帳號:guest(18.218.190.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Atul Verma
作者(英文):Atul verma
論文名稱:Versatile Copper oxide related materials for 4-nitrophenol pollutant degradation and their electrochemical applications
論文名稱(英文):Versatile Copper oxide related materials for 4-nitrophenol pollutant degradation and their electrochemical applications
指導教授:傅彥培
指導教授(英文):Yen-Pei Fu
口試委員:翁明壽
傅彥培
陳怡嘉
劉哲文
胡安仁
口試委員(英文):Ming-Show Wong
Yen-Pei Fu
Yi-Jia Chen
Je-Wen Liou
Anren Hu
學位類別:博士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:810614305
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:143
關鍵詞(英文):copper oxide4-NP degradationcatalytic reductionelectrochemical sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏收藏:0
Water pollution occurs when harmful substances such as chemicals contaminate a stream, river, lake, ocean, aquifer, or other body of water, degrading water quality and rendering it toxic to humans or the environment. As per a study published in “The Lancet”, water pollution had killed 1.8 million people in 2015. Xenobiotics such as nitrobenzene, nitrophenols and di-nitrotoluenes are a major chunk of water pollutants nowadays. Especially nitrophenols, used in synthesis of industrial products viz; pesticides, herbicides, petrochemicals, explosives etc. are highly stable and soluble in water. They are powerful carcinogens and also can cause liver and kidney failures in humans and other diseases in animals. In this regard, for nitrophenol pollutant remediation, catalysts are an important class of materials. Catalysts are the backbone of chemical reactions which elevate the progress of a reaction by many folds without mostly undergoing any structural or chemical changes on themselves. This unique property is utilized by us in reactions such as photocatalysis, catalytic reduction of pollutants and electrochemical analysis.
Our objective is to use the same catalyst for multiple applications of Photocatalysis, electrochemical sensor, electrochemical hydrogen and oxygen evolution and catalytic reduction. For this purpose, we chose copper-based oxides and its hybridization with carbonaceous materials since they are earth abundant (50 ppm in earth’s crust) and inexpensive. These catalysts, must be able to perform efficient photocatalysis and electrocatalysis via increasing their carrier lifetime through effective channeling of electrons throughout their composite phases.
Herein, in our first study, we synthesized CuO/g-C3N4 hybrid to mineralize 4-nitrophenol (4-NP) pollutant into non-harmful products via photocatalysis by tuning the band alignments to channel the electrons and holes appropriately. Electron lifetimes were calculated via time resolved fluorescence spectroscopy and scavenger tests were conducted to understand the mechanism of photodegradation. 92.8% of 20 ppm 4-NP could be degraded within 150 min. no reduction in degradation efficiency even up to 5 cycles. Electrochemical oxygen evolution was also demonstrated to showcase the multifunctional nature of these photocatalysts.
In our second work, we were able to synthesize copper oxides in two phases viz; CuO (Cu2+) and Cu2O (Cu+) and hybridize it with g-C3N4, simultaneously doping CuO with Ag in order to obtain better catalytic activity. Presence of binary oxidation state of copper was proved via XRD and XPS analysis results. Finally, the catalyst was utilized to convert 100 ppm 4-NP to 4-aminophenol (4-AP) in a duration of 4 minutes. Effects of catalyst loading, 4-NP concentration and external chemicals were also explored in this work. Post 4-NP reduction XRD revealed the formation of metallic copper which was converted back to Cu2O after reannealing the catalyst. The synthesized catalyst was also applied as an electrochemical sensor for neurotransmitter dopamine showcasing its effective bi-functional nature.
