帳號:guest(3.143.4.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:徐維燦
作者(英文):Wei-Can Syu
論文名稱:Analogue Gravity and Coherent Dynamic in Two-Component Bose Einstein Condensates
論文名稱(英文):Analogue Gravity and Coherent Dynamic in Two-Component Bose Einstein Condensates
指導教授:李大興
指導教授(英文):Da-Shin Lee
口試委員:吳建宏
張銘顯
巫俊賢
林子強
李大興
口試委員(英文):Kin-Wang Ng
Ming-Shien Chang
Chun-Hsien Wu
Chi-Yong Lin
Da-Shin Lee
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學號:810414102
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:135
關鍵詞(英文):Bose-Einstein condensateAnalogue gravityOpen quantum systemJosephson dynamicsSound-cone fluctuationHawking radiation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
In this thesis we discuss the quantum coherent dynamics of the two-component Bose-Einstein condensates and some applications in researches of analogue gravity.

Firstly, we theoretically study binary Bose-Einstein condensates trapped in a single-well harmonic potential to probe the dynamics of collective atomic motion. The idea is to choose tunable scattering lengths through Feshbach resonances such that the ground-state wave function for two types of the condensates are spatially immiscible where one of the condensates, located at the center of the potential trap, can be effectively treated as a potential barrier between bilateral condensates of the second type of atoms. The condensate in the middle can be approximated by a Gaussian wave function with the displacement of the condensate center $\xi$, while the bilateral condensates in two-mode approximation can be characterized by population imbalance $z$ and phase difference $
hi$. As driven by the time-dependent displacement of the central condensate, we find the Josephson oscillations of the collective atomic motion between bilateral condensates as well as their anharmonic generalization of macroscopic self-trapping effects. In addition, with the increase in the wave-function overlap of bilateral condensates by properly choosing tunable atomic scattering lengths, the chaotic oscillations are found if the system departs from the state of an unstable fixed point. The Melnikov approach with a homoclinic solution of the derived $z$, $
hi$, and $\xi$ equations can successfully justify the existence of chaos.

Then, we turn our attention to the study of ``analogue gravity'' in this condensate system.
By considering the Rabi transition between atomic hyperfine states, we examine the effect of quantum fluctuations in a tunable quantum gas on phonon propagation. We then further trace out the gapped modes to give an effective purely phononic theory using closed-time-path formalism. In particular, we are interested in the sound cone fluctuations due to the variation of the speed-of-sound acoustic metric, induced by quantum fluctuations of the gapped modes. These fluctuations can be interpreted as inducing a stochastic space-time, and thus are regarded as analogue phenomena of light cone fluctuations presumably arising from quantum gravity effects. The effects of fluctuations can be displayed in the variation in the travel time of sound waves. We suggest the relevant experiments to discuss the possibility of experimental observations.

Lastly, another aspect in analogue gravity interests us is the acoustic black hole. We consider the abilities of spatially tuning the scattering length in experiments, to study propagation of the gapless/gapped modes in the spatial steplike discontinuities of sound speed profile, which consequently emit negative frequency mode toward inner acoustic black hole.
The analytical expressions of scattering coefficients for massive case are presented and show significant difference from the massless case. The influence from the gapped excitations to the quantum entanglement of the Hawking mode and its partner of the gapless excitations is also studied according to the Peres-Horodecki-Simon (PHS) criterion. It is found that the presence of the gapped excitations will deteriorate the quantumness of the pair modes of the gapless excitations when the frequency of the pair modes in particular is around $\omega\sim\omega_\text{min}$. On top of that, when the coupling constant between the gapless and gapped excitations becomes large enough, the huge particle density of the gapped excitations in the small $\omega$ regime will significantly disentangle the pair modes of the gapless excitations. The detailed time-dependent PHS criterion will be discussed.
1 Introduction 1
1.1  MixturesofBose-Einsteincondensates 1
1.2  FortheDynamicsAspect 1
1.3  FortheAnalogueGravityAspect 3
1.3.1 Sound-conefluctuation 3
1.3.2 Analogue Hawking radiation for gapped excitations 4
1.4 Summary 6
2  The quantum coherent dynamics in two-component Bose-Einstein condensates 9
2.1  Variational approach and analogous coupled pendulums dynamics 10
2.2  Equilibrium Solutions and Stability analysis 16
2.3  Regularmotion 19
2.3.1  General solutions for small amplitude oscillations 19
2.3.2  Theeectivepotential 22
2.3.3  Results and Discussions 23
lambda_eff/2k > 2 (Josephson oscillation, running phase and fi-mode self trapping) 23
1 < lambda_eff/2k < 2 (Josephson oscillation and fi-mode self trapping) 29
02.4  Chaoticdynamics 31
2.5  Conclusions 36
3  Analogue gravity phenomena: Sound cone fluctuations 39
3.1  Themodelandbackgroundcondensates 39
3.2  the dispersion relation for collective excitations 45
3.3  Langevin equation and induced stochastic sound cone metric 54
3.4  Time-Of-Flightvariance 58
3.4.1 $c_
hi=c_\chi$ 60
3.4.2 $c_
hi>c_\chi$ 62
3.4.3 $c_
hi3.5  Conclusions 67
4 Analogue gravity phenomena: Analogous Hawking radiation and quantum entanglement 69
4.1 Themodel 69
4.1.1 Plane wave solutions and dispersion relations 72
4.1.2 Gappedexcitationmodes 76
4.2  Matching of the mode functions and construction of the S matrix 79
4.2.1 Matchingofmodefunctions 79
4.2.2 ConstructionoftheS-matrix 80
4.2.3 urout-goingchannel 83
4.2.4 ulout-goingchannel 86
4.2.5 vlout-goingchannel 88
4.3  Density-densitycorrelations 90
4.3.1  The quadrant of correlation function within x < 0,xÕ > 0 or x>0,xÕ<0 92
4.3.2  The quadrant of correlation function within x < 0, xÕ < 0 94
4.4  Eects from gapped modes to quantum entanglement of gapless modes 95
4.4.1  ThePeres-Horodecki-Simoncriterion 95
4.4.2  Inhomogeneousequations 96
4.4.3  Nonseparability of Hawking-partner pairs 101
4.5  Conclusion 103
5 Conclusions and Further work 107
5.1 Conclusions 107
5.2 Furtherwork 108
A  Publications not included in the thesis 113 

B  Variational principle 115

C  Subsonic-Subsonic Configuration 119
Bibliography
[1]  M. H. Anderson et al. “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”. In: Science 269.5221 (1995), pp. 198–201.


[2]  K. B. Davis et al. “Bose-Einstein Condensation in a Gas of Sodium Atoms”. In: Phys. Rev. Lett. 75 (22 Nov. 1995), pp. 3969–3973.

[3]  C. J. Myatt et al. “Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling”. In: Phys. Rev. Lett. 78 (4 Jan. 1997), pp. 586–589. 


[4]  G. Modugno et al. “Two Atomic Species Superfluid”. In: Phys. Rev. Lett. 89 (19 Oct. 2002), p. 190404.

[5]  M. R. Andrews et al. “Observation of Interference Between Two Bose Conden- sates”. In: Science 275.5300 (1997), pp. 637–641. 


[6]  A. Röhrl et al. “Transition from Phase Locking to the Interference of Indepen- dent Bose Condensates: Theory versus Experiment”. In: Phys. Rev. Lett. 78 (22 June 1997), pp. 4143–4146.

[7]  B. P. Anderson et al. “Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein Condensate”. In: Phys. Rev. Lett. 86 (14 Apr. 2001), pp. 2926– 2929.


[8]  Stefano Liberati, Matt Visser, and Silke Weinfurtner. “Naturalness in an Emer- gent Analogue Spacetime”. In: Phys. Rev. Lett. 96 (15 Apr. 2006), p. 151301.


[9]  Stefano Liberati, Matt Visser, and Silke Weinfurtner. “Analogue quantum gravity phenomenology from a two-component Bose–Einstein condensate”. In: Classical and Quantum Gravity 23.9 (Apr. 2006), pp. 3129–3154.

[10]  Matt Visser and Silke Weinfurtner. “Massive Klein-Gordon equation from a Bose-Einstein-condensation-based analogue spacetime”. In: Phys. Rev. D 72 (4 Aug. 2005), p. 044020. 


[11]  S. Weinfurtner, S. Liberati, and M. Visser. “Analogue Space-time Based on 2- Component Bose-Einstein Condensates”. In: Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Ed. by William G. Unruh and Ralf Schützhold. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 115– 163.


[12]  A. Smerzi et al. “Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates”. In: Phys. Rev. Lett. 79 (25 Dec. 1997), pp. 4950– 4953.


[13]  S. Raghavan et al. “Coherent oscillations between two weakly coupled Bose- Einstein condensates: Josephson eects, fi oscillations, and macroscopic quan- tum self-trapping”. In: Phys. Rev. A 59 (1 Jan. 1999), pp. 620–633.

[14]  B. Juliá-Dıaz et al. “Josephson oscillations in binary mixtures of F = 1 spinor Bose-Einstein condensates”. In: Phys. Rev. A 80 (2 Aug. 2009), p. 023616.


[15]  B. Sun and M. S. Pindzola. “Dynamics of a two-species Bose-Einstein con- densate in a double well”. In: Phys. Rev. A 80 (3 Sept. 2009), p. 033616.


[16]  Indubala I. Satija et al. “Symmetry-breaking and symmetry-restoring dynam- ics of a mixture of Bose-Einstein condensates in a double well”. In: Phys. Rev. A 79 (3 Mar. 2009), p. 033616. 


[17]  M Melé-Messeguer et al. “Weakly linked binary mixtures ofF= 187Rb Bose–Einstein condensates”. In: New Journal of Physics 13.3 (Mar. 2011), p. 033012. 


[18]  Andrea Richaud and Vittorio Penna. “Phase separation can be stronger than chaos”. In: New Journal of Physics 20.10 (Oct. 2018), p. 105008.


[19]  Bin Liu et al. “Josephson oscillation and transition to self-trapping for Bose- Einstein condensates in a triple-well trap”. In: Phys. Rev. A 75 (3 Mar. 2007), p. 033601. 


[20]  Simone De Liberato and Christopher J. Foot. “Tunnelling dynamics of a Bose- Einstein condensate in a four-well loop-shaped system”. In: Phys. Rev. A 73 (3 Mar. 2006), p. 035602.

[21]  F. S. Cataliotti et al. “Josephson Junction Arrays with Bose-Einstein Conden- sates”. In: Science 293.5531 (2001), p. 843. 


[22]  M. Nigro et al. “Dynamics in multiple-well Bose-Einstein condensates”. In: Phys. Rev. A 97 (1 Jan. 2018), p. 013626. 


[23]  M. Abad et al. “Phase slippage and self-trapping in a self-induced bosonic Josephson junction”. In: Phys. Rev. A 84 (3 Sept. 2011), p. 035601.


[24]  Michael Albiez et al. “Direct Observation of Tunneling and Nonlinear Self- Trapping in a Single Bosonic Josephson Junction”. In: Phys. Rev. Lett. 95 (1 June 2005), p. 010402. 


[25]  L. J. LeBlanc et al. “Dynamics of a Tunable Superfluid Junction”. In: Phys. Rev. Lett. 106 (2 Jan. 2011), p. 025302.

[26]  Marine Pigneur et al. “Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction”. In: Phys. Rev. Lett. 120 (17 Apr. 2018), p. 173601. 


[27]  G. Spagnolli et al. “Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction”. In: Phys. Rev. Lett. 118 (23 June 2017), p. 230403. 


[28]  F. Kh. Abdullaev and R. A. Kraenkel. “Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential”. In: Phys. Rev. A 62 (2 July 2000), p. 023613.

[29]  Chaohong Lee et al. “Chaotic and frequency-locked atomic population oscil- lations between two coupled Bose-Einstein condensates”. In: Phys. Rev. A 64 (5 Oct. 2001), p. 053604. 


[30]  H. Jiang et al. “Equilibrium states and chaos in an oscillating double-well po- tential”. In: Phys. Rev. A 89 (1 Jan. 2014), p. 013828.

[31]  J. Tomkovi et al. “Experimental observation of the Poincaré-Birkho scenario in a driven many-body quantum system”. In: Phys. Rev. A 95 (1 Jan. 2017), p. 011602. 


[32]  Roberto Franzosi and Vittorio Penna. “Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates”. In: Phys. Rev. E 67 (4
Apr. 2003), p. 046227. 


[33]  D. J. McCarron et al. “Dual-species Bose-Einstein condensate of 87Rb and 133Cs”. In: Phys. Rev. A 84 (1 July 2011), p. 011603. 


[34]  Yujiro Eto et al. “Suppression of relative flow by multiple domains in two- component Bose-Einstein condensates”. In: Phys. Rev. A 92 (1 July 2015), p. 013611. 


[35]  Yujiro Eto et al. “Bouncing motion and penetration dynamics in multicompo- nent Bose-
Einstein condensates”. In: Phys. Rev. A 93 (3 Mar. 2016), p. 033615.

[36]  Alessia Burchianti, Chiara Fort, and Michele Modugno. “Josephson plasma oscillations and the Gross-Pitaevskii equation: Bogoliubov approach versus two-mode model”. In: Phys. Rev. A 95 (2 Feb. 2017), p. 023627.

[37]  D. Ananikian and T. Bergeman. “Gross-Pitaevskii equation for Bose particles in a double-well potential: Two-mode models and beyond”. In: Phys. Rev. A 73 (1 Jan. 2006), p. 013604.


[38]  W. G. Unruh. “Experimental Black-Hole Evaporation?” In: Phys. Rev. Lett. 46 (21 May 1981), pp. 1351–1353.

[39]  Carlos Barceló, Stefano Liberati, and Matt Visser. “Analogue Gravity”. In: Living Reviews in Relativity 8.1 (2005), p. 12. 


[40]  Bei Lok Hu and Enric Verdaguer. “Stochastic Gravity: Theory and Applica- tions”. In: Living Reviews in Relativity 11.1 (2008), p. 3.

[41]  L. H. Ford. “Gravitons and light cone fluctuations”. In: Phys. Rev. D 51 (4 Feb. 1995), pp. 1692–1700.

[42]  L. H. Ford and N. F. Svaiter. “Gravitons and light cone fluctuations. II. Cor- relation functions”. In: Phys. Rev. D 54 (4 Aug. 1996), pp. 2640–2646. 


[43]  J. Borgman and L. H. Ford. “Eects of stress tensor fluctuations upon focus- ing”. In: Phys. Rev. D 70 (6 Sept. 2004), p. 064032. 


[44]  L.H. Ford et al. “An analog model for quantum lightcone fluctuations in non- linear optics”. In: Annals of Physics 329 (2013), pp. 80–92. 


[45]  B. L. Hu and K. Shiokawa. “Wave propagation in stochastic spacetimes: Lo- calization, amplification, and particle creation”. In: Phys. Rev. D 57 (6 Mar. 1998), pp. 3474–3483. 


[46]  V. Gurarie and A. Altland. “Phonons in Random Elastic Media and the Boson Peak”. In: Phys. Rev. Lett. 94 (24 June 2005), p. 245502. 


[47]  G. Krein, G. Menezes, and N. F. Svaiter. “Analog Model for Quantum Gravity Eects: Phonons in Random Fluids”. In: Phys. Rev. Lett. 105 (13 Sept. 2010), p. 131301.


[48]  Jen-Tsung Hsiang et al. “Quantum sound-cone fluctuations in cold Fermi gases: Phonon propagation”. In: Phys. Rev. A 91 (5 May 2015), p. 051603.

[49]  Da-Shin Lee, Chi-Yong Lin, and Ray J Rivers. “Large phonon time-of-flight fluctuations in expanding flat condensates of cold Fermi gases”. In: Journal of Physics: Condensed Matter 32.43 (July 2020), p. 435101. 


[50]  Satoshi Tojo et al. “Controlling phase separation of binary Bose-Einstein con- densates via mixed-spin-channel Feshbach resonance”. In: Phys. Rev. A 82 (3 Sept. 2010), p. 033609.


[51]  G. Thalhammer et al. “Double Species Bose-Einstein Condensate with Tunable Interspecies Interactions”. In: Phys. Rev. Lett. 100 (21 May 2008), p. 210402.


[52]  S. B. Papp, J. M. Pino, and C. E. Wieman. “Tunable Miscibility in a Dual- Species Bose-Einstein Condensate”. In: Phys. Rev. Lett. 101 (4 July 2008), p. 040402.


[53]  Mattia Cipriani and Muneto Nitta. “Crossover between Integer and Fractional Vortex Lattices in Coherently Coupled Two-Component Bose-Einstein Con- densates”. In: Phys. Rev. Lett. 111 (17 Oct. 2013), p. 170401. 


[54]  A. Recati, N. Pavlo, and I. Carusotto. “Bogoliubov theory of acoustic Hawk- ing radiation in Bose-Einstein condensates”. In: Phys. Rev. A 80 (4 Oct. 2009), p. 043603.


[55]  Jean Macher and Renaud Parentani. “Black-hole radiation in Bose-Einstein condensates”. In: Phys. Rev. A 80 (4 Oct. 2009), p. 043601.


[56]  Je Steinhauer. “Observation of quantum Hawking radiation and its entangle- ment in an analogue black hole”. In: Nature Physics 12.10 (2016), pp. 959–965.


[57]  Juan Ramón Muñoz de Nova et al. “Observation of thermal Hawking radiation and its temperature in an analogue black hole”. In: Nature 569.7758 (2019), pp. 688–691. 


[58]  O. Diatlyk. “Hawking radiation of massive fields in 2D”. In: Phys. Rev. D 104 (6 Sept. 2021), p. 065011.

[59]  E. T. Akhmedov et al. “Heating up an environment around black holes and inside de Sitter space”. In: Phys. Rev. D 103 (2 Jan. 2021), p. 025023. 


[60]  G. Jannes et al. “Hawking radiation and the boomerang behavior of massive modes near a horizon”. In: Phys. Rev. D 83 (10 May 2011), p. 104028. 


[61]  Antonin Coutant et al. “Hawking radiation of massive modes and undula- tions”. In: Phys. Rev. D 86 (6 Sept. 2012), p. 064022. 


[62]  Richard A. Dudley et al. “Correlation patterns from massive phonons in 1 + 1 dimensional acoustic black holes: A toy model”. In: Phys. Rev. D 98 (12 Dec. 2018), p. 124011.


[63]  Iacopo Carusotto et al. “Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates”. In: New Journal of Physics 10.10 (Oct. 2008), p. 103001. 


[64]  Carlos Mayoral et al. “Acoustic white holes in flowing atomic Bose–Einstein condensates”. In: New Journal of Physics 13.2 (Feb. 2011), p. 025007. 


[65]  Je Steinhauer. “Measuring the entanglement of analogue Hawking radiation by the density-density correlation function”. In: Phys. Rev. D 92 (2 July 2015), p. 024043.

[66]  Victor I. Kolobov et al. “Observation of stationary spontaneous Hawking ra- diation and the time evolution of an analogue black hole”. In: Nature Physics 17.3 (2021), pp. 362–367.

[67]  A. Farolfi et al. “Observation of Magnetic Solitons in Two-Component Bose- Einstein Condensates”. In: Phys. Rev. Lett. 125 (3 July 2020), p. 030401.

[68]  C. Hamner et al. “Generation of Dark-Bright Soliton Trains in Superfluid- Superfluid Counterflow”. In: Phys. Rev. Lett. 106 (6 Feb. 2011), p. 065302.


[69]  C. Hamner et al. “Phase Winding a Two-Component Bose-Einstein Conden- sate in an Elongated Trap: Experimental Observation of Moving Magnetic Orders and Dark-Bright Solitons”.
In: Phys. Rev. Lett. 111 (26 Dec. 2013), p. 264101.

[70]  Micha≥ Horodecki, Pawe≥ Horodecki, and Ryszard Horodecki. “Separability of mixed states: necessary and sucient conditions”. In: Physics Letters A 223.1 (1996), pp. 1–8. issn: 0375-9601.


[71]  Pawel Horodecki. “Separability criterion and inseparable mixed states with positive partial transposition”. In: Physics Letters A 232.5 (1997), pp. 333– 339


[72]  R. Simon. “Peres-Horodecki Separability Criterion for Continuous Variable Systems”. In: Phys. Rev. Lett. 84 (12 Mar. 2000), pp. 2726–2729. 


[73]  Wei-Can Syu, Da-Shin Lee, and Chi-Yong Lin. “Analogue stochastic gravity phenomena in two-component Bose-Einstein condensates: Sound cone fluctua- tions”. In: Phys. Rev. D 99 (10 May 2019), p. 104011.

[74]  Christoph Becker et al. “Oscillations and interactions of dark and dark–bright solitons in Bose–Einstein condensates”. In: Nature Physics 4.6 (2008), pp. 496– 501.


[75]  Tilman Zibold et al. “Classical Bifurcation at the Transition from Rabi to Josephson Dynamics”. In: Phys. Rev. Lett. 105 (20 Nov. 2010), p. 204101.


[76]  Vıctor M. Pérez-Garcıa et al. “Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis”. In: Phys. Rev. Lett. 77 (27 Dec. 1996), pp. 5320–5323.

[77]  L. Salasnich, A. Parola, and L. Reatto. “Eective wave equations for the dy- namics of cigar-shaped and disk-shaped Bose condensates”. In: Phys. Rev. A 65 (4 Apr. 2002), p. 043614. 


[78]  C. J. Pethick and H. Smith. Bose–Einstein Condensation in Dilute Gases. 2nd ed. Cambridge University Press, 2008. 


[79]  Francesco Riboli and Michele Modugno. “Topology of the ground state of two interacting Bose-Einstein condensates”. In: Phys. Rev. A 65 (6 June 2002), p. 063614.


[80]  Kazuki Sasaki et al. “Rayleigh-Taylor instability and mushroom-pattern for- mation in a two-component Bose-Einstein condensate”. In: Phys. Rev. A 80 (6 Dec. 2009), p. 063611.


[81]  Chi-Yong Lin, E. J. V. de Passos, and Da-Shin Lee. “Time-dependent vari- ational analysis of Josephson oscillations in a two-component Bose-Einstein condensate”. In: Phys. Rev. A 62 (5 Oct. 2000), p. 055603.


[82]  Julian Grond et al. “The Shapiro eect in atomchip-based bosonic Josephson junctions”. In: New Journal of Physics 13.6 (June 2011), p. 065026. 


[83]  Erez Boukobza et al. “Nonlinear Phase Dynamics in a Driven Bosonic Joseph- son Junction”. In: Phys. Rev. Lett. 104 (24 June 2010), p. 240402.


[84]  G. P. Berman, A. Smerzi, and A. R. Bishop. “Quantum Instability of a Bose- Einstein Condensate with Attractive Interaction”. In: Phys. Rev. Lett. 88 (12 Mar. 2002), p. 120402. 


[85]  Shane P. Kelly, Eddy Timmermans, and S.-W. Tsai. “Thermalization and its breakdown for a large nonlinear spin”. In: Phys. Rev. A 102 (5 Nov. 2020), p. 052210. 


[86]  Paolo Tommasini et al. “Bogoliubov theory for mutually coherent conden- sates”. In: Phys. Rev. A 67 (2 Feb. 2003), p. 023606.

[87]  Chi-Yong Lin et al. “Equilibrium and stability properties of a coupled two- component Bose–Einstein condensate”. In: Physica A: Statistical Mechanics and its Applications 318.3 (2003), pp. 423–434. issn: 0378-4371. 


[88]  Chi-Yong Lin et al. “Bogoliubov theory for mutually coherent hybrid atomic molecular condensates: Quasiparticles and superchemistry”. In: Phys. Rev. A 73 (1 Jan. 2006), p. 013615.


[89]  E. G. M. van Kempen et al. “Interisotope Determination of Ultracold Rubid- ium Interactions from Three High-Precision Experiments”. In: Phys. Rev. Lett. 88 (9 Feb. 2002), p. 093201. 


[90]  S. Dettmer et al. “Observation of Phase Fluctuations in Elongated Bose- Einstein Condensates”. In: Phys. Rev. Lett. 87 (16 Oct. 2001), p. 160406. 


[91]  Jacopo Sabbatini, Wojciech H. Zurek, and Matthew J. Davis. “Phase Separa- tion and Pattern Formation in a Binary Bose-Einstein Condensate”. In: Phys. Rev. Lett. 107 (23 Nov. 2011), p. 230402.


[92]  Samuel Lellouch et al. “Two-component Bose gases with one-body and two- body couplings”. In: Phys. Rev. A 88 (6 Dec. 2013), p. 063646. 


[93]  Logan W. Clark et al. “Quantum Dynamics with Spatiotemporal Control of Interactions in a Stable Bose-Einstein Condensate”. In: Phys. Rev. Lett. 115 (15 Oct. 2015), p. 155301. 


[94]  N. Arunkumar, A. Jagannathan, and J. E. Thomas. “Designer Spatial Control of Interactions in Ultracold Gases”. In: Phys. Rev. Lett. 122 (4 Feb. 2019), p. 040405. doi:


[95]  Andrea Di Carli et al. “Collisionally Inhomogeneous Bose-Einstein Conden- sates with a Linear Interaction Gradient”. In: Phys. Rev. Lett. 125 (18 Oct. 2020), p. 183602.

[96]  P.-É. Larré et al. “Quantum fluctuations around black hole horizons in Bose- Einstein condensates”. In: Phys. Rev. A 85 (1 Jan. 2012), p. 013621. 


[97]  Florent Michel, Jean-Fran çois Coupechoux, and Renaud Parentani. “Phonon spectrum and correlations in a transonic flow of an atomic Bose gas”. In: Phys. Rev. D 94 (8 Oct. 2016), p. 084027. 


[98]  Carlos Mayoral, Alessandro Fabbri, and Massimiliano Rinaldi. “Steplike dis- continuities in Bose-Einstein condensates and Hawking radiation: Dispersion eects”. In: Phys. Rev. D 83 (12 June 2011), p. 124047. 


[99]  Roberto Balbinot et al. “Particle production in the interiors of acoustic black holes”. In: Phys. Rev. D 100 (10 Nov. 2019), p. 105021.


[100]  Paul R. Anderson et al. “Gray-body factor and infrared divergences in 1D BEC acoustic black holes”. In: Phys. Rev. D 90 (10 Nov. 2014), p. 104044.


[101]  Alessandro Fabbri, Roberto Balbinot, and Paul R. Anderson. “Scattering coef- ficients and gray-body factor for 1D BEC acoustic black holes: Exact results”. In: Phys. Rev. D 93 (6 Mar. 2016), p. 064046. 


[102]  Antonin Coutant and Silke Weinfurtner. “Low-frequency analogue Hawking radiation: The Bogoliubov-de Gennes model”. In: Phys. Rev. D 97 (2 Jan. 2018), p. 025006.


[103]  F. Belgiorno et al. “Analog Hawking eect: BEC and surface waves”. In: Phys. Rev. D 102 (10 Nov. 2020), p. 105004. 


[104]  P.-É. Larré and N. Pavlo. “Hawking radiation in a two-component Bose- Einstein condensate”. In: EPL (Europhysics Letters) 103.6 (Sept. 2013), p. 60001. 


[105]  Asher Peres. “Separability Criterion for Density Matrices”. In: Phys. Rev. Lett. 77 (8 Aug. 1996), pp. 1413–1415.

[106]  Xavier Busch and Renaud Parentani. “Quantum entanglement in analogue Hawking radiation: When is the final state nonseparable?” In: Phys. Rev. D 89 (10 May 2014), p. 105024.


[107]  Julian Adamek, Xavier Busch, and Renaud Parentani. “Dissipative fields in de Sitter and black hole spacetimes: Quantum entanglement due to pair pro- duction and dissipation”. In: Phys. Rev. D 87 (12 June 2013), p. 124039. 


[108]  Xavier Busch and Renaud Parentani. “Dynamical Casimir eect in dissipative media: When is the final state nonseparable?” In: Phys. Rev. D 88 (4 Aug. 2013), p. 045023.


[109]  Scott Robertson and Renaud Parentani. “Hawking radiation in the presence of high-momentum dissipation”. In: Phys. Rev. D 92 (4 Aug. 2015), p. 044043.


[110]  Sascha Lang, Ralf Schützhold, and William G. Unruh. “Quantum radiation in dielectric media with dispersion and dissipation”. In: Phys. Rev. D 102 (12 Dec. 2020), p. 125020.


[111]  Daniel Boyanovsky and David Jasnow. “Coherence of mechanical oscillators mediated by coupling to dierent baths”. In: Phys. Rev. A 96 (1 July 2017), p. 012103. 


[112]  Wei-Can Syu, Da-Shin Lee, and Chen-Pin Yeh. “Entanglement of quantum oscillators coupled to dierent heat baths”. In: Journal of Physics B: Atomic, Molecular and Optical Physics 54.5 (Mar. 2021), p. 055501.


[113]  R. A. Konoplya and A. V. Zhidenko. “Stability and quasinormal modes of the massive scalar field around Kerr black holes”. In: Phys. Rev. D 73 (12 June 2006), p. 124040. 


[114]  C. Barceló et al. “Quasinormal mode analysis in BEC acoustic black holes”. In: Phys. Rev. D 75 (8 Apr. 2007), p. 084024. 


[115]  M. J. Jacquet, S. Weinfurtner, and F. König. “The next generation of analogue gravity
experiments”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378.2177 (2020), p. 20190239. 


[115]  M. J. Jacquet, S. Weinfurtner, and F. König. “The next generation of analogue gravity experiments”. In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378.2177 (2020), p. 20190239.

[116] Theo Torres et al. “Rotational superradiant scattering in a vortex flow”. In: Nature Physics 13.9 (2017), pp. 833–836.

[117] Luca Giacomelli and Stefano Liberati. “Rotating black hole solutions in rela- tivistic analogue gravity”. In: Phys. Rev. D 96 (6 Sept. 2017), p. 064014.

[118] Vitor Cardoso et al. “Detecting Rotational Superradiance in Fluid Labora- tories”. In: Phys. Rev. Lett. 117 (27 Dec. 2016), p. 271101.

[119] Zipeng Wang et al. “Superradiance in massive vector fields with spatially varying mass”. In: Phys. Rev. D 105 (10 May 2022), p. 104055.

[120] Alessandro Fabbri and Carlos Mayoral. “Steplike discontinuities in Bose-Einstein condensates and Hawking radiation: The hydrodynamic limit”. In: Phys. Rev. D 83 (12 June 2011), p. 124016.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *