帳號:guest(18.119.162.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Rhone P. Brocha Silalahi
作者(英文):Rhone P. Brocha Silalahi
論文名稱:Synthesis of Bimetallic Copper-Rich Alloy Clusters by Using Copper Hydrides as A Precursor
論文名稱(英文):Synthesis of Bimetallic Copper-Rich Alloy Clusters by Using Copper Hydrides as A Precursor
指導教授:劉鎮維
指導教授(英文):Chen-Wei Liu
口試委員:江明錫
呂光烈
朱家亮
林哲仁
口試委員(英文):Ming-Hsi Chiang
Kuang-Lieh Lu
Jia-Liang Zhu
Che-Jen Lin
學位類別:博士
校院名稱:國立東華大學
系所名稱:化學系
學號:810512202
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:290
關鍵詞(英文):Metal HydridesBimetallic Copper-Rich ClusterTwo-Electron SuperatomPhotoluminescence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
Series of bimetallic alloy copper-rich cluster are produced from a reaction of polyhydrido copper such as [Cu28H15{S2CNnBu2}12](PF6), [Cu20H11{S2P(OiPr)2}9], and [Cu20H11{S2P(CH2CH2Ph)2}9] and various amounts of phenylacetylene with metal salts such as Au(PPh3)Cl, [Ag(CH3CN)4](PF6), Pd(CH3CN)2Cl2, and [Pt{S2P(OnPr)2}2]. The discussion is divided into four parts, namely: 1) synthesis and characterization of two electron bimetallic alloy copper clusters from the reaction of copper polyhydrides with eleven- and fifteen-equivalence of phenylacetylene along with metal (Au and Ag) salt, which generate several new clusters, like: [Cu13{S2CNnBu2}6(C≡CPh)4]+ (1), [AuCu12{S2CNR2}6(C≡CPh)4]+ (R = nBu (2) and nPr (3)), [AuCu12{S2P(OiPr)2}6(C≡CPh)4]+ (4), [AuCu12{S2P(CH2CH2Ph)2}6(C≡CPh)4]+ (5), [AgCu12{S2CNnBu2}6(C≡CPh)4]+ (6), and [AgCu12{S2P(OiPr)2}6(C≡CPh)4]+ (7). All these clusters have a M@Cu12 (M = Cu, Au, and Ag) cuboctahedral core. The doping of Au atoms into copper polyhydrides can enhance photoluminescence properties by increasing the percentage yield luminescent 32% at room temperature. 2) by using similar synthetic strategies, the amount of phenylacetylene can be reduced into nine- and ten-equivalence along with metal (Pd and Pt) salts into the copper polyhydrides and can also generate new copper-rich bimetallic cluster encapsulated by linear metal dihydride MH2@Cu14 (M = Cu, Pd and Pt), such as [CuH2@Cu14{S2CNnBu2}6(C≡CPh)6]+ (8), [MH2@Cu14{S2CNnBu2}6(C≡CPh)6] (M = Pd (9)32 and Pt (10)), and [MH2@Cu14{S2P(OiPr)2}6(C≡CPh)6] (M = Pd (11)32 and Pt (12)). 3) using nine-equivalence of phenylacetylene can also produce copper hydrides cluster which containing hydrides in trigonal pyramidal geometry [Cu11H2{S2P(OiPr)2}6(C≡CPh)3] (13).53 This is the first copper cluster encapsulated hydrides in pentacapped trigonal prism and as template in the fabrication of copper-rich alloys cluster. We conduct reaction of formic acid with our copper hydrides to produce H2 and CO2 gases as the dehydrogenation reaction. Furthermore, this research can be expanded to use [Cu11H2{S2P(OiPr)2}6(C≡CPh)3] (13) as a template to generate bimetallic copper-rich alloy cluster by inserting a metal ion such as Cu, Au, Ag, and Pd into the Cu11 cage, to generate brand new [CuH2Cu11{S2P(OiPr)2}6(C≡CPh)3]+ (14), [AuCu11{S2P(OiPr)2}6(C≡CPh)3Cl] (15), [AgH2Cu14{S2P(OiPr)2}6(C≡CPh)6]+ (16), [PdHCu11{S2P(OiPr)2}6(C≡CPh)4] (17). In this work, we realize that the hydrides inside Cu11 cage have dual roles as ligands (14, 16 and 17) and as reducing agents (15). Insertion of Cu atom into compound 13 will lead formation of copper dihydride inside Cu11H¬ cage. This is the first copper cluster containing linear copper dihydrides in pentacapped trigonal prism. Subsequently, insertion of Au atom into Cu11H2 cage will enhance the emission quantum yield by up to 3.3% in room temperature. Meanwhile insertion of Pd will lead to form Pd-Cu bimetallic cluster (17), which is effective a catalyst for C-C bond coupling reaction such as Sonogashira reaction with an excellent yield (96%).
Abstract I
List of Content III
List of Figure IX
List of Scheme XIII
List of Appendix XV
List of Table XXV
Chapter I. Introduction 1
Chapter II: Experimental Section 17
2.1. Instrument 17
2.2. Procedure 20
2.2.1. Synthesis of [Cu@Cu12{S2CN(nBu)2}6(C≡CPh)4](CuCl2) (1) 20
2.2.2. Synthesis of [Au@Cu12{S2CNnBu2}6(C≡CPh)4](CuCl2) (2) 20
2.2.3. Synthesis of [Au@Cu12{S2CNnPr2}6(C≡CPh)4](CuCl2) (3) 21
2.2.4. Synthesis of [Ag@Cu12{S2CNnBu2}6(C≡CPh)4](PF6) (4) 22
2.2.5. Synthesis of [Au@Cu12{S2P(OiPr)2}6(C≡CPh)4](CuCl2) (5) 23
2.2.6. Synthesis of [Au@Cu12{S2P(CH2CH2Ph)2}6(C≡CPh)4](CuCl2) (6) 24
2.2.7. Synthesis of [Ag@Cu12{S2P(OiPr)2}6(C≡CPh)4](PF6) (7) 25
2.2.8. Synthesis of [CuH2@Cu14{S2CNnBu2}6(C≡CPh)6] (8H) 25
2.2.9. Synthesis of [CuD2@Cu14{S2CNnBu2}6(C≡CPh)6] (8D) 26
2.2.10. Synthesis of [PdH2@Cu14{S2CNnBu2}6(C≡CPh)6] (9H) 27
2.2.12. Synthesis of [PtH2@Cu14{S2CNnBu2}6(C≡CPh)6] (10H) 28
2.2.13. Synthesis of [PtD2@Cu14{S2CNnBu2}6(C≡CPh)6] (11D) 29
2.2.14. Synthesis of [PdH2@Cu14{S2P(OiPr)2}6(C≡CPh)6] (11H) 29
2.2.15. Synthesis of [PdD2@Cu14{S2P(OiPr)2}6(C≡CPh)6] (11D) 30
2.2.16. Synthesis of [PtH2@Cu14{S2P(OiPr)2}6(C≡CPh)6] (12H) 31
2.2.17. Synthesis of [PtD2@Cu14{S2P(OiPr)2}6(C≡CPh)6] (12D) 31
2.2.18. Synthesis of [Cu11H2{S2P(OiPr)2}6(C≡CPh)6] (13H) 32
2.2.19. Synthesis of [Cu11D2{S2P(OiPr)2}6(C≡CPh)6] (13D) 33
2.2.20. Synthesis of [Cu@Cu11 H2{S2P(OiPr)2}6(C≡CPh)3](PF6) (14H) 34
2.2.21. Synthesis of [Cu@Cu11D2{S2P(OiPr)2}6(C≡CPh)3](PF6) (14D) 35
2.2.22. Synthesis of [Au@Cu11{S2P(OiPr)2}6(C≡CPh)3Cl] (15) 36
2.2.23. Synthesis [AgH2@Cu14{S2P(OiPr)2}6(C≡CPh)6](PF6) (16H) 37
2.2.24. Synthesis [AgD2@Cu14{S2P(OiPr)2}6(C≡CPh)6](PF6) (16D) 38
2.2.25. Synthesis of [PdH@Cu11{S2P(OiPr)2}6(C≡CPh)4] (17H) 38
2.2.26. Synthesis [PdD@Cu11{S2P(OiPr)2}6(C≡CPh)4] (17D) 39
Chapter III. Results and Discussion 41
3.1. Two-Electron Superatom and Bimetallic Alloy Copper-rich Compounds by using Copper Hydrides as Precursor 41
3.1.1. Preparation of Compounds [M@Cu12{S2CNR2}6(C≡CPh)4](CuCl2) (M = Cu (1), Au (2, 3) and Ag (4); R = nBu (1, 2, 4), nPr (3) 41
3.1.2. Preparation of Compounds [M@Cu12{S2PR2}6(C≡CPh)4](CuCl2) (M = Au (5, 6) and Ag (7); R = OiPr (5, 7), CH2CH2Ph (6) 44
3.1.3. NMR Spectroscopic Studies of Compounds 1-7 45
3.1.4. FT-IR of Compounds 1-7 51
3.1.5. ESI-MS of Compounds 1-7 51
3.1.6. Molecular Structure of Compound 1-5 52
3.1.7. Optical Properties of Compound 1-7 58
3.1.8. X-ray Photoelectron Spectroscopy of Compound 1-6 59
3.1.9. Cyclic Voltammogram and Differential Pulse Voltammograms of Compounds 2, 3, 5, and 6 61
3.1.10. Luminescence Properties of Compounds 1-7 62
3.1.11. Conclusion 66
3.2. 15-Nuclear Copper Dihydride and Bimetallic Alloy Linear Metal Dihydride inside a 14-Copper Cage by Using Copper Polyhydrido as Precursor 67
3.2.1. Preparation of Compounds [Cu(E)2@Cu14{S2CNnBu2}6(C≡CPh)6]+ (8) (E= H (8H) and D (8D)) 67
3.2.2. Preparation of Compounds [ME2@Cu14{S2CNnBu2}6(C≡CPh)6] (M= Pd (9) and Pt (10)) (E= H (9H; 10H) and D (9D; 10D)) 68
3.2.3. Preparation of Compounds [ME2@Cu14{S2P(OiPr)2}6(C≡CPh)6] (M= Pd (11) and Pt (12)) (E= H (11H; 12H) and D (11D; 12D)) 70
3.2.4. NMR Spectroscopic Studies of Compounds 8 - 12 72
3.2.5. ESI-MS of Compounds 8-12 80
3.2.6. FT-IR Spectroscopic Studies of Compounds 9-12 82
3.2.7. Molecular Structures of Compounds 8, 9, 10, and 12 83
3.2.8. Optical Properties of Compounds 8-12 91
3.2.9. Luminescence Properties of Compounds 9 and 11 93
3.2.10. X-ray Photoelectron Spectroscopy (XPS) of Compounds 9 and 10 94
3.2.11. Conclusion 94
3.3. Copper Cluster Containing Hydrides in Trigonal Pyramidal Geometry [Cu11E2{S2P(OiPr)2}6(C≡CPh)3], where E = H (13H) and D (13D) 97
3.3.1. Preparation of Compounds 13H and 13D 97
3.3.2. NMR Studies of Compounds 13H and 13D 99
3.3.3. ESI-MS of Compounds 13H and 13D 101
3.3.4. Molecular Structure of Compound 13 101
3.3.5. FT-IR of Compounds 13H and 13D 106
3.3.6. Photophysical Properties and Stability of Compounds 13H and 13D 106
3.3.7. Conclusion 108
3.4. Linear Copper Dihydrides in Pentacapped Trigonal Prismatic and Bimetallic Alloy Copper-rich Compounds by using [Cu11H2{S2P(OiPr)2}6(C2Ph)3] as A Template 109
3.4.1. Preparation of Compounds [Cu12E2{S2P(OiPr)2}6(C2Ph)3](PF6), where E = H (14H) and D (14D) 109
3.4.3. NMR Studies of Compounds 14H and 14D 110
3.4.4. ESI-MS of Compounds 14H and 14D 112
3.4.5. Molecular Structure of Compound 14 113
3.4.6. Optical Properties of Compounds 14H and 14D 119
3.4.7. Stability and Reactivity of Compound 14 119
3.4.8. Preparation of Compound [Au@Cu11{S2P(OiPr)2}6(C≡CPh)3Cl] (15) 125
3.4.9. NMR Studies of Compound 15 126
3.4.10. ESI-MS of Compound 15 127
3.4.11. Molecular Structure of Compound 15 127
3.4.12. FT-IR of Compound 15 130
3.4.13. Optical Properties of Compound 15 131
3.4.14. Luminescence Properties of Compound 15 131
3.4.15. Reactivity of Compound 15 133
3.4.16. Preparation of Compounds [AgE2@Cu14{S2P(OiPr)2}6(C≡CPh)6]+, where E = H (16H); D (16D). 137
3.4.17. NMR Spectroscopy of Compounds16H and 16D 138
3.4.18. ESI-MS of Compounds 16H and 16D 143
3.4.19. Molecular Structure of Compound 16 143
3.4.20. FT-IR of Compound 16 147
3.4.21. Optical Properties of Compound 16 147
3.4.22. Luminescence Properties of Compound 16 148
3.4.23. Degradation of Compound [AgH2@Cu14{S2P(OiPr)2}6(C≡CPh)6]+ (16H) into [Ag@Cu12{S2P(OiPr)2}6(C≡CPh)4]+ (7) 149
3.4.24. Preparation of [PdE@Cu11{S2P(OiPr)2}6(C≡CPh)4], where E = H (17H); D (17D) 154
3.4.25. NMR Studies of Compounds 17H and 17D 155
3.4.26. ESI-MS of Compounds 17H and 17D 157
3.4.27. FT-IR of Compound 17 157
3.4.28. Molecular Structure of Compound 17 157
3.4.29. Optical Properties of Compound 17 161
3.4.30. Catalytic Performance of Compound 17 in Sonogashira Reaction 162
3.4.31. Conclusion 163
Chapter IV. Conclusion 165
Chapter V. References 167
Appendix 193
1. (a) Chakraborty, I.; Pradeep, T. Atomically Precise Cluster of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem. Rev. 2017, 117, 8208–8271. (b) Jin, R.; Zeng, C.; Zhou, M.; Chen Y. Atomically Precise Colloidal Metal Nanocluster: Fundamentals and Oppurtinities. Chem. Rev. 2016, 116, 10346-10413. (c) Jin, R.; Nobusada K. Doping and alloying in atomically precise gold nanoparticles. Nano Research. 2014, 7, 285–300.
2. Jin, R. Quantum Sized, Thiolate-Protected Gold Nanocluster. Nanoscale. 2010, 2, 343-362.
3. (a) Dolamic I, Knoppe S, Dass A, Bürgi T. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat Commun. 2012, 3, 798; (b) Dolamic I, Varnholt B, Bürgi T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat Commun. 2015, 6, 7117; (c) Knoppe S, Dolamic I, Bürgi T. Racemization of a chiral nanoparticle evidences the flexibility of the gold-thiolate interface. J Am. Chem. Soc. 2012, 134, 13114-13120; (d) Knoppe S, Dolamic I, Dass A, Bürgi T. Separation of enantiomers and CD spectra of Au40(SCH2CH2Ph)24: spectroscopic evidence for intrinsic chirality. Angew Chem Int. Ed. Engl. 2012, 51, 7589-7591; (e) Zhu Y, Wang H, Wan K, Guo J, He C, Yu Y, Zhao L, Zhang Y, Lv J, Shi L, Jin R, Zhang X, Shi X, Tang Z. Enantioseparation of Au20(PPh3)4Cl4 Clusters with Intrinsically Chiral Cores. Angew Chem. Int. Ed. Engl. 2018, 57, 9059-9063; (f) Yang H, Yan J, Wang Y, Deng G, Su H, Zhao X, Xu C, Teo BK, Zheng N. From Racemic Metal Nanoparticles to Optically Pure Enantiomers in One Pot. J. Am. Chem. Soc. 2017, 139, 16113-16116; (g) Yan J, Su H, Yang H, Hu C, Malola S, Lin S, Teo BK, Häkkinen H, Zheng N. Asymmetric Synthesis of Chiral Bimetallic [Ag28Cu12(SR)24]4- Nanoclusters via Ion Pairing. J. Am. Chem. Soc. 2016, 138, 12751-12754; (h) Deng G, Malola S, Yan J, Han Y, Yuan P, Zhao C, Yuan X, Lin S, Tang Z, Teo BK, Häkkinen H, Zheng N. From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13Cu2 Nanoclusters. Angew. Chem. Int. Ed. Engl. 2018, 57, 3421-3425; (i) Xu Q, Kumar S, Jin S, Qian H, Zhu M, Jin R. Chiral 38-gold-atom nanoclusters: synthesis and chiroptical properties. Small. 2014,10, 1008-1014.
4. (a) Yu, H.; Rao, B.; Jiang, W.; Yang, S.; Zhu, M. The Photoluminescent Metal Nanoclusters with Atomic Precision. Coord. Chem. Rev. 2019, 378, 595– 617; (b) Yu, P.; Wen, X.; Toh, Y.-R.; Ma, X.; Tang, J. Fluorescent Metallic Nanoclusters: Electron Dynamics, Structure, and Applications. Part. Part. Syst. Charact. 2015, 32, 142– 163.
5. (a) Antonello S, Perera NV, Ruzzi M, Gascón JA, Maran F. Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)18 cluster. J. Am. Chem. Soc. 2013, 135, 15585-15594; (b) Kwak K, Tang Q, Kim M, Jiang DE, Lee D. Interconversion between Superatomic 6-Electron and 8-Electron Configurations of M@A24(SR)18 Clusters (M = Pd, Pt). J. Am. Chem, Soc. 2015, 137, 10833-10840; (c) Liao L, Zhou S, Dai Y, Liu L, Yao C, Fu C, Yang J, Wu Z. Mono-Mercury Doping of Au25 and the HOMO/LUMO Energies Evaluation Employing Differential Pulse Voltammetry. J. Am. Chem. Soc. 2015, 137, 9511-9514; (d) Kwak K, Lee D. Electrochemical Characterization of Water-Soluble Au25 Nanoclusters Enabled by Phase-Transfer Reaction. J. Phys. Chem. Lett. 2012, 3, 2476-81; (e) Kwak K, Lee D. Electrochemistry of Atomically Precise Metal Nanoclusters. Acc. Chem. Res. 2019, 52, 12-22.
6. Song, Y.; Jin, S.; Kang, X.; Xiang, J.; Deng, H.; Yu, H.; Zhu, M. How a Single Electron Affects the Properties of the “Non-Superatom” Au25 Nanoclusters. Chem. Mater. 2016, 28, 2609– 2617.
7. (a) Zhao, J.; Jin, R. Heterogeneous Catalysis by Gold and Gold-based Bimetal Nanoclusters. Nano Today2018, 18, 86– 102; (b) Yamazoe, S.; Takano, S.; Kurashige, W.; Yokoyama, T.; Nitta, K.; Negishi, Y.; Tsukuda, T. Hierarchy of Bond Stiffnesses within Icosahedral-based Gold Clusters Protected by Thiolates. Nat. Commun. 2016, 7, 10414.
8. Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr O. M. Templated Atom Precise Galvanic Synthesis and Structure Elucidation of a [Ag4Au(SR)18](-) Nanocluster. Angew. Chem. Int. Ed. 2016, 55, 922–926;
9. Barrabes, N.; Zhang, B.; Burgi, T. Racemization of chical Pd2Au36(SC2H4Ph)24: doping increases the flexibility of the cluster surface. J. Am. Chem. Soc. 2014, 136, 14361−14364.
10. (a) Negishi, Y.; Iwai, T.; Ide, M. Continuous modulation of electronic structure of stable thiolate-protected Au25 clusters by Ag doping. Chem. Commun. 2010, 46, 4713–4715; (b) Christensen, S. L.; MacDonald, M. A.; Chatt, A.; Zhang, P.; Qian, H.; Jin, R. Dopant Location, Local structure, and Electronic Properties of Au24Pt(SR)18 Nanoclusters. J. Phys. Chem. C. 2012, 116, 26932–26937; (c) S. Wang, S.; Song, Y.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X.; Chen, M.; Li, P.; Zhu, M. Metal exchange method using Au25 nanocluster as templates for alloy nanocluster with atomic precision. J. Am. Chem. Soc. 2015, 137, 4018–4021; (d) Yao, C.; Lin, Y. -J.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L. -H.; Yang, J.; Wu, Z. Mono-cadmium vs Mono-mercury Doping of Au25 Nanocluster. J. Am. Chem. Soc. 2015, 137, 15350–15353; (e) Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of Copper Doping on Electronic Structure, Geometric Structure, and Stability of Thiolate-Protected Au25 Nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209–2214; (f) Kurashige, W.; Munakata, K.; Nobusada, K.; Negishi, Y. Synthesis of stable Cu(n)Au(25-n) nanoclusters (n = 1-9) using selenolate ligands. Chem. Commun. 2013, 49, 5447–5449; (g) Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys. Chem. Chem. Phys. 2010, 12, 6219–6225; (h) Yang, H.; Wang, Y.; Yan, J.; Chen, X.; Zhang, X.; Hakkinen, H.; Zheng, N. Structural evolution of atomically precise thiolated bimetallic [Au(12+n)Cu32(SR)(30+n)]4- (n = 0, 2, 4, 6) J. Am. Chem. Soc. 2014, 136, 7197–7200.
11. (a) Wang, Q.; Lee, Y.; Crespo, O.; Deaton, J.; Tang, C.; Gysling, H. J.; Gimeno, C.; Larraz, C.; Villacampa, M. D.; Laguna, A.; Eisenberg, R. Intensely luminescent gold(I)-silver(I) cluster complexes with tunable structural features. J. Am. Chem. Soc. 2004, 126, 9488-9489. (b) Jia, J.; Wang, Q. Luminescent gold(I)-silver(I) cluster with hypercoordinated carbon. J. Am. Chem. Soc. 2009, 131, 16634-16635. (c) Udayabhaskararao, T.; Sun, Y.; Goswami, N.; Pal, S. K.; Balasubramanian, K.; Pradeep, T. Ag7Au6: a 13-atom alloy quantum cluster. Angew. Chem., Int. Ed. 2012, 51, 2155-2159. (d) Pei, X.; Yang, Y.; Lei, Z.; Wang, Q.-M. Geminal tetraauration of acetonitrile: hemilabile-phosphine-stabilized 4 cluster compound. .J. Am. Chem. Soc. 2013, 135, 6435-6437
12. Jin, R.; Zhao, S.; Xing, Y.; Jin, R. All-thiolate-protected silver and silver-rich alloy nanoclusters with atomic precision: stable sizes, structural characterization, and optical properties. CrystEngComm. 2016, 18, 3996–4005; b) Negishi, Y.; Kurashige, W.; Niihori, Y.; Nobusada, K. Toward the creation of stable, functionalized metal clusters. Phys. Chem. Chem. Phys. 2013, 15, 18736–18751.
13. Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of Copper Doping on Electronic Structure, Geometric Structure, and Stability of Thiolate-Protected Au25 Nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209-2214. (b) Kurashige, W.; Munakata, K.; Nobusada, K.; Negishi, Y. Synthesis of stable Cu(n)Au(25-n) nanoclusters (n = 1-9) using selenolate ligands. J. Phys. Chem. Lett. 2013, 49, 5447−5449. (c) Yang, H.; Wang, Y.; Yan, J.; Chen, X.; Zhang, X.; Hakkinen, H.; Zheng, N. Structural evolution of atomically precise thiolated bimetallic [Au(12+n)Cu32(SR)(30+n)]4- (n= 0, 2, 4, 6) nanoclusters. J. Am. Chem. Soc. 2014, 136, 7197−7200.
14. Fei, W.; Antonello, S.; Dainese, T.; Dolmella, A.; Lahtinen, K. R.; Venzo, A.; Maran. F. Metal Doping of Au25(SR)18- Clusters: Insight and Hindsight. J. Am. Chem. Soc., 2019, 141, 16033-16045. (b) Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy Clusters- Precise Synthesis and Mixing Effects. Acc. Chem. Res. 2018, 51, 3114– 3124. (c) Qian, H.; Jiang, D.-e.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. Monoplatinum Doping of Gold Nanoclusters and Catalytic Application. J. Am. Chem. Soc. 2012, 134, 16159– 16162. (d) Christensen, S. L.; MacDonald, M. A.; Chatt, A.; Zhang, P.; Qian, H. F.; Jin, R. C. Dopant Location, Local Structure, and Electronic Properties of Au24Pt(SR)18 Nanoclusters. J. Phys. Chem. C. 2012, 116, 26932– 26937. (e) Kwak, K.; Tang, Q.; Kim, M.; Jiang, D.-e.; Lee, D. Interconversion between Superatomic 6-Electron and 8-Electron Configurations of M@Au24(SR)18 Clusters (M = Pd, Pt). J. Am. Chem. Soc. 2015, 137, 10833– 10840. (f) Thanthirige, V. F.; Kim, M.; Choi, W.; Kwak, K.; Lee, D.; Ramakrishna, G. Temperature-Dependent Absorption and Ultrafast Exciton Relaxation Dynamics in MAu24(SR)18 Clusters (M = Pt, Hg): Role of the Central Metal Atom. J. Phys. Chem. C. 2016, 120, 23180– 23188, (g) Tian, S. B.; Liao, L. W.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Yang, J. L.; Wu, Z. K. Structures and Magnetism of Mono-Palladium and Mono-Platinum Doped Au25(PET)18 Nanoclusters. Chem. Commun. 2016, 52, 9873– 9876, (h) Negishi, Y.; Kurashige, W.; Niihori, Y.; Iwasa, T.; Nobusada, K. Isolation, stucture, and stability of a dodecanethiolate-protected Pd(1)Au(24) Cluster. Phys. Chem. Chem. Phys. 2010, 12, 6219−6225. (i) Negishi, Y.; Kurashige, W.; Kobayashi, Y.; Yamazoe, S.; Kojima, N.; Seto, M.; Tsukuda, T. Formation of a Pd@Au12 Superatomic Core in Au24Pd1(SC12H25)18 Probed by Au197 Mossbauer and Pd K-Edge EXAFS Spectroscopy. J. Phys. Chem. Lett. 2013, 4, 3579– 3583, (j) Tofanelli, M. A.; Ni, T. W.; Phillips, B. D.; Ackerson, C. J. Crystal Structure of the PdAu24(SR)180 Superatom. Inorg. Chem. 2016, 55, 999– 1001,(k) Wang, S.; Song, Y.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X.; Chen, M.; Li, P.; Zhu, M. Metal Exchange Method Using Au25 Nanoclusters as Templates for Alloy Nanoclusters with Atomic Precision. J. Am. Chem. Soc. 2015, 137, 4018– 4021. (l) Yao, C.; Lin, Y.-j.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.-h.; Yang, J.; Wu, Z. Mono-Cadmium vs Mono-Mercury Doping of Au25 Nanoclusters. J. Am. Chem. Soc. 2015, 137, 15350– 15353, (m) Zhou, M.; Yao, C.; Sfeir, M. Y.; Higaki, T.; Wu, Z.; Jin, R. Excited-State Behaviors of M1Au24(SR)18 Nanoclusters: The Number of Valence Electrons Matters. J. Phys. Chem. C. 2018, 122, 13435– 13442.
15. (a) Yan, J.; Su, H.; Yang, H.; Malola, S.; Lin, S.; Häkkinen, H.; Zheng, N. Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [Mag24(SR)18](2-) (M = Pd, Pt) Clusters. J. Am. Chem. Soc., 2015, 137, 11880-11883. (b) Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag24Au(SR)18](-) Nanocluster. Angew. Chem. Int. Ed. 2016, 55, 922-926. (c) Liu, X.; Yuan, J.; Yao, C.; Chen, J.; Li, L.; Bao, X.; Yang, J.; Wu, Z. Crystal and Solution Photoluminescence of MAg24(SR)18 (M=Ag/Pd/Pt/Au) Nanoclusters and Some applications for the Photoluminescence Mechanisms. J. Phys. Chem. C. 2017, 121, 13848-13853. (d) Jin, X.; Zhoa, S.; Xing, Y.; Jin, R. All-thiolate protected silver and silver-rich alloy nanoclusters with atomic precision: stable sizes, structural characterization, and optical properties. CrystEngComm. 2016, 18, 3996-4005.
16. Kang, X.; Wang, S.; Song, Y.; Jin S.; Sun, G.; Yu, H.; Zhu, M. Bimetallic Au2Cu6 Nanoclusters: Strong Luminescence Induced by Aggregation of Copper (I) Complexes with Gold(0) Species. Angew. Chem. Int. Ed. 2016, 55, 3611–3614; Angew. Chem. 2016, 128, 3675–3678.
17. Andolina, C. M.; Dewar, A. C.; Smith, A. M.; Marbella, L. E.; Hartmann, M. J.; Millstone, J. E. Photoluminescent Gold-Copper Nanoparticle Alloys with Composition-Tunable Near –Infrared Emission. J. Am. Chem. Soc. 2013, 135, 5266–5269.
18. Yan, J.; Su, H.; Yang, H.; Hu, C.; Malola, S.; Lin, S.; Teo, B. K.; Hakinen, H.; Zheng, N. Asymmetric Syntheis of Chiral bimetallic [Ag28Cu12(SR)24]4- Nanoclusters via Ion Pairing. J. Am. Chem. Soc. 2016, 138, 12751–12754.
19. a) Chakrahari, K.K.; Silalahi, R. P. B.; Liao, J. -H.; Kahlal, S.; Liu, Y. -C.; Lee, J. -F.; Chiang, M. -H.; Saillard, J. -Y.; Liu, C. W. Synthesis and Structural Characterization Coordination Cluster from a Two-Electron Superatomic Copper Nanocluster. Chem. Sci. 2018, 9, 6785–6795; b) Lin, Y. –R.; Kishore, P. V. V. N.; Liao, J. –H.; Kahlal, S.; Liu, Y. –C.; Chiang, M. –H.; Saillard, J. –Y.; Liu, C. W. Synthesis, Structural Characterization and Transformation of an Eight-Electron Superatomic Alloy, [Au@Ag19{S2P(OR)2}12]. Nanoscale.2018, 10, 6855–6860.
20. a) Chang, W. –T.; Lee, P. –Y.; Liao, J. –H.; Chakrahari, K. K.; Kahlal, S.; Liu, Y. –C.; Chiang, H. –H.; Saillard, J. –Y.; Liu, C. W. Eight-Electron Silver and Mixed Gold/Silver Nanoclusters Stabilized by Selenium Donor Ligands. Angew. Chem. Int. Ed. 2017, 56, 10178–10182; b) Chang, W. –T.; Sharma, S.; Liao, J. –H.; Kahlal, S.; Liu, Y. –C.; Chiang, M. –H.; Saillard, J. –Y.; Liu, C.W. Heteroatom-Doping Increases Cluster Nuclearity: From an [Ag20] to an [Au3Ag18] Core, Chem. Eur. J. 2018, 24, 14352-14357.
21. a)Christensen, S. L.; MacDonald, M. A.; Chatt, A.; Zhang, P.; Qian, H.; Jin, R. Dopant Location, Local Structure, and Electronic Properties of Au24Pt(SR)18. J. Phys. Chem. C. 2012, 116, 26932–26937; b) Wang, S.; Song, Y.; Jin, S.; Liu, X.; Zhang, J.; Pei, Y.; Meng, X.; Chen, M.; Li, P.; Zhu, M. Metal Exchange Method Using Au25 Nanocluster as Template for Alloy Nanoclusters with Atomic Precision. J. Am. Chem. Soc .2015, 137, 4018–4021; c) Yao, C.; Lin, Y. –Z.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.-H.; Yang, J.; Wu, Z. Mono-cadmium vs Mono-mercurt Doping of Au25 Nanocluster. J. Am. Chem. Soc. 2015, 137, 15350–15353.
22. a)Negishi, Y.; Munakata, K.; Ohgake, W.; Nobusada, K. Effect of Copper Doping on Electronic Structure Geometric Structure, and Stability of Thiolated-Protected Au25 Nanoclusters. J. Phys. Chem. Lett. 2012, 3, 2209–2214; b) Kurashige, W.; Munakata, K.; Nobusada, K.; Negishi, Y. Synthesis of Stable Cu(n)Au(25-n) Nanoclusters (N = 1-9) Using Selenolate Ligands. Chem. Commun. 2013, 49, 5447–5449.
23. (a) Lei, Z.; Wan, X. –K.; Yuan, S. –F.; Wang, J. –Q.; Wang, Q.-M. Alkynyl-protected gold and silver nanocluster. Dalton Trans., 2017, 46, 3427-3434; (b) Wan, X. –K.; Xu, W. –W.; Yuan, S. –F.; Gao, Y.; Zeng, X.; Wang, Q.–M. A Near-Infrared-Emissive Alkynyl-Protected Au24 Nanoclsuter. Angew. Chem. Int. Ed. 2015, 54, 9683-9686; (c) Guan, Z. –J.; Zeng, J. –L., Nan, Z. A.; Wan, X. -K; Lin, Y.–M.; Wang, Q.–M. Thiacalix[4]arene New protection for metal cluster. Sci. Adv. 2016, 2, e1600323; (d) Yuan, S.–F.; Li, P.; Tang, Q.; Wan, X. –K.; Nan, Z.–A.; Jiang, D.–e.; Wang, Q.–M. Alkynyl-protected silver nanoclusters featuring an anticuboctahedral. Nanoscale. 2017, 9, 11405-11409.
24. (a) N. Kobayashi, N.; Kamei, Y.; Shichibu, Y.; Konishi, K. Protonation-induced chromism of pyridyethynyl-appended [core+exo]-type Au8 cluster. Resonance-coupled electronic perturbation through π-conjugated group. J. Am. Chem. Soc, 2013, 135, 16078-16081; (b) Qu, M.; Li, H.; Xie, L. H.; Yan, S. –T.; Li, J. –R.; Wang, J. –H.; Wei, C. –Y.; Wu, Y. –W. ; Zhang, X. –M. Bidentate Phosphine-Assisted Synthesis of an All-Alkynyl-Protected Ag74 Nanocluster. J. Am. Chem. Soc. 2017, 139, 12346-12349.
25. (a) Wang, Y.; Su, H.; Xu, C.; Li, G.; Gell, L.; Lin, S.; Tang, Z.; Häkkinen, H.; Zheng, N. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands. J. Am. Chem. Soc. 2015, 137, 4324-4327; (b) Wang, Y.; Wan, X.–K.; Ren, L.; Su, H.; Li, G.; Malola, S.; Lin, S.; Tang, Z.; Häkkinen, H.; Teo, B. K.; Wang, Q. –M.; Zheng, N. Atomically Precise Alkynyl-Protected Metal Nanoclusters as a Model Catalyst: Observation of Promoting Effect of Surface Ligands on Catalysis by Metal Nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278-3281.
26. (a) Wan, X. –K. ; Cheng, X. –L.; Tang, Q.; Han, Y. –Z.; Hu, G.; Jiang, D.-e.; Wang, Q. -M. Atomically Precise Bimetallic Au19Cu30 Nanocluster with Icosahedral Cu30 Shell and Alkynyl-Cu interface. J. Am. Chem. Soc. 2017, 139, 9451-9454; (b) Shen, H.; Mizuta, T. An Atomically Precise Protected Pt-Ag42 Superatom Nanocluster and Its structural Implications. Chem. Asian J. 2017, 12, 2904-2907.
27. Du, Y.; Guan, Z. –J.; Wen, Z. –R.; Lin, Y. –M.; Wang, Q. –M. Ligand-Controlled Doping Effect in Au4Ag23 and Au5Ag24¬. Chem. Eur. J. 2018, 24, 16029-16035.
28. Edwards, A. J.; Dhayal, R. S.; Liao, P. -K.; Liao, J. –H.; Chiang, M. –H.; Piltz, R. O.; Kahlal, S.; Saillard, J. –Y.; Liu, C. W. Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball**. Angew. Chem. Int. Ed. 2014, 53, 7214-7218.
29. Chakrahari, K.K.; Liao, J. -H.; Kahlal, S.; Liu, Y. -C.; Chiang, M. -H.; Saillard, J.-Y.; Liu, C. W. [Cu13{S2CNnBu2}6(acetylide)4]+ : A Two-Electron Superatom. Angew. Chem. Int. Ed. 2016. 55.15704-14708.
30. Silalahi, R. P. B.; Chakrahari, K. K; Liao, J. -H.; Kahlal, S.; Liu, Y. -C.; Chiang, M. -H.; Saillard, J. -Y.; Liu, C. W. Synthesis of Two-Electron Bimetallic Cu-Ag and Cu-Au Clusters by using [Cu13(S2CNnBu)6(C≡CPh)4]+ as a Template. Chem. Asian J. 2018, 13, 500–504.
31. Dhayal, R. S.; Liao, J.-H.; Kahlal, S.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; van Zyl, W. E.; Saillard, J.-Y.; Liu, C. W. [Cu32(H)20{S2P(OiPr)2}12]: The Largest Number of Hydrides Recorded in A Molecular Nanocluster by Neutron Diffraction. Chem. Eur. J. 2015, 21, 8369-8374.
32. Chakrahari, K.K.; Silalahi, R. P. B.; Chiu, T. –Z.; Wang, X.; Azrou, N.; Kahlal, S.; Liu, Y. -C.; Chiang, M. -H.; Saillard, J.-Y.; Liu, C. W. Synthesis of Bimetallic Copper-Rich Nanoclusters Encapsulating a Linear Palladium Dihydride Unit. Angew. Chem. Int. Ed. 2019.58(15).4943-4947; b) Chakrahari, K. K.; Liao, J.; Silalahi, R. P. B.; Chiu, T. -H.; Liao, J. –H.; Wang, X.; Kahlal, S.; Saillard. J. –Y.; Liu, C. W. Isolation and Structural of 15-Nuclear Copper Dihydride Clusters: An Intermediate in the Formation of a Two Electron Copper Superatom. Smll. 2020, https://doi.org/10.1002/smll.202002544
33. Poli, R.; Peruzzini, M. Recent Advances in Hydride Chemistry 1st Edition. Elsevier Science: Amsterdam, 2001, p 557.
34. a) Kaesz, H. D.; Saillant, R. B. Hydride complexes of the transition metals. Chem. Rev. 1972, 72, 231-281.; b) Lin, Z.; Hall, M. B.; Transition metal polyhydrido complexes: a theoretical view. Coord. Chem. Rev. 1994, 135, 845-979; c) Sabo-Etienne, S.; Chaudret, B. Chemistry of bis(dyhidrogen) ruthenium complexes and of their derivatives. Coord. Chem. Rev. 1998, 178, 381-407; (d) Maseras, F.; Lledos, A.; Clot, E.; Eisenstein, O. Transition Metal Polyhydridos:  From Qualitative Ideas to Reliable Computational Studies. Chem. Rev. 2000, 100, 601-636. (e) King, R. B. Structure and bonding in homoleptic transition metal hydride anions. Coord. Chem. Rev. 2000, 200−202, 813-829. (f) Hoskin, A. J.; Stephan, D. W. Early transition metal hydride complexes: synthesis and reactivity. Coord. Chem. Rev. 2002, 233−234, 107-129. (h) Morris, R. H. Dihydrogen, dihydride and in between: NMR and structural properties of iron group complexes. Coord. Chem. Rev. 2008, 252, 2381-2394. (h) Holland, P. L. Electronic Structure and Reactivity of Three-Coordinate Iron Complexes. Acc. Chem. Res. 2008, 41, 905-914. (i) Gloaguen, F.; Rauchfuss, T. B. Small molecule mimics of hydrogenases: hydrides and redox. Chem. Soc. Rev. 2009, 38, 100-108.
35. (a) Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds; Wiley-VCH: Weinheim, Germany, 1996. (b) Gaillard, S.; Renaud, J.-L. Iron‐Catalyzed Hydrogenation, Hydride Transfer, and Hydrosilylation: An Alternative to Precious‐Metal Complexes?. ChemSusChem. 2008, 1, 505-509.
36. (a) Yvon, K.; Renaudin, G. Hydrides: Solid State Transition Metal Complexes. In Encyclopedia of Inorganic Chemistry, 2nd ed.; King R. B., Ed., Wiley: Chichester, U.K., 2005; Vol. 3, p 1814. (b) Brayshaw, S. K.; Ingleson, M. J.; Green, J. C.; McIndoe, J. S.; Raithby, P. R.; Kociok-Köhn, G.; Weller, A. S. High Hydride Count Rhodium Octahedra, [Rh6(PR3)6H12][BArF4]2: Synthesis, Structures, and Reversible Hydrogen Uptake under Mild Conditions. J. Am. Chem. Soc. 2006, 128, 6247-6263. (c) Zhao, D.; Yuan, D.; Zhou, H.-C. The current status of hydrogen storage in metal–organic frameworks. Energy Environ. Sci. 2008, 1, 222-235. (d) Graetz, J. New approaches to hydrogen storage. Chem. Soc. Rev. 2009, 38, 73-82 (e) Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656-675.
37. Wurtz, A. Sur l’Hydrure de Cuivre. Ann. Chim. Phys. 1844, 11, 250-252; b) Müller, H.; Bradley, A. J. CCXVII.—Copper hydride and its crystal structure. J. Chem. Soc. 1926, 1669-1673.
38. Hieber, W.; and Leutert, F. Zur Kenntnis des koordinativ gebundenen Kohlenoxyds: Bildung van Eisencarbonylwasserstoff. Naturewissenschaften, 1931, 19, 360-361.
39. (a) Dilts, J. A.; Shriver, D. F. The Nature of Soluble Copper(I) Hydride. J. Am. Chem. Soc. 1968, 90, 5769-5772. (b) Dilts, J. A.; Shriver, D. F. Cryoscopic Study of Copper(I) Hydride-Phosphine Complexes. J. Am. Chem. Soc. 1969, 91, 4088-4091. (c) Bezman, S. A.; Churchill, M. R.; Osborn, J. A.; Wormald, J. Preparation and crystallographic characterization of a hexameric triphenylphosphinecopper hydride cluster. J. Am.Chem.Soc. 1971, 93, 2063-2065. (d) Churchill, M. R.; Bezman, S. A.; Osborn, J. A.; Wormald, J. Synthesis and Molecular Geometry of Hexameric Triphenylphosphino copper (I) Hydride and the Crystal Structure of H6Cu6(PPh3)6 ·HCONMe2. Inorg. Chem. 1972, 11, 1818-1825. (e) Goeden, G. V.; Caulton, K. G. Soluble Copper Hydrides: Solution Behavior and Reactions Related to CO Hydrogenation. J. Am. Chem. Soc. 1981, 103, 7354-7355. (f) Lemmen, T. H.; Folting, K.; Huffman, J. C.; Caulton, K. G. Copper Polyhydridos. J. Am. Chem. Soc. 1985, 107, 7774-7775. (g) Goeden, G. V.; Huffman, J. C.; Caulton, K. G. A Cu (µ-H ) Bond Can Be Stronger Than an Intramolecular P—>Cu Bond. Synthesis and Structure of Cu2(µ-H )2 [ η2-CH3C(CH2PPh2)3]2. Inorg. Chem. 1986, 25, 2484-2485. (h) Stevens, R. C.; McLean, M. R.; Bau, R.; Koetzle, T. F. Neutron Diffraction Structure Analysis of a Hexanuclear Copper Hydrido Complex, H6Cu6[P(p-tolyl)3]6: An Unexpected Finding. J. Am. Chem. Soc. 1989, 111, 3472-3473. (i) Albert, C. F.; Healy, P. C.; Kildea, J. D.; Raston, C. L.; Skelton, B. W.; White, A. H. Lewis-Base Adducts of Group 11 Metal(I) Compounds. 49. Structural Characterizationof Hexameric and Pentameric (Triphenylphosphine) copper(I) Hydrides. Inorg. Chem. 1989, 28, 1300-1306. (j) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. New Chiral Diphosphine Ligands Designed to have a Narrow Dihedral Angle in the Biaryl Backbone. Adv. Synth. Catal. 2001, 343, 264-267. (k) Kӧhn, R. D.; Guido, S.; Pan, Z.; Mahon, M. F.; Kociok-Kӧhn, G. Reactions of Triazacyclohexanes with CuCl2: Surprising Formation of a Dimer between Two [CuCl2]− Ions with an Unsupported Cuprophilic Attraction. Chem. Commun. 2003, 42, 793-796. (l) Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Synthesis, Structure, and Alkyne Reactivity of a Dimeric (Carbene)copper(I) Hydride. Organometallics. 2004, 23, 3369-3371. (m) Mao, Z.; Huang, J.-S.; Che, C.-M.; Zhu, N.; Leung, S. K.-Y.; Zhou, Z.-Y. J. Unexpected Reactivities of Cu2(diphosphine)2 Complexes in Alcohol:  Isolation, X-ray Crystal Structure, and Photoluminescent Properties of a Remarkably Stable [Cu3(diphosphine)3(μ3-H)]2+ Hydride Complex. J. Am. Chem. Soc. 2005, 127, 4562-4563. (n) Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.; Bertrand, G. Synthesis of a Room‐Temperature‐Stable Dimeric Copper(I) Hydride. Chem. Asian J. 2011, 6, 402-405.
40. (a) Shima, T.; Hou, Z. Heterometallic Polyhydrido Complexes Containing Yttrium Hydrides with Different Cp Ligands: Synthesis, Structure, and Hydrogen‐Uptake/Release Properties. Chem. An Eur. J. 2013, 19, 3458-3466. (b) Shima, T.; Luo, Y.; Stewart, T.; Bau, R.; McIntyre, G. J.; Mason, S. A.; Hou, Z. Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals. Nat. Chem. 2011, 3, 814-820. (c) Shima, T.; Nishiura, M.; Hou, Z. Tetra-, Penta-, and Hexanuclear Yttrium Hydride Clusters from Half-Sandwich Bis(aminobenzyl) Complexes Containing Various Cyclopentadienyl Ligands. Organometallic. 2011, 30, 2513-2524. (d) Nishiura, M.; Baldamus, J.; Shima, T.; Mori, K.; Hou, Z. Synthesis and Structures of the C5Me4SiMe3‐Supported Polyhydrido Complexes over the Full Size Range of the Rare Earth Series. Chem. An Eur. J. 2011, 17, 5033-5044. (e) Cheng, J.-H.; Saliu, K.; Ferguson, M. J.; McDonald, R.; Takats, J. Variable nuclearity scorpionate-supported lanthanide polyhydridos: [(TpR,R′)LnH2]n (n = 3, 4 and 6). J. Organomet. Chem. 2010, 695, 2696-2702. (f) Stewart, T.; Nishiura, M.; Konno, Y.; Hou, Z.; McIntyre, G. J.; Bau, R. The space between: Neutron diffraction studies reveal multiple hydrogen atom coordination numbers in an anionic dysprosium hydride cluster. Inorg. Chim. Acta. 2010, 363, 562-566. (g) Yousufuddin, M.; Gutmann, M. J.; Baldamus, J.; Tardif, O.; Hou, Z.; Mason, S. A.; McIntyre, G. J.; Bau, R. Neutron Diffraction Studies on a 4-Coordinate Hydrogen Atom in an Yttrium Cluster. J. Am. Chem. Soc. 2008, 130, 3888-3891. (h) Cheng, J.; Saliu, K.; Kiel, G. Y.; Ferguson, M. J.; McDonald, R.; Takats, J. Scorponate-supported dialkyl and dihydride lanthanide complexes: ligand- and solvent-dependent cluster hydride. Angew. Chem., Int. Ed. 2008, 47, 4910-4913.
41. (a) Dhayal, R. S.; Liao, J.-H.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster. Angew. Chem. Int. Ed. 2015, 54, 13604-13608 (b) Dhayal, R. S.; Liao, J.-H.; Lin, Y.-R.; Liao, P.-K.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. A nanospheric polyhydrido copper cluster of elongated triangular orthobicupola array; liberation of H2 from solar energy. J. Am. Chem. Soc. 2013, 135, 4704-4707. (c) Liao, J.-H.; Dhayal, R. S.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry. Inorg. Chem. 2014, 53, 11140-11145; (d) Xue, Z.-L.; Ramirez-Cuesta, A. J.; Brown, C. M.; Calder, S.; Cao, H.; Chakoumakos, B. C.; Daemen, L.L.; Huq, A.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X. Neutron Instruments for Research in Coordination Chemistry. Eur. J. Inorg. Chem. 2019, 8, 1065-1089. (e) Piccoli, P. M. B.; Koetzle, T. F.; Schultz, A. J. Single crystal neutron diffraction for the inorganic chemist. A practical guide. Comments. Inorg. Chem. 2007. 28. 3-38.
42. (a) Liu, C. W.; Sarkar, B.; Huang, Y.-J.; Liao, P.-K.; Wang, J.-C.; Saillard, J.-Y.; Kahal, S. Octanuclear Copper(I) Clusters Inscribed in a Se12 Icosahedron: Anion-Induced Modulation of the Core Size and Symmetry. J. Am. Chem. Soc. 2009, 131, 11222-11233. (b) Liao, P.-K.; Sarkar, B.; Chang, H.-W.; Wang, J.-C.; Liu, C. W. Facile Entrapment of a Hydride inside the Tetracapped Tetrahedral CuI8 Cage Inscribed in a S12 Icosahedral Framework. Inorg. Chem. 2009, 48, 4089-4097. (c) Liao, P.-K.; Liu, K.-G.; Fang, C.-S.; Liu, C. W.; Fackler, J. P., Jr.; Wu, Y.-Y. A Copper(I) Homocubane Collapses to a Tetracapped Tetrahedron Upon Hydride Insertion. Inorg. Chem. 2011, 50, 8410-8417. (d) Liao, P.- K.; Fang, C.-S.; Edwards, A. J.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Hydrido Copper Clusters Supported by Dithiocarbamates: Oxidative Hydride Removal and Neutron Diffraction Analysis of [Cu7(H){S2C(aza-15-crown-5)}6]. Inorg. Chem. 2012, 51, 6577-6591.
43. (a) Haiduc, I. Inverse coordination - An emerging new chemical concept. Oxygen and other chalcogens as coordination centers. Coord. Chem. Rev. 2017, 338, 1-26, and references cited there in. (b) Haiduc, I. Inverse coordination – An emerging new chemical concept. II. Halogens as coordination centers. Coord. Chem. Rev. 2017. 348. 71-91, and references cited there in.
44. (a) Liu, C. W.; Stubbs, R. T.; Staples, R. J.; Fackler J. P., Jr. Syntheses and Structural Characterization of Two New Cu-S Cluster of Dialkyl Dithiophosphate: A Sulfide-Centered CuI8 Cube, {Cu8[S2P(OiPr)2]6(m8-S)}, and a Distorted Octahedral {Cu6[S2P(OEt)2]6.2H2O} Cluster. J. Am. Chem. Soc. 1995, 117, 9778-9779. (b) Fackler, J. P., Jr.; Staples, R. J.; Liu, C. W.; Stubbs, R. T.; Lopez, C.; Pitts, J. T. Octahederal, Cubal and centered Cubal Dithiolate Clusters and Cages of Cu(I) and Ag(I). Pure Appl. Chem. 1998, 70, 839-844. (c) Fackler, J. P., Jr. Forty-Five Years of Chemical Discovery Including a Golden Quarter-Century. Inorg. Chem. 2002, 41, 6959-6972. (d) Huang, Z.-X.; Lu, S.-F.; Huang, J.-Q.; Wu, D.-M.; Huang, J.-L.Synthesis and structure of Cu8S[S2P(OC2H5)2]6. J. Struct. Chem. 1991, 10, 213-217. (e) Wu, D.-M.; Huang, J.-Q.; Lin, Y.; Haung, J.-L. Study on the reaction performance of cluster compound- a reaction of copper(+2) capturing ligands from molybdenum cluster and the crystal structure of its product Cu8Cl[S2P(OEt)2]6. Sci. Sin. Ser. B (Engl. Ed.) 1988, 31, 800-806. (f) Matsumoto, K.; Tanaka, R.; Shimomura, R.; Nakao, Y. Synthesis and X-ray structures of octanuclear silver(I) cluster [Ag8(µ6-S){S2P(OC2H5)2}6] and its copper(I) analogue [Cu8(µ8-S){S2P(OC2H5)2}6]. Inorg. Chim. Acta 2000, 304, 293-296. (g) Latouche, C.; Liu, C.-W.; Saillard, J.-Y. Encapsulating hydrides and main-group anions in d10-metal clusters stabilized by 1,1-dichacogeno ligands. J. Clust. Sci. 25, 2014, 25, 147-171.
45. Liu, C. W.; Chen, H.-C.; Wang, J.-C.; Keng, T.-C. First selenide-centered Cu8 cubic cluster containing dialkyldiselenophosphate ligands. X-ray structures Cu8(µ8-Se) [Se2P(OiPr)2]. Chem. Commun. 1998, 1831-1832.
46. Liu, C. W.; Shang, I.-J.; Wang, J.-C.; Keng, T.-J. Metal dialkyl diselenphosphate; a rare example of co-crystallization with cluters, Ag8(µ8-Se)[Se2P(OiPr)2]6 and Ag6[Se2P(OiPr)2]6 Chem. Commun. 1999, 995-996.
47. (a) Liu, C. W.; Hung, C.-M.; Santra, B. K.; Chen, H.-C.; Hsueh, H.- H.; Wang, J.-C. Novel chloride-centered discrete CuI8 cubic cluster containing diselenophosphate ligands. Syntheses and structures of Cu8(µ8-Cl)[Se2P(OR)2]6PF6 (R = Et, Pr, iPr). Inorg. Chem. 2003, 42, 3216-3220.; (b) Liu, C. W.; Hung, C.-M.; Chen, H.-C.; Wang, J.-C.; Keng, T.-C.; Guo, K.-M. A novel nanocoordinate bridging selenido ligand in a tricapped trigonal prismatic geometry. X-ray structure of Cu11(µ9-Se)(µ3-Br)[Se2P(OiPr)2]6. Chem. Commun. 2000, 1897-1998.
48. (a) Liu, C. W.; Haia, H.-C.; Hung, C.-M.; Santra, B. K.; Liaw, B.-J.; Wang, J.-C.; Lin, Z. New halide-centered discrete AgI8 cubic cluster containing diselenphosphate ligands, Cu8(m8-X)[Se2P(OR)2]6PF6 (X = Cl, Br; R = Et, Pr, iPr). Inorg. Chem. 2004, 43, 4464-4470.; (b) Liu, C. W.; Hung, C.-M.; Haia, H.-C.; Liaw, B.-J.; Liou, L.-S.; Tsai, Y.-F.; Wang, J.-C. Ag8Cl2[Se2P(OEt)2]6 : A Rare Example Containing a Combination of Discrete Clusters and Chains. Chem. Commun. 2003, 976-977.
49. (a) Liu, C. W.; Hung, C.-M.; Wang, J.-C.; Keng, T.-C. Characterizations of Cu11(µ9-Se) (µ3-I)[Se2P(OR)2]6 (R = iPr, Pr) by X-ray diffraction and multinuclear NMR. J. Chem. Soc., Dalton Trans. 2002, 3482-3488. (b) Liu, C. W.; Hung, C.-M.; Santra, B. K.; Chu, Y.-H.; Wang, J.-C.; Lin, Z. A Nanocoordinated Bridging Selenide in a Tricapped Trigonal Prismatic Geometry Identified Copper Cluster in Undecanuclear Cluster. Syntheses, Structures and DFT calculation. Inorg. Chem. 2004, 43, 4306-4316. (c) Hung, C.-M.; Chu, Y.-H.; Santra, B. K.; Liaw, B.-J.; Wang, J.-C.; Liu, C. W. J. Intermolecular Se Interactions Identified in Cu11(µ9-Se)(µ3-I)[Se2P(OEt)2]6 form a one dimensional polymeric chain. J. Chin. Chem. Soc. 2006, 53, 825-830.
50. (a) Liu, C. W.; Feng, C.-S.; Fu, R.-J.; Chang, H.-W.; Saillard, J.-Y.; Kahlal, S.; Wang, J.-C.; Chang, I.-J. Structure, Photophysical Properties, and DFT Calculations of Selenide-Centered Pentacapped Trigonal Prismatic Silver(I) cluster. Inorg. Chem. 2010, 49, 4934-4941. (b) Liu, C. W.; Shang, I. J.; Fu, R.-J.; Liaw, B.-J.; Wang, J.-C.; Chang, I.-J. Selenium-Centered Undecanuclear Silver Cages Surrounded by Iodo and Dialkyl Diselenophosphato Ligands; Synthesis, Structures, and Photophysical Properties. Inorg. Chem. 2006, 45, 2335-2340.
51. Li, Y-J; Latouche, C; Kahlal, S; Liao, J-H; Dhayal, R. S; Sailard, J.-Y; Liu, C.W. A µ9-Iodide in a Tricapped Trigonal-Prismatic Geometry. Inorg. Chem. 2012, 51, 7439-7441.
52. Li, B.; Liao, J.-H.; Tang, H.-T.; Li, Y.-J.; Liu, C. W. Substitution reactions on a hypercoordinated main-group element encapsulated in a pentacapped trigonal prismatic copper cage. Dalton Trans. 2013, 42, 14384-14387.
53. Silalahi, R. P. B.; Huang, G. –R.; Liao, J. -H.; Chiu, T. –H.; Chakrahari, K. K.; Wang, X.; Cartron, J.; Kahlal, S.; Saillard, J. –Y.; Liu, C. W. Copper Clusters Containing Hydrides in Trigonal Geometry. Inorg. Chem. 2020. 59. 2536-2547.
54. Lin, P. –Y.; Li, D. -Y.; Ho, F. –H.; Liao, J. –H.; Barik, S. K.; Liu, C. W. Unified reciprocity of dithiophosphate by dichalcogenophosph(in)ate ligands on copper hydride nanoclusters via ligand exchange reaction. J. Chin. Chem. Soc. 2019, 66, 987-994.
55. a) Haiduc, I.; Sowerby, D. B.; Stereochemical aspects of phosphos-1,1-dithiolato metal complexes: Coordination patterns, molecular structures, and supramolecular association in dithiophosphinates and related compounds. Polyhedron, 1996, 15, 2469-2521; b) Haiduc, I.; Sowerby, D. B.; Fu, S. –F. Streochemical aspect of of phosphos-1,1-dithiolato metal complexes (dithiophosphate, dithiophosphinates): Coordination patterns, molecular structures and supramolecular associations-1. Polyhedron. 1995, 14, 3389-3472; c) Haiduc, I. Supramolecular associations, secondary bonds, quasi-cyclic structures and heterogemetrism in metal derivatives of phosphorus- and arsenic-based thio-acids and oxo analogs. Polyhedron. 1997, 158, 325358.
56. Artem’ev, A. V.; Malysheva, F. S.; Gusarova, N. K.; Belogorlova, N. A.; Trofimov, B. A. Facile atom-economic synthesis of ammonium diselenophosphinates via three-component reaction of secondary phosphine, elemental selenium and ammonia. Synthesis. 2010, 10, 1777-1780.
57. Kubas, G. J. Tetrakis(acetonitrile)copper(I) hexafluorophosphate. Inorg. Synth. 1979, 19, 90-92.
58. Aly, A. A. M.; Walfort, B.; Lang, H. Crystal structure of tetrakis(acetonitrile)silver(I) tetrafluoroborate [Ag(C2H3N4)4][BF4]. Kristallogr. NCS. 2004, 219, 489-491.
59. Burmeister, J. L.; DeStefano, N. Cooperative electronic ligand effect in pseudohalide complexes of rhodium(I), iridium(I), gold(I), and gold(III). Inorg. Chem. 1971, 10, 998-1003.
60. Mathews, C. J.; Smith. P. J.; Welton. T. Novel palladium imidazole catalysts for Suzuki crosscoupling reactions. J. Mol. Catal. A Chem, 2003, 206, 77-82.
61. Gianini. M.; Caseri, W. R.; Gramlich, V.; Suter, U. W. Synthesis and characterization of liguid platinum compound. Inorganica Chim Acta, 2000, 299, 199-208.
62. SADABS, version 2014-11.0, Bruker Area Detector Absorption Corrextions (Bruker AXS Inc., Madison, WI, 2014).
63. SAINT, included in G. Jogl, V4.043: Software for the CCD detector system (Bruker Analytical: Madison, WI, 1995).
64. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
65. Gruene, T.; Hahn, H. W.; Luebben, A. V.; Meilleur, F.; Sheldrick, G. M. J. Appl. Cryst. 2014, 47, 462-466.
66. SHELXTL, version 6.14. (Bruker AXS Inc., Madison, Wisconsin, USA, 2003).
67. a) Ai, Z.; Zhang, L.; Lee, S.; Ho, W. Interfacial Hydrothermal Synthesis of Cu@Cu2O Core-Shell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity. J. Phys. Chem. C. 2009, 113, 49, 20896–20902; b) Ghodselahi, T.; Vesaghi, M. A.; Shafiekhani, A.; Baghizadeh, A.; Lameii, M. XPS study of Cu@Cu2O core-shell nanoparticles. Appl. Surf. Sci. 2008, 255, 2730 –2734.
68. Wang, S.; Meng, X.; Das, A.; Li, T.; Song, Y.; Cao, T.; Zhu, X.; Zhu, M.; Jin, R. A 200-fold quantum yield boost on the photoluminescence of silver-doped Ag(x)Au(25-x) nanoclusters: the 13th silver atom matters. Angew. Chem. Int. Ed. 2014, 53, 2376-2380.
69. Song, Y.; Weng, S.; Li, H.; Yu, H.; Zhu, M. The Structure of a Au7Cu12 Bimetal Nanocluster and Its Strong Emission. Inorg. Chem. 2019, 58, 7136-7140.
70. Penfold, T. J.; Gindensperger, E.; Daniel, C.; Marian, C. M. Spin-Vibronic Mechanism for Intersystem Crossing. Chem. Rev. 2018, 118, 6975-7025.
71. Chen, Y.; Zhou, M.; Li, Q.; Gronlund, H.; Jin, R. Isomerization-induced enhancement of luminescence in Au28(SR)20 nanocluster. Chem. Sci. 2020. DOI:10.1039/d0sc01270j.
72. PLATON/SQUEEZE Spek, A. L. Acta Cryst. 2009, D65, 148-155.
73. Schultz, A. J.; Jorgensen, M. R. V.; Wang, X.; Mikkelson, R. L.; Mikkelson, D. J.; Lynch, V. E.; Peterson, P. F.; Green, M. L.; Hoffmann, C. M. J. Appl. Cryst. 2014, 47, 915-921.
74. Zikovsky, J.; Peterson, P. F.; Wang, X. P.; Frost, M.; Hoffmann, C. J. Appl. Cryst. 2011, 44, 418-423.
75. Schultz, A. J.; Srinivasan, K.; Teller, R. G.; Williams, J. M.; Lukehart, C. M. J. Am. Chem. Soc. 1984, 106, 999-1003.
76. Sheldrick, G. M. ActaCryst. 2015, C71, 3-8.
77. Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT.
78. Chinchilla, R.; Nareja, C. The Sonogashira Reaction: A Booming Methodology in Synthethic Organic Chemistry. Chem. Rev. 2007, 207, 874-922.
79. Islam, Md. S.; Khan, Md. W. Synthesis of Triazine-Based Dendrimer Assited Pd-Cu Bimetallic Nanoparticles and Catalytic Activity for C-C Coupling Reaction. J. Nanosci. Nanotechnol. 2019, 9, 1-21.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二硫磷酸配位基與銅的金屬團簇,催化碳-氮鍵[3+2]環化反應之研究
2. 以陰離子模板合成含二硫磷酸配位基之多核銀金屬團簇
3. 含碘與多硫磷酸配位基之多核金屬團簇(銅,銀)的合成、結構與光物理性質研究
4. 2,2’—聯嘧啶架橋之鑭系金屬(鈰、釤、銪)與過渡金屬(鐵、鋅)雙核化合物的合成與研究
5. 利用碘分子行氧化加成於硒(給予電子)配位基所形成的雙核金化合物中之反應研究
6. 含有二硫(硒)磷酸配位基之十一核銅金屬簇的合成、結構與光物理性質研究
7. 含有聯奈酚磷酸酯配位基與鋅、鎘、銅、銀金屬錯合物的結構和合成反應研究
8. 利用黃酸鹽與有機硒化磷配位基合成多核銅金屬團簇之反應與研究
9. 含有機硒化磷配位基之銻、鉍、鉻、銅金屬錯合物及含二硫磷酸配位基之中心體硫九核銀金屬團簇的反應研究
10. 利用雙硫配位基合成含氫離子之銅與銀金屬團簇的反應與研究
11. 含二硫(硒)磷酸配位基及鹵素之金屬鎘、汞配位聚合物之研究
12. 含二硒磷酸配位基之釕化合物合成以及二硒(硫)磷酸配位基與含氮配位基之鋅金屬發光化合物的研究
13. 使用銻和鉍的二硒磷酸錯合物以Solvothermal Method製備奈米尺度的金屬硒化物和金屬磷酸物
14. 利用二硒代氨基甲酸鹽類配位基合成多核銅金屬團簇之反應與研究
15. 含二硫磷酸配位基之雙核鑭系金屬錯合物之化學及物理性質研究
 
* *