In our final work, Cu-cuprous/cupric oxide-based family of catalysts were synthesized via simple hydrothermal technique. These catalysts were applied towards dual application namely 4-NP conversion and electrochemical hydrogen evolution reaction (HER). Sample properties were analyzed via intensive characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction of hydrogen (H2-TPR) analysis. XRD revealed the presence of varying copper oxide phases across all the synthesized catalysts. XPS discovered the disparities between catalysts annealed at various temperatures. Reducibility of catalysts was studied via H2-TPR and they disclosed phase conversions taking place in the material thereby directly affecting the application. Cu-Cu2O (150℃) could convert 98.6 % of 50 ppm 4-NP into 4-AP with recycle tests up to 10 cycles yielding conversion values between 96.3–98.9% which are high enough for any catalyst to reach its maximum potential. CuO-Cu2O (300℃) exhibits best electrochemical hydrogen evolution activity with the least onset potential of -0.28 V vs. RHE at 1 mA cm-2 possessing a maximum current density of 366 mA cm-2. With the momentum of these works, in the future, it could be possible to use these copper-based catalysts for photocatalytic nitrogen fixation i.e., to produce ammonia from nitrogen through photocatalysis which is considered to be much cleaner than the current commercial (Haber Bosch) process.
Table of Contents
Abstract i
Acknowledgement iii
List of Publications iv
List of Figures x
List of Tables xv
List of Schemes xvi
Chapter 1: Introduction 1
1.1 Copper oxides, their properties and applications 3
1.2 Water treatment and current technology 6
1.3 Advanced oxidation process (AOP) and photocatalysis 7
1.4 Metal oxide semiconductors in photocatalysis 11
1.5 4-NP pollutant, electrochemical sensor, Oxygen evolution reaction (OER) and Hydrogen evolution reaction (HER) 12
1.6 Objectives 15
Chapter 2: Literature survey 18
2.1 Copper oxides and its composite in photocatalysis 20
2.1.1 Heterojunction 21
2.1.2 Doping 23
2.1.3 Carbonaceous 24
2.2 Copper oxides for 4-NP reduction and electrochemical dopamine sensors 27
2.3 Copper oxides in electrochemical OER and HER 29
2.4 Synthesis strategies 30
2.4.1 Sol-gel method 30
2.4.2 Hydrothermal method 31
2.5 Characterization instruments 34
2.5.1 X-ray diffractometer (XRD) 34
2.5.2 Field emission scanning electron microscope (FE-SEM) 34
2.5.3 Transmission electron microscope (TEM) 34
2.5.4 X-ray photoelectron spectroscopy (XPS) 35
2.5.5 UV-Visible Diffuse reflectance spectroscopy (UV-Vis DRS) 35
2.5.6 Photoluminescence (PL) and lifetime PL 35

Chapter 3: Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in Cl-CuO/g-C3N4 hybrids synthesized via simple sol-gel technique 37
3.1 Experimental 40
3.1.1 Synthesis of Cl-CuO by wet chemical method 40
3.1.2 Synthesis of g-C3N4 and Cl-CuO/g-C3N4 composite 41
3.1.3 Materials characterization 41
3.1.4 Photocatalytic degradation of 4-NP and electrochemical OER 42
3.2 Results and discussion 43
3.2.1 Crystalline, structural and Morphologies Studies 43
3.2.2 Optical analyses 48
3.2.3 BET (Brunauer-Emmett-Teller) surface area 52
3.2.4 XPS analysis 53
3.2.5 Photocatalytic degradation of 4-NP and mechanism 56
3.2.6 Electrochemical oxygen evolution reaction 65
3.3 Conclusion 67
Chapter 4: Ag-CuxO/g-C3N4 hybrid catalysts for the reduction of 4-nitrophenol and for electrochemical detection of dopamine 68
4.1 Experimental 71
4.1.1 Synthesis of g-C3N4 71
4.1.2 Synthesis of Cu-based oxide composites 71
4.1.3 Formation of Cu2O and CuO 71
4.1.4 Materials Characterization 73
4.1.5 Catalytic reduction of 4-NP 74
4.1.6 Preparation of electrodes and electrochemical dopamine detection 74
4.2 Results and discussion 74
4.2.1 XRD, FE-SEM and TEM 74
4.2.2 BET surface area and FTIR 79
4.2.3 X-ray photoelectron spectroscopy (XPS) 82
4.2.4 Catalytic Reduction of 4-NP 84
4.2.5 Mechanism of 4-NP catalytic reduction 88
4.2.6 Electrochemical Dopamine Sensor 91
4.2.7 Chronoamperometric response of GCE/ACCG electrode 94
4.3 Conclusion 95
Chapter 5: Cu-cuprous/cupric oxide nanoparticles towards dual application for efficient nitrophenol conversion and electrochemical hydrogen evolution 96
5.1 Experimental 99
5.1.1 Synthesis of copper/cuprous oxides 99
5.1.2 Materials Characterization 100
5.1.3 Catalytic reduction of 4-NP and electrochemical HER 101
5.2 Results and discussion 102
5.2.1 XRD and TEM 102
5.2.2 XPS analysis 105
5.2.3 BET, FTIR and H2-TPR analysis 107
5.2.4 Catalytic reduction of 4-NP 110
5.2.5 Mechanism of 4-NP reduction by Cu-150 115
5.2.6 Electrochemical HER 117
5.3 Conclusion 119
Chapter 6: Future work and final conclusions 121
6.1 Future work 123
6.2 Final conclusions 124
References 127

1 Q.Zhang, K.Zhang, D.Xu, G.Yang, H.Huang, F.Nie, C.Liu and S.Yang, Prog. Mater. Sci., 2014, 60, 208–337.
2 A. S.Zoolfakar, R. A.Rani, A. J.Morfa, A. P.O’Mullane and K.Kalantar-Zadeh, J. Mater. Chem. C, 2014, 2, 5247–5270.
3 J.Pal, C.Mondal, A. K.Sasmal, M.Ganguly, Y.Negishi and T.Pal, ACS Appl. Mater. Interfaces, 2014, 6, 9173–9184.
4 N.Supanchaiyamat and A. J.Hunt, ChemSusChem, 2019, 12, 397–403.
5 H.Lei, X.Li, J.Meng, H.Zheng, W.Zhang and R.Cao, ACS Catal., 2019, 9, 4320–4344.
6 Y. G.Lin, Y. K.Hsu, Y. C.Lin, Y. H.Chang, S. Y.Chen and Y. C.Chen, J. Colloid Interface Sci., 2016, 471, 76–80.
7 Y.Cao, J.Fan, L.Bai, F.Yuan and Y.Chen, Cryst. Growth Des., 2010, 10, 232–236.
8 M.Izaki, Thin Solid Films, 2012, 520, 2434–2437.
9 H.Zheng, J. Z.Ou, M. S.Strano, R. B.Kaner, A.Mitchell and K.Kalantar-Zadeh, Adv. Funct. Mater., 2011, 21, 2175–2196.
10 A. D.Yoffe, Adv. Phys., 1993, 42, 173–262.
11 J. C.Tauc, Opt. Prop. Solids, 1972, North Holl, 277.
12 S.Sun, X.Zhang, J.Cui, Q.Yang and S.Liang, Chem. - An Asian J., 2019, 14, 2912–2924.
13 N.Verma and N.Kumar, ACS Biomater. Sci. Eng., 2019, 5, 1170–1188.
14 M. B.Gawande, A.Goswami, F. X.Felpin, T.Asefa, X.Huang, R.Silva, X.Zou, R.Zboril andR. S.Varma, Chem. Rev., 2016, 116, 3722–3811.
15 K.Akimoto, S.Ishizuka, M.Yanagita, Y.Nawa, G. K.Paul and T.Sakurai, Sol. Energy, 2006, 80, 715–722.
16 S.Sun, Nanoscale, 2015, 7, 10850.
17 C.Dong, Y.Wang, J.Xu, G.Cheng, W.Yang, T.Kou, Z.Zhang and Y.Ding, J. Mater. Chem. A, 2014, 2, 18229–18235.
18 S. B.Kalidindi, U.Sanyal and B. R.Jagirdar, Phys. Chem. Chem. Phys., 2008, 10, 5870–5874.
19 S.Sun, C.Kong, H.You, X.Song, B.Ding and Z.Yang, CrystEngComm, 2012, 14, 40–43.
20 H.Jing, N.Large, Q.Zhang and H.Wang, J. Phys. Chem. C, 2014, 118, 19948–19963.
21 Y.Bai, W.Zhang, Z.Zhang, J.Zhou, X.Wang, C.Wang, W.Huang, J.Jiang and Y.Xiong, J. Am. Chem. Soc., 2014, 136, 14650–14653.
22 R.Ji, W.Sun and Y.Chu, RSC Adv., 2014, 4, 6055–6059.
23 X. W.Liu, Langmuir, 2011, 27, 9100–9104.
24 X. W.Liu, F. Y.Wang, F.Zhen and J. R.Huang, RSC Adv., 2012, 2, 7647–7651.
25 H.Zhu, M.Du, D.Yu, Y.Wang, L.Wang, M.Zou, M.Zhang and Y.Fu, J. Mater. Chem. A, 2013, 1, 919–929.
26 L.Zhang, D. A.Blom and H.Wang, Chem. Mater., 2011, 23, 4587–4598.
27 Y. C.Yang, H. J.Wang, J.Whang, J. S.Huang, L. M.Lyu, P. H.Lin, S.Gwo and M. H.Huang, Nanoscale, 2014, 6, 4316–4324.
28 C. H.Kuo, T. E.Hua and M. H.Huang, J. Am. Chem. Soc., 2009, 131, 17871–17878.
29 H.Bao, W.Zhang, Q.Hua, Z.Jiang, J.Yang and W.Huang, Angew. Chemie - Int. Ed., 2011, 50, 12294–12298.
30 G.Ghadimkhani, N. R.DeTacconi, W.Chanmanee, C.Janaky and K.Rajeshwar, Chem. Commun, 2013, 49, 1297–1299.
31 L. J.Zhou, Y. C.Zou, J.Zhao, P. P.Wang, L. L.Feng, L. W.Sun, D. J.Wang and G. D.Li, Sensors Actuators B Chem., 2013, 188, 533–539.
32 L.Hu, Y.Huang, F.Zhang and Q.Chen, Nanoscale, 2013, 5, 4186–4190.
33 Y.Cudennec and A.Lecerf, Solid State Sci., 2003, 5, 1471–1474.
34 S. K.Li, F. Z.Huang, Y.Wang, Y. H.Shen, L. G.Qiu, A. J.Xie and S. J.Xu, J. Mater. Chem., 2011, 21, 7459–7466.
35 X.Liu, C.Feng, S. W.Or, Y.Sun, C.Jin, W.Li and Y.Lv, RSC Adv., 2013, 3, 14590–14594.
36 C. M.McShane and K. S.Choi, Phys. Chem. Chem. Phys., 2012, 14, 6112–6118.
37 Water in America: Is It Safe to Drink?, https://www.nationalgeographic.com/science/article/140217-drinking-water-safety-west-virginia-chemical-spill-science, (accessed 15April2021).
38 Climate Change Poses Existential Water Risks – National Geographic Society Newsroom, https://blog.nationalgeographic.org/2015/02/17/climate-change-poses-existential-water-risks/, (accessed 15April2021).
39 WHO.
40 M. C.Hidalgo, M.Maicu, J. A.Navío and G.Colón, Catal. Today, 2007, 129, 43–49.
41 S.Malato, J.Blanco, D. C.Alarcón, M. I.Maldonado, P.Fernández-Ibáñez and W.Gernjak, Catal. Today, 2007, 122, 137–149.
42 Z. R.Lin, L.Zhao and Y. H.Dong, Chemosphere, 2015, 141, 7–12.
43 D.Spasiano, R.Marotta, S.Malato, P.Fernandez-Ibañez and I.DiSomma, Appl. Catal. B Environ., 2015, 170–171, 90–123.
44 J.Romão, Photocatalytic Water Treatment: Substrate-specific activity of titanium dioxide, doi: 10.3990/1.9789036539609, 2015.
45 F. E.Osterloh, ACS Energy Lett., 2017, 2, 445–453.
46 X.Yang and D.Wang, ACS Appl. Energy Mater., 2018, 1, 6657–6693.
47 J. L.White, M. F.Baruch, J. E.Pander, Y.Hu, I. C.Fortmeyer, J. E.Park, T.Zhang, K.Liao, J.Gu, Y.Yan, T. W.Shaw, E.Abelev and A. B.Bocarsly, Chem. Rev., 2015, 115, 12888–12935.
48 P.Ganguly, S.Panneri, U. S.Hareesh, A.Breen and S. C.Pillai, in Nanoscale Materials in Water Purification, Elsevier, 2018, pp