帳號:guest(18.220.73.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Bagus Haryadi
作者(英文):Bagus Haryadi
論文名稱:Multiscale Poincaré Analysis Using Photoplethysmography Signal in Assessments of Arterial Stiffness
論文名稱(英文):Multiscale Poincaré Analysis Using Photoplethysmography Signal in Assessments of Arterial Stiffness
指導教授:張伯浩
指導教授(英文):Po-Hao Chang
口試委員:孫灼均
陳建仲
楊成湛
吳賢財
口試委員(英文):Cheuk-Kwan Sun
Jian-Jung Chen
Cheng-Chan Yang
Hsien-Tsai Wu
學位類別:博士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:810523004
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:44
關鍵詞:光電容積描記信號動脈僵硬度心血管疾病多尺度龐加萊糖尿病
關鍵詞(英文):Photoplethysmography Signalsarterial stiffnesscardiovascular diseasemultiscale Poincarédiabetes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
動脈硬化程度常被用於人體心血管危險評估。在本博士論文研究著重在研究手指體積波信號 (光電容積描記信號, PPG) 與多尺度龐加萊分析 (multiscale Poincaré, MSP) 方法應用。整體而言, 本博士論文研究共分兩大部分。第一部分: 研究採集34位非糖尿 病性患者 (Cluster 1) 與30位2型糖尿病性患者(Cluster 2) PPG信號, 分別採用100, 250, 500, 1000筆資料 並計算三類指標 (自主神經功能指標, SSR; 多尺度熵, MSE; 多尺度龐加萊熵, MSPI )以便 比較。SSR 與MSPI兩項指標都與空腹血糖、糖化血色素都存在具統計意義負相關。但僅有MSPI單項指標與脈壓差存在具統計意義負相關; 並且在少量資料情形下(250 或 500筆)尚能存在組群統計意義差異 (p < 0.01) 。再者, MSPI單項指標在1000筆資料情形下表現比MSE 好; 各個尺度(如, 1–10)皆能存在組群統計意義差異。第二部分研究: 研究採集10位非吸 菸年輕男人(Cluster 1)與10位吸菸年輕男人(Cluster 2)PPG信號, 兩組無年齡、身高、體重、 血壓、心率之統計差異 (皆p < 0.05)。最終SSR存在組群統計意義差異 (p = 0.015)。本博士論文研究結論: 多尺度龐加萊分析方法可有效應用在光電容積描記信號評估動脈僵硬度。
The degree of atherosclerosis is often used in the assessment of cardiovascular risk in humans. In this doctoral dissertation, the research focuses on the application of finger plethysmographic signal (PPG) and multiscale Poincaré analysis (MSP). Overall, this doctoral dissertation research is divided into two parts. The first part: The study collected PPG signals from 34 non-diabetic patients (Cluster 1) and 30 patients with type 2 diabetes (Cluster 2), using 100, 250, 500, 1000 data points and calculating three types of indicators (autonomic nervous function indicators, SSR; Multiscale Entropy, MSE; Multiscale Poincaré Entropy, MSPI) for comparison. Both SSR and MSPI had statistically significant negative correlations with fasting blood glucose and glycosylated hemoglobin. However, only the MSPI single index had a statistically significant negative correlation with the pulse pressure difference; and in the case of a small amount of data (250 or 500 records), there was still a statistically significant difference between the groups (p < 0.01). Furthermore, the single index of MSPI performs better than MSE in the case of 1000 data; each scale (eg, 1–10) can have group statistical significance differences. The second part of the study: The study collected PPG signals from 10 young non-smoking men (Cluster 1) and 10 young smoking men (Cluster 2). There were no statistical differences in age, height, weight, blood pressure, and heart rate between the two groups (all p < 0.05). There was a group statistically significant difference in final SSR (p = 0.015). Conclusions of this doctoral dissertation: The multiscale Poincaré analysis method can be effectively applied to assess arterial stiffness from photoplethysmographic signals.
Abstract..... iv
Contents .... vi
List of Tables ..... ix
List of Figures ...... x
List of Abbreviations and Symbols ... xi
List of Publications .. xii

Chapter 1. Introduction . . 1
1.1. Sample Entropy and Multiscale Entropy (MSE) . 3
1.1.1. Sample Entropy ... 3
1.1.2. Multiscale Entropy (MSE) ... 4
1.2. Poincaré Plot ... 6
1.3. Prior Work ... 7
1.4. Dissertation Outline .. 7
Chapter 2. Materials and Methods .. 9
2.1. PPG Signals Collection .. ... 9
2.1.1. The PPG System ........ 9
2.1.2. Fingertip PPG Amplitudes Calculation ..... 11
2.2. Study Populations for Two Studies ..... 13
2.2.1. Diabetic and Non-Diabetic Subjects in Study Part One..... 13
2.2.2. Smoker and Non-smoker Subjects in Study Part Two .... 13
2.3. Data Analysis Method ... 14
2.3.1. Poincaré Plot Method .. 14
2.3.2. Multiscale Poincaré (MSP) . 15
2.4. Computation Times ......... 16
2.4.1. Computation Time in Study Part One.. 16
2.4.2. Computation Time in Study Part Two.. 16
2.5. Statistical Analysis 16
2.5.1. Statistical Analysis Used in Study Part One .... 16
2.5.2. Statistical Analysis Used in Study Part Two ... 17
Chapter 3. Results 18
3.1. Poincaré Plot and MSP to Analyse PPG Signals in Diabetic and Non-Diabetic Subjects (Study Part One) 18
3.1.1. Poincaré Plot of PPG Signals to Assess Diabetes Status .. 18
3.1.2. MSP of PPG Signals for Appraising of Diabetes...... 22
3.1.3. Application of MSP vs MSE to Analyse PPG Signals in Diabetic and Non-Diabetic Subjects 24
3.1.3.1. Characteristics of Diabetic and Non-diabetic Subjects 24
3.1.3.2. Evaluation of Computational Parameters between Diabetic and Non-Diabetic Subjects . 26
3.1.3.3. Correlation of Four Different Methods with Medical and Computational Parameters ... 26
3.1.3.4. MSEaverage Fluctuations in Different Scale Factors in Diabetic and Non-Diabetic Subjects .. 28
3.1.3.5. Impact of Data Length for MSPI on Sensitivity of Distinction between Two Clusters (Diabetic and Non-Diabetic) .... 29
3.1.3.6. The Quantity of Data Points Influences the Computational Parameters in Persons with and without Diabetes 30
3.1.3.7. Time Consumption for MSEaverage and MSPI in Individuals with and without Diabetes . 30
3.2. Poincaré Plots to Analyse PPG Signals between Smokers and Non-smokers (Study Part Two) 32
3.2.1. Smoker and Non-smoker Features ...... 32
3.2.2. Evaluation of Poincaré plots in Smoker and Non-smoker . 33
3.2.3. Evaluation of the Three Parameters of the Poincaré Plot in Smokers and Non-Smokers 34
Chapter 4. Discussions ......... 35
4.1. Comparison of PPGA in Diabetic and Non-Diabetic Subjects Using the Poincaré Plot and MSP (Study Part One) .. 35
4.1.1. Poincaré plot in Diabetic and Non-Diabetic Subjects .... 35
4.1.2. MSP in Diabetic and Non-Diabetic Subjects ..... 36
4.2. Application of Poincaré Plot to Assess PPGA in Smokers and Non-smokers (Study Part Two) ....... 37
4.3. Study Limitations .... 38
4.3.1. Study Limitations in Study Part One .... 38
4.3.2. Study Limitations in Study Part Two ... 38
Chapter 5. Conclusion .. 39
References ..... 40
[1] J. Allen, D. Zheng, P. A. Kyriacou, and M. Elgendi, "Photoplethysmography (PPG): state-of-the-art methods and applications," Physiol Meas, vol. 42, no. 10, 2021.
[2] G.-M. Lin, B. Haryadi, C.-M. Yang, S.-C. Chu, C.-C. Yang, and H.-T. Wu, "Discrepancies between Conventional Multiscale Entropy and Modified Short-Time Multiscale Entropy of Photoplethysmographic Pulse Signals in Middle- and Old- Aged Individuals with or without Diabetes," Entropy, vol. 19, no. 3, p. 132, 2017.
[3] B. Haryadi, J. J. Liou, H. C. Wei, M. X. Xiao, H. T. Wu, and C. K. Sun, "Application of multiscale Poincaré short-time computation versus multiscale entropy in analyzing fingertip photoplethysmogram amplitudes to differentiate diabetic from non-diabetic subjects," Comput Methods Programs Biomed, vol. 166, pp. 115-121, 2018.
[4] Y. K. Qawqzeh, A. S. Bajahzar, M. Jemmali, M. M. Otoom, and A. Thaljaoui, "Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling," Biomed Res Int, vol. 2020, p. 3764653, 2020.
[5] Y. K. Qawqzeh, "The analysis of PPG time indices to predict aging and atherosclerosis," in Learning and Analytics in Intelligent Systems: Springer International, pp. 218-225, 2020.
[6] Y. K. Qawqzeh, M. M. Reaz, and O. Maskon, "Photoplethysmography analysis of artery properties in patients presenting with established erectile dysfunction," in 2nd International Conference on Electronic Computer Technology 2010, pp. 165-168, 2010.
[7] R. Banerjee, R. Vempada, K. M. Mandana, A. D. Choudhury, and A. Pal, "Identifying coronary artery disease from photoplethysmogram," in UBICOMP/ISWC ’16 ADJUNCT, 12-16 September 2016, Heidelberg, Germany, pp. 1084-1088, 2016. DOI: http://dx.doi.org/10.1145/2968219.2972712
[8] N. Paradkar and S. R. Chowdury, "Coronary artery disease detection using photoplethysmography," in The Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2017, pp. 100-103, 2017.
[9] T. Saritas, R. Greber, B. Venema, V.G. Puelles, S. Ernst, V. Blazek, J. Floege, S. Leonhardt, and G. Schlieper, " Non-invasive evaluation of coronary heart disease in patients with chronic kidney disease using photoplethysmography. Clin Kidney J, vol. 12 no. 4, pp.538-545, 2019.
[10] M. K. Chung, D. A. Zidar, M. R. Bristow, S. J. Cameron, T. Chan, C. V. Harding, D. H. Kwon, T. Singh, J. C. Tilton, E. J. Tsai, N. R. Tucker, J. Barnard, and J. Loscalzo, "COVID-19 and Cardiovascular Disease: From Bench to Bedside," Circ Res, vol. 128, no. 8, pp. 1214-1236, 2021.
[11] W. H. Organization. (2022, 10 November 2022). Overview. Available: https://covid19.who.int
[12] P. Boutouyrie, A. I. Tropeano, R. Asmar, I. Gautier, A. Benetos, P. Lacolley, and S. Laurent, "Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study," Hypertension, vol. 39, no. 1, pp. 10-5, 2002.
[13] S. Laurent, P. Boutouyrie, R. Asmar, I. Gautier, B. Laloux, L. Guize, P. Ducimetiere, and A. Benetos, "Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients," Hypertension, vol. 37, no. 5, pp. 1236-41, 2001.
[14] K. Cruickshank, L. Riste, S. G. Anderson, J. S. Wright, G. Dunn, and R. G. Gosling, "Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function?," Circulation, vol. 106, no. 16, pp. 2085-90, 2002.
[15] T. Pinkau, K. F. Hilgers, R. Veelken, and J. F. Mann, "How does minor renal dysfunction influence cardiovascular risk and the management of cardiovascular disease?," J Am Soc Nephrol, vol. 15, no. 3, pp. 517-23, 2004.
[16] R. N. Foley, P. S. Parfrey, and M. J. Sarnak, "Clinical epidemiology of cardiovascular disease in chronic renal disease," Am J Kidney Dis, vol. 32, no. 5 Suppl 3, pp. S112-9, 1998.
[17] M. Costa, A. L. Goldberger, and C. K. Peng, "Multiscale entropy analysis of complex physiologic time series," (in eng), Phys Rev Lett, vol. 89, no. 6, p. 068102, 2002.
[18] T. S. Henriques, S. Mariani, A. Burykin, F. Rodrigues, T. F. Silva, and A. L. Goldberger, "Multiscale Poincaré plots for visualizing the structure of heartbeat time series," BMC Med Inform Decis Mak, vol. 16, p. 17, 2016.
[19] A. Humeau-Heurtier, "The Multiscale Entropy Algorithm and Its Variants: A Review," Entropy, vol. 17, no. 5, pp. 3110-3123, 2015.
[20] S.-D. Wu, C.-W. Wu, S.-G. Lin, K.-Y. Lee, and C.-K. Peng, "Analysis of complex time series using refined composite multiscale entropy," Physics Letters A, vol. 378, no. 20, pp. 1369-1374, 2014.
[21] M. Costa, C. K. Peng, A. L. Goldberger, and J. M. Hausdorff, "Multiscale entropy analysis of human gait dynamics," Physica A, vol. 330, no. 1-2, pp. 53-60, 2003.
[22] M. Brennan, M. Palaniswami, and P. Kamen, "Do Existing Measures of Poincaré Plot Geometry Reflect Nonlinear Features of Heart Rate Variability?," IEEE Transactions on Biomedical Engineering, vol. 48, no. 11, pp. 1342-1347, 2001.
[23] C. Lerma, O. Infante, H. Perez-Grovas, and M. V. Jose, "Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients," Clin Physiol Funct Imaging, vol. 23, no. 2, pp. 72-80, 2003.
[24] C. -H. Hsu, M. -Y. Tsai, G.-S. Huang, T. -C. Lin, K. -P. Chen, S. -T. Ho, L.-Y. Shyu, and C. -Y. Li, "Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction," Acta Anaesthesiol Taiwan, vol. 50, no. 1, pp. 12-8, 2012.
[25] H. B. Abubaker, H. S. Alsafar, H. F. Jelinek, K. A. Khalaf, and A. H. Khandoker, "Poincaré Plot Analysis of Heart Rate Variability in the Diabetic Patients in the UAE," in 2014 Middle East Conference on Biomedical Engineering (MECBME), Doha, Qatar, pp. 368-370, 2014
[26] P. Shi, Y. Zhu, J. Allen, and S. Hu, "Analysis of pulse rate variability derived from photoplethysmography with the combination of lagged Poincaré plots and spectral characteristics," Medical Engineering & Physics, vol. 31, no. 7, pp. 866-871, 2009.
[27] C. K. Karmakar, A. H. Khandoker, A. Voss, and M. Palaniswami, "Sensitivity of temporal heart rate variability in Poincaré plot to changes in parasympathetic nervous system activity," Biomed Eng Online, vol. 10, p. 17, 2011.
[28] H. -T. Wu, P. -C. Hsu, C. -K. Sun, H. -J. Wang, C. -C. Liu, H. R. Chen, A. -B. Liu, C. -J. Tang, and M. T. Lo, "Assessment of autonomic dysfunction in patients with type 2 diabetes using reactive hyperemia," J Theor Biol, vol. 330, pp. 9-17, 2013.
[29] H. -T. Wu, C. -Y. Lee, C. -C. Liu, and A. -B. Liu, "Multiscale cross-approximate entropy analysis as a measure of complexity between ECG R-R interval and PPG pulse amplitude series among the normal and diabetic subjects," Comput Math Methods Med, vol. 2013, p. 231762, 2013.
[30] H.-T. Wu, C.-Y. Lee, C.-C. Liu, and A.-B. Liu, "Multiscale cross-approximate entropy analysis as a measurement of complexity between ECG RR interval and PPG pulse amplitude series among the normal and diabetic subjects," Computational and Mathematical Methods in Medicine, vol. 2013, 2013.
[31] A. American Diabetes, "2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018," Diabetes Care, vol. 41, no. Suppl 1, pp. S13-S27, 2018.
[32] R. A. Hoshi, C. M. Pastre, L. C. Vanderlei, and M. F. Godoy, "Poincaré plot indexes of heart rate variability: relationships with other nonlinear variables," Auton Neurosci, vol. 177, no. 2, pp. 271-274, 2013.
[33] C. Lerma, O. Infante, H. Perez-Grovas, and M. V. Jose, "Poincaré plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients," Clin Physiol & Func Im, vol. 23, no. 2, pp. 72-80, 2003.
[34] H. -T. Wu, P. C. Hsu, C. F. Lin, H. J. Wang, C. K. Sun, A. B. Liu, M. T. Lo, and C> J. Tang, "Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic," IEEE Trans Biomed Eng, vol. 58, no. 10, pp. 2978-81, 2011.
[35] H. -T. Wu, K. W. Lee, W. Y. Pan, A. B. Liu, and C. K. Sun, "Difference in bilateral digital volume pulse as a novel non-invasive approach to assessing arteriosclerosis in aged and diabetic subjects: A preliminary study," Diab Vasc Dis Res, vol. 14, no. 3, pp. 254-257, 2017.
[36] H.-T. Wu, C. -C. Yang, G. -M. Lin, B. Haryadi, S. -C. Chu, C. -M. Yang, and C. -K. Sun, "Multiscale Cross-Approximate Entropy Analysis of Bilateral Fingertips Photoplethysmographic Pulse Amplitudes among Middle-to-Old Aged Individuals with or without Type 2 Diabetes," Entropy, vol. 19, no. 4, p. 145, 2017.
[37] H. Tomiyama, H. Hashimoto, H. Tanaka, C. Matsumoto, M. Odaira, J. Yamada, M. Yoshida, K. Shiina, M. Nagata, and A. Yamashina, "Continuous smoking and progression of arterial stiffening: a prospective study," J Am Coll Cardiol, vol. 55, no. 18, pp. 1979-87, 2010.

(此全文20251130後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *