帳號:guest(3.135.241.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李泰岳
作者(英文):Tai-Yue Li
論文名稱:二氧化矽微粒誘導斑馬魚抑鬱行為
論文名稱(英文):Silicon dioxide particle induces depressive behavior in zebrafish.
指導教授:吳勝允
指導教授(英文):Sheng-Yun Wu
口試委員:楊仲準
陳孟炬
黃玉林
葉旺奇
口試委員(英文):Chun-Chuen Yang
Meng-Chu Chen
Yue-Lin Huang
Wang-Chi Yeh
學位類別:博士
校院名稱:國立東華大學
系所名稱:物理學系
學號:810514104
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:271
關鍵詞:斑馬魚抑鬱症空氣汙染物聯網
關鍵詞(英文):ZebrafishDepressionAir pollution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
抑鬱或焦慮是最常見的心理健康問題之一,目前抑鬱症缺乏有效的治療方法,主要是由於對其遺傳基礎和潛在分子機制的不完全了解。越來越多的證據表明,空氣中的懸浮微粒(PM2.5)有機會越過血腦屏障(BBB)進入大腦,並且對大腦產生影響。這些影響包括抑鬱症這類型的心理疾病。懸浮微粒對抑鬱症是否具有潛在的影響仍然是個缺乏了解的問題。
本研究旨在探討二氧化矽微粒與斑馬魚焦慮和抑鬱行為關係。二氧化矽微粒為工業中常見的空氣污染源之一,在本研究中二氧化矽微粒被用來當作實驗的特定空氣汙染物。斑馬魚是研究抑鬱和焦慮症的優秀模型系統,因為斑馬魚的神經內分泌系統和焦慮反應都與人類相似。並且斑馬魚對人類的焦慮和抑鬱藥物具有高度的敏感性。
在這裡報告了一種使用物聯網技術研究抑鬱和焦慮的實驗方法。二氧化矽微粒透過自製的IoT空氣汙染箱輸入到斑馬魚的行為測試水箱裡面,並且在水箱中模擬出對人體有害的空氣污染濃度場景(55.5 ug/m3 ~ 500.4 ug/m3)。二氧化矽顆粒濃度對斑馬魚的影響的定量分析是通過使用開源軟件idTracker.ai來進行。
研究結果表明,二氧化矽顆粒可以誘導斑馬魚在高濃度實驗中表現出抑鬱行為,並可以為未來空氣污染對人類抑鬱症的研究提供一種新的行為檢測模型。這些發現意味著特定物質的類似行為和抑鬱誘導作用可能具有共同的生理機制。
Depression or anxiety is one of the most common mental health problems. The current lack of effective treatments for depression is mainly due to incomplete understanding of its genetic basis and underlying molecular mechanisms. More and more evidence shows that particulate matter (PM2.5) in the air has the opportunity to cross the blood-brain barrier (BBB), enter the brain, and impact the brain. These effects include mental illnesses such as depression. Whether aerosols have a potential impact on depression is still a question of lack of understanding.
This study aims to explore the relationship between silica particles and zebrafish anxiety and depression behavior. Silica particles are one of the common air pollution sources in the industry. In this study, silica particles were used as specific air pollutants in the experiment. Zebrafish is an excellent model for studying depression and anxiety because zebrafish's neuroendocrine system and anxiety response are similar to humans. Moreover, zebrafish are highly sensitive to human anxiety and depression drugs.
An experimental method using IoT technology to study depression and anxiety is reported here. Silica particles are input into the zebrafish test tank through the self-made IoT air pollution box. The air pollution concentration scene harmful to the human body is simulated in the test tank (55.5 g/m3 ~ 500.4 g/m3). Quantitative analysis of the effect of silica particle concentration on zebrafish was carried out using the open-source software idTracker.ai.
The research results show that silica particles can induce zebrafish to show depressive behavior in high-concentration experiments and provide a new behavior detection model for future research on human depression caused by air pollution. These findings imply that similar behaviors and depression-inducing effects of certain substances may have a common physiological mechanism.
誌謝 i
摘要 ii
Abstract iii
Contents v
List of figures vii
List of tables xvii
Chapter 1 Introduction 1
1-1 Background and motivation 1
1-2 Challenge and solution 15
1-2-1 Simulate human anxiety and depression behavior 16
1-2-2 3D video recording of zebrafish 34
1-2-3 3D video tracking of zebrafish 38
1-2-4 3D trajectory analysis of zebrafish 46
1-2-5 Quantitative control of air pollutions 49
1-3 Thesis layout 53
Chapter 2 Deep learning-based video tracking 54
2-1 AI、ML and DL 56
2-2 idtracker.ai 63
Chapter 3 Method 74
3-1 Technology of IoT system development 74
3-2 Experiment conceptual design 87
3-3 3D video recording system 94
3-3-1 Novel test tank 97
3-3-2 Stage 102
3-3-3 Combination of Novel Tank and stage 107
3-3-4 IoT camera system 113
3-4 IoT Air pollution box system 125
3-4-1 Assemble the IoT air pollution box 133
3-4-2 Generate the air pollution in box 136
3-4-3 PM2.5 sensor 144
3-4-4 SiO2 air pollutant test 149
3-4-5 Pump out air pollution 152
3-4-6 Control time limit test of air pump 160
3-4-7 Full setup of IoT Air pollution box 163
3-5 Real device 169
3-6 Pharmacological manipulation 171
3-7 Video tracking 175
Chapter 4 idtracker.ai tracking video analysis 179
4-1 Introduction to idtracker.ai neural network architecture 185
4-2 Deep Crossing detector (DCD) 190
4-3 Identification convolutional neural network (idCNN) 199
4-4 idtracker.ai automated tracking results of 3D zebrafish videos 209
Chapter 5 Zebrafish behavior analysis 226
5-1 3D behavior trajectory analysis of zebrafish 229
5-2 Geotaxis behavior analysis of zebrafish 234
5-3 Thigmotaxic behavior analysis of zebrafish 239
5-4 Analysis of the movement behavior of zebrafish 244
5-5 Comparison of the geotaxis, thigmotaxic and movement behavior of zebrafish 249
5-6 Fractal dimension analysis of zebrafish 252
Chapter 6 Conclusion and future work 253
6-1 Conclusion 253
6-2 Future work 256

1. Ormel, J., et al., Disability and treatment of specific mental and physical disorders across the world. British Journal of Psychiatry, 2008. 192(5): p. 368-375.
2. Gore, F.M., et al., Global burden of disease in young people aged 10–24 years: a systematic analysis. The Lancet, 2011. 377(9783): p. 2093-2102.
3. O'Connor, R.C. and N. Sheehy, Understanding Suicidal Behaviour. 2000: Wiley.
4. Bertolote, J.M. and A. Fleischmann, Suicide and psychiatric diagnosis: a worldwide perspective. World psychiatry: official journal of the World Psychiatric Association (WPA), 2002. 1(3): p. 181-185.
5. Simon, G.E., Social and economic burden of mood disorders. Biol Psychiatry, 2003. 54(3): p. 208-15.
6. Anxiety Disorders, in Diagnostic and Statistical Manual of Mental Disorders. 2013, American Psychiatric Association.
7. James, S.L., et al., Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 2018. 392(10159): p. 1789-1858.
8. Consortium, T.W.W.M.H.S., Prevalence, Severity, and Unmet Need for Treatment of Mental Disorders in the World Health Organization World Mental Health Surveys. JAMA, 2004. 291(21): p. 2581.
9. Kessler, R.C., et al., Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 2005. 62(6): p. 593.
10. Kessler, R.C., et al., Prevalence, Severity, and Comorbidity of 12-Month DSM-IV Disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 2005. 62(6): p. 617.
11. Somers, J.M., et al., Prevalence and Incidence Studies of Anxiety Disorders: A Systematic Review of the Literature. The Canadian Journal of Psychiatry, 2006. 51(2): p. 100-113.
12. Rapee, R.M., C.A. Schniering, and J.L. Hudson, Anxiety disorders during childhood and adolescence: origins and treatment. Annu Rev Clin Psychol, 2009. 5: p. 311-41.
13. Jürgen, B. Sabbe, and K. Demyttenaere, Anhedonia in Depressive Disorder: A Narrative Review. Psychopathology, 2020. 53(5-6): p. 274-281.
14. Anderson, E. and D. Hope, A review of the tripartite model for understanding the link between anxiety and depression in youth. Clinical Psychology Review, 2008. 28(2): p. 275-287.
15. Treatment outcomes for primary care patients with major depression and lifetime anxiety disorders. American Journal of Psychiatry, 1996. 153(10): p. 1293-1300.
16. Watson, D., L.A. Clark, and G. Carey, Positive and negative affectivity and their relation to anxiety and depressive disorders. Journal of Abnormal Psychology, 1988. 97(3): p. 346-353.
17. Zahn–Waxler, C., B. Klimes–Dougan, and M.J. Slattery, Internalizing problems of childhood and adolescence: Prospects, pitfalls, and progress in understanding the development of anxiety and depression. Development and Psychopathology, 2000. 12(3): p. 443-466.
18. Gaylord-Harden, N.K., et al., An Examination of the Tripartite Model of Depressive and Anxiety Symptoms in African American Youth: Stressors and Coping Strategies as Common and Specific Correlates. Journal of Clinical Child & Adolescent Psychology, 2011. 40(3): p. 360-374.
19. Janiri, D., et al., Shared Neural Phenotypes for Mood and Anxiety Disorders. JAMA Psychiatry, 2020. 77(2): p. 172.
20. Stein, M.B. and J. Sareen, Generalized Anxiety Disorder. New England Journal of Medicine, 2015. 373(21): p. 2059-2068.
21. Olthuis, J.V., et al., Therapist-supported Internet cognitive behavioural therapy for anxiety disorders in adults. Cochrane Database of Systematic Reviews, 2016.
22. Pompoli, A., et al., Psychological therapies for panic disorder with or without agoraphobia in adults: a network meta-analysis. Cochrane Database of Systematic Reviews, 2016.
23. Batelaan, N.M., et al., Risk of relapse after antidepressant discontinuation in anxiety disorders, obsessive-compulsive disorder, and post-traumatic stress disorder: systematic review and meta-analysis of relapse prevention trials. BMJ, 2017: p. j3927.
24. Su, K.-P., et al., Association of Use of Omega-3 Polyunsaturated Fatty Acids With Changes in Severity of Anxiety Symptoms. JAMA Network Open, 2018. 1(5): p. e182327.
25. Organization, W.H., Ambient air pollution: A global assessment of exposure and burden of disease 2016.
26. Organization, W.H., Air Quality Guidelines. 2005
27. Lee, B.-J., B. Kim, and K. Lee, Air pollution exposure and cardiovascular disease. Toxicological research, 2014. 30(2): p. 71-75.
28. Fiordelisi, A., et al., The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Failure Reviews, 2017. 22(3): p. 337-347.
29. Daneman, R. and A. Prat, The Blood-Brain Barrier. Cold Spring Harbor Perspectives in Biology, 2015. 7(1): p. a020412.
30. Ballabh, P., A. Braun, and M. Nedergaard, The blood-brain barrier: an overview: Structure, regulation, and clinical implications. Neurobiology of Disease, 2004. 16(1): p. 1-13.
31. Obermeier, B., R. Daneman, and R.M. Ransohoff, Development, maintenance and disruption of the blood-brain barrier. Nature Medicine, 2013. 19(12): p. 1584-1596.
32. Gupta, S., S. Dhanda, and R. Sandhir, 2 - Anatomy and physiology of blood-brain barrier, in Brain Targeted Drug Delivery System, H. Gao and X. Gao, Editors. 2019, Academic Press. p. 7-31.
33. Svetlana, M.S., F.K. Richard, and V.A. Anuska, Brain Endothelial Cell-Cell Junctions: How to “ Open” the Blood-Brain Barrier. Current Neuropharmacology, 2008. 6(3): p. 179-192.
34. Muldoon, L.L., et al., Immunologic Privilege in the Central Nervous System and the Blood-Brain Barrier. Journal of Cerebral Blood Flow & Metabolism, 2013. 33(1): p. 13-21.
35. Harilal, S., et al., Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Research Bulletin, 2020. 160: p. 121-140.
36. Sweeney, M.D., A.P. Sagare, and B.V. Zlokovic, Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 2018. 14(3): p. 133-150.
37. Grabrucker, A.M., et al., Nanoparticle transport across the blood-brain barrier. Tissue Barriers, 2016. 4(1): p. e1153568.
38. Lucchini, R.G., et al., Neurological impacts from inhalation of pollutants and the nose–brain connection. NeuroToxicology, 2012. 33(4): p. 838-841.
39. Power, M.C., et al., The Association of Long-Term Exposure to Particulate Matter Air Pollution with Brain MRI Findings: The ARIC Study. Environmental Health Perspectives, 2018. 126(2): p. 027009.
40. Chen, J.C. and J. Schwartz, Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology, 2009. 30(2): p. 231-9.
41. Zhang, X., X. Chen, and X. Zhang, The impact of exposure to air pollution on cognitive performance. Proceedings of the National Academy of Sciences, 2018. 115(37): p. 9193-9197.
42. Dekosky, S.T. and S. Gandy, Environmental exposures and the risk for Alzheimer disease: can we identify the smoking guns? JAMA neurology, 2014. 71(3): p. 273-275.
43. Weuve, J., Exposure to Particulate Air Pollution and Cognitive Decline in Older Women. Archives of Internal Medicine, 2012. 172(3): p. 219.
44. Palacios, N., Air pollution and Parkinson’s disease – evidence and future directions. Reviews on Environmental Health, 2017. 32(4): p. 303-313.
45. Calderón-Garcidueñas, L., et al., Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn, 2008. 68(2): p. 117-27.
46. Liu, F., et al., Macrophages treated with particulate matter PM2.5 induce selective neurotoxicity through glutaminase-mediated glutamate generation. Journal of Neurochemistry, 2015. 134(2): p. 315-326.
47. Genc, S., et al., The Adverse Effects of Air Pollution on the Nervous System. Journal of Toxicology, 2012. 2012: p. 1-23.
48. Block, M.L. and L. Calderón-Garcidueñas, Air pollution: mechanisms of neuroinflammation and CNS disease. Trends in neurosciences, 2009. 32(9): p. 506-516.
49. Calderón-Garcidueñas, L., et al., Long-term Air Pollution Exposure Is Associated with Neuroinflammation, an Altered Innate Immune Response, Disruption of the Blood-Brain Barrier, Ultrafine Particulate Deposition, and Accumulation of Amyloid β-42 and α-Synuclein in Children and Young Adult. Toxicologic Pathology, 2008. 36(2): p. 289-310.
50. Oberdörster, G., et al., Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 2004. 16(6-7): p. 437-45.
51. Elder, A., et al., Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environmental health perspectives, 2006. 114(8): p. 1172-1178.
52. Oberdörster, G., E. Oberdörster, and J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives, 2005. 113(7): p. 823-839.
53. Mangone, C.A., O. Genovese, and C. Abel, [Behavioral-cognitive disorders due to chronic exposure to industrial and environmental toxic substances]. Vertex, 2006. 17(65): p. 16-22.
54. Raub, J.A. and V.A. Benignus, Carbon monoxide and the nervous system. Neurosci Biobehav Rev, 2002. 26(8): p. 925-40.
55. Szyszkowicz, M., et al., Air Pollution and Emergency Department Visits for Depression: A Multicity Case-Crossover Study. Environmental Health Insights, 2016. 10: p. EHI.S40493.
56. Szyszkowicz, M., et al., Air Pollution and Emergency Department Visits for Suicide Attempts in Vancouver, Canada. Environmental Health Insights, 2010. 4: p. EHI.S5662.
57. Szyszkowicz, M., Air pollution and emergency department visits for depression in Edmonton, Canada. Int J Occup Med Environ Health, 2007. 20(3): p. 241-5.
58. Yang, A.C., S.-J. Tsai, and N.E. Huang, Decomposing the association of completed suicide with air pollution, weather, and unemployment data at different time scales. Journal of Affective Disorders, 2011. 129(1): p. 275-281.
59. Block, M.L., et al., Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. The FASEB Journal, 2004. 18(13): p. 1618-1620.
60. Veronesi, B., et al., Effects of subchronic exposures to concentrated ambient particles. VII. Degeneration of dopaminergic neurons in Apo E-/- mice. Inhal Toxicol, 2005. 17(4-5): p. 235-41.
61. Sullivan, J.P., Psychopharmacology: The fourth generation of progress. F. E. Bloom, D. J. Kupfer, eds., Raven Press, Ltd., New York, 1995, xlii + 2,002 pages, $175. Drug Development Research, 1995. 35(3): p. 185-188.
62. Nestler, E.J. and S.E. Hyman, Animal models of neuropsychiatric disorders. Nature Neuroscience, 2010. 13(10): p. 1161-1169.
63. Hitzemann, R., Animal models of psychiatric disorders and their relevance to alcoholism. Alcohol research & health: the journal of the National Institute on Alcohol Abuse and Alcoholism, 2000. 24(3): p. 149-158.
64. Moran, M., Animals Can Model Psychiatric Symptoms. Psychiatric News, 2003. 38(12): p. 20-30.
65. Lampis, V., M. Maziade, and M. Battaglia, Animal Models of Human Anxiety Disorders: Reappraisal From a Developmental Psychopathology Vantage Point. Pediatric Research, 2011. 69(5 Part 2): p. 77R-84R.
66. Paul, E.S., E.J. Harding, and M. Mendl, Measuring emotional processes in animals: the utility of a cognitive approach. Neuroscience & Biobehavioral Reviews, 2005. 29(3): p. 469-491.
67. Panksepp, J., Affective consciousness: Core emotional feelings in animals and humans. Consciousness and Cognition, 2005. 14(1): p. 30-80.
68. Healy, D., The comparative psychopathology of affective disorders in animals and humans. Journal of Psychopharmacology, 1987. 1(3): p. 193-210.
69. Stewart, A.M., et al., Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci, 2014. 37(5): p. 264-78.
70. Postlethwait, J.H., et al., Vertebrate genome evolution and the zebrafish gene map. Nature Genetics, 1998. 18(4): p. 345-349.
71. Barbazuk, W.B., The Syntenic Relationship of the Zebrafish and Human Genomes. Genome Research, 2000. 10(9): p. 1351-1358.
72. Kalueff, A.V., D.J. Echevarria, and A.M. Stewart, Gaining translational momentum: more zebrafish models for neuroscience research. Prog Neuropsychopharmacol Biol Psychiatry, 2014. 55: p. 1-6.
73. Nguyen, M., et al., Developing ‘integrative’ zebrafish models of behavioral and metabolic disorders. Behavioral Brain Research, 2013. 256: p. 172-187.
74. Guyon, J.R., et al., Modeling human muscle disease in zebrafish. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2007. 1772(2): p. 205-215.
75. Berghmans, S., et al., Making waves in cancer research: new models in the zebrafish. BioTechniques, 2005. 39(2): p. 227-237.
76. Rubinstein, A.L., Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel, 2003. 6(2): p. 218-23.
77. Rubinstein, A.L., Zebrafish assays for drug toxicity screening. Expert Opin Drug Metab Toxicol, 2006. 2(2): p. 231-40.

(此全文20241207後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *