病與血液透析治療概況 7
2. 自體動靜脈廔管 7
3. 自體動靜脈廔管內層異常增生及狹窄之主要致病機制 8
4. 血管平滑肌細胞為血管內層狹窄的主要作用細胞 10
5. AMP-activated protein kinase (AMPK) 12
6. 正丁基烯基苯酞 (Butylidenephthalide, BP) 13
四、研究目的 14
五、材料與方法 15
1. 細胞培養與繼代 15
2. 血管平滑肌細胞型態轉換誘導 16
3. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 分析法 16
4. BP抑制血管平滑肌細胞遷移能力之分析 17
5. 細胞週期分析 18
6. 免疫螢光染色 18
7. 全細胞總蛋白質抽取及蛋白質濃度定量 19
8. 蛋白質電泳及西方墨點轉印分析 20
9. 小分子干擾核糖核酸(small interfering RNA,siRNA)設計及細胞轉染 22
10. 自體動靜脈廔管動物模式 23
11. 組織處理及切片 24
12. 常規(H&E stain)及免疫組織化學(IHC stain)染色分析 25
13. 統計分析 26
六、結果 27
1. BP抑制PDGF-bb誘導血管平滑肌細胞A7r5之增殖 27
2. BP抑制 PDGF-bb誘導血管平滑肌細胞A7r5型態之轉換 28
3. BP抑制PDGF-bb誘導血管平滑肌細胞之遷移 29
4. BP抑制大鼠自體動靜脈廔管血栓形成及內層狹窄 29
5. BP抑制大鼠自體動靜脈廔管靜脈端血管平滑肌細胞型態之轉換 30
6. BP透過AMPK-mTOR路徑抑制血管平滑肌細胞A7r5型態轉換 31
七、討論 33
八、結論 38
九、結果圖與表 39
十、補充資訊 52
十一、參考文獻 54
1. System, U.S.R.D., 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
2. Lok, C.E., et al., KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am J Kidney Dis, 2020. 75(4 Suppl 2): p. S1-S164.
3. Dixon, B.S., Why don't fistulas mature? Kidney Int, 2006. 70(8): p. 1413-22.
4. Feldman, H.I., et al., Predictors of successful arteriovenous fistula maturation. Am J Kidney Dis, 2003. 42(5): p. 1000-12.
5. Rooijens, P.P., et al., Radiocephalic wrist arteriovenous fistula for hemodialysis: meta-analysis indicates a high primary failure rate. Eur J Vasc Endovasc Surg, 2004. 28(6): p. 583-9.
6. Cheung, A.K., et al., Intimal Hyperplasia, Stenosis, and Arteriovenous Fistula Maturation Failure in the Hemodialysis Fistula Maturation Study. J Am Soc Nephrol, 2017. 28(10): p. 3005-3013.
7. Chang, C.J., et al., Highly increased cell proliferation activity in the restenotic hemodialysis vascular access after percutaneous transluminal angioplasty: implication in prevention of restenosis. Am J Kidney Dis, 2004. 43(1): p. 74-84.
8. Misra, S., et al., Expression of hypoxia inducible factor-1 alpha, macrophage migration inhibition factor, matrix metalloproteinase-2 and -9, and their inhibitors in hemodialysis grafts and arteriovenous fistulas. J Vasc Interv Radiol, 2008. 19(2 Pt 1): p. 252-9.
9. Asare, Y., M. Schmitt, and J. Bernhagen, The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost, 2013. 109(3): p. 391-8.
10. Veillat, V., et al., Macrophage migration inhibitory factor elicits an angiogenic phenotype in human ectopic endometrial cells and triggers the production of major angiogenic factors via CD44, CD74, and MAPK signaling pathways. J Clin Endocrinol Metab, 2010. 95(12): p. E403-12.
11. Deshmane, S.L., et al., Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res, 2009. 29(6): p. 313-26.
12. Stracke, S., et al., Increased expression of TGF-beta1 and IGF-I in inflammatory stenotic lesions of hemodialysis fistulas. Kidney Int, 2002. 61(3): p. 1011-9.
13. Sener, E.F., et al., Association of TNF-alpha -308 G > A and ACE I/D gene polymorphisms in hemodialysis patients with arteriovenous fistula thrombosis. Int Urol Nephrol, 2014. 46(7): p. 1419-25.
14. Misra, S., et al., Increased expression of hypoxia-inducible factor-1 alpha in venous stenosis of arteriovenous polytetrafluoroethylene grafts in a chronic renal insufficiency porcine model. J Vasc Interv Radiol, 2008. 19(2 Pt 1): p. 260-5.
15. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32.
16. Wan, J., et al., Supplemental oxygen reverses hypoxia-induced smooth muscle cell proliferation by modulating HIF-alpha and VEGF levels in a rabbit arteriovenous fistula model. Ann Vasc Surg, 2014. 28(3): p. 725-36.
17. Ohtani, K., et al., Blockade of vascular endothelial growth factor suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation, 2004. 110(16): p. 2444-52.
18. Huusko, J., et al., The effects of VEGF-R1 and VEGF-R2 ligands on angiogenic responses and left ventricular function in mice. Cardiovasc Res, 2010. 86(1): p. 122-30.
19. Janda, K., et al., Cardiovascular risk in chronic kidney disease patients: intima-media thickness predicts the incidence and severity of histologically assessed medial calcification in radial arteries. BMC Nephrol, 2015. 16: p. 78.
20. ten Freyhaus, H., et al., Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases. Am J Respir Crit Care Med, 2011. 183(8): p. 1092-102.
21. Chevalier, R.L., Congenital urinary tract obstruction: the long view. Adv Chronic Kidney Dis, 2015. 22(4): p. 312-9.
22. Roux, E., et al., Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol, 2020. 11: p. 861.
23. Franzoni, M., et al., Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access. Am J Physiol Heart Circ Physiol, 2016. 310(1): p. H49-59.
24. Cachofeiro, V., et al., Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl, 2008(111): p. S4-9.
25. Gross, P., et al., Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J Cell Physiol, 2015. 230(12): p. 2927-35.
26. Baeyens, N., et al., Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest, 2016. 126(3): p. 821-8.
27. Browne, L.D., et al., The Role of Shear Stress in Arteriovenous Fistula Maturation and Failure: A Systematic Review. PLoS One, 2015. 10(12): p. e0145795.
28. Rensen, S.S., P.A. Doevendans, and G.J. van Eys, Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J, 2007. 15(3): p. 100-8.
29. Bennett, M.R., S. Sinha, and G.K. Owens, Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res, 2016. 118(4): p. 692-702.
30. Zhao, J., et al., Dual Function for Mature Vascular Smooth Muscle Cells During Arteriovenous Fistula Remodeling. J Am Heart Assoc, 2017. 6(4).
31. Martin, K.A., et al., Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling. J Biol Chem, 2007. 282(49): p. 36112-20.
32. Halka, A.T., et al., The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovasc Pathol, 2008. 17(2): p. 98-102.
33. Chen, C.N., et al., Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci U S A, 2006. 103(8): p. 2665-70.
34. Yoshida, T., et al., Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am J Physiol Cell Physiol, 2007. 292(2): p. C886-95.
35. Palmer, S.C., et al., Antiplatelet therapy to prevent hemodialysis vascular access failure: systematic review and meta-analysis. Am J Kidney Dis, 2013. 61(1): p. 112-22.
36. Kjobsted, R., et al., AMPK in skeletal muscle function and metabolism. FASEB J, 2018. 32(4): p. 1741-1777.
37. Li, W., et al., Targeting AMPK for cancer prevention and treatment. Oncotarget, 2015. 6(10): p. 7365-78.
38. Liang, K.W., et al., Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. Eur J Pharmacol, 2008. 590(1-3): p. 343-54.
39. Fairaq, A., et al., AdipoRon, an adiponectin receptor agonist, attenuates PDGF-induced VSMC proliferation through inhibition of mTOR signaling independent of AMPK: Implications toward suppression of neointimal hyperplasia. Pharmacol Res, 2017. 119: p. 289-302.
40. Teng, C.M., et al., Antiplatelet effect of butylidenephthalide. Biochim Biophys Acta, 1987. 924(3): p. 375-82.
41. Chan, S.S., et al., Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticum chuanxiong, in rat isolated aorta. Eur J Pharmacol, 2006. 537(1-3): p. 111-7.
42. Liu, W.S., et al., Inhibitory effect of n-butylidenephthalide on neointimal hyperplasia in balloon injured rat carotid artery. Phytother Res, 2011. 25(10): p. 1494-502.
43. Kennedy, E., et al., Embryonic rat vascular smooth muscle cells revisited - a model for neonatal, neointimal SMC or differentiated vascular stem cells? Vasc Cell, 2014. 6(1): p. 6.
44. Rao, R.S., et al., The A10 cell line: a model for neonatal, neointimal, or differentiated vascular smooth muscle cells? Cardiovasc Res, 1997. 36(1): p. 118-26.
45. Hulkower, K.I. and R.L. Herber, Cell migration and invasion assays as tools for drug discovery. Pharmaceutics, 2011. 3(1): p. 107-24.
46. Croatt, A.J., et al., Characterization of a model of an arteriovenous fistula in the rat: the effect of L-NAME. Am J Pathol, 2010. 176(5): p. 2530-41.
47. Yang, H.H., et al., N-Butylidenephthalide Inhibits the Phenotypic Switch of VSMCs through Activation of AMPK and Prevents Stenosis in an Arteriovenous Fistula Rat Model. Int J Mol Sci, 2020. 21(19).
48. Ding, Y., et al., AMP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces Features of Atherosclerotic Plaque Stability. Circ Res, 2016. 119(6): p. 718-30.
49. Stone, J.D., et al., AMP-activated protein kinase inhibits vascular smooth muscle cell proliferation and migration and vascular remodeling following injury. Am J Physiol Heart Circ Physiol, 2013. 304(3): p. H369-81.
50. Martin, K.A., et al., The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am J Physiol Cell Physiol, 2004. 286(3): p. C507-17.
51. Salabei, J.K., et al., PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem J, 2013. 451(3): p. 375-88.
52. Ha, J.M., et al., Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1. Biochem Biophys Res Commun, 2015. 464(1): p. 57-62.
53. Wagner, R.J., et al., Lovastatin induces VSMC differentiation through inhibition of Rheb and mTOR. Am J Physiol Cell Physiol, 2010. 299(1): p. C119-27.
54. Sun, F., et al., Regulation of autophagy by Ca(2). Tumour Biol, 2016.
55. Decuypere, J.P., et al., mTOR-Controlled Autophagy Requires Intracellular Ca(2+) Signaling. PLoS One, 2013. 8(4): p. e61020.

(此全文20270713後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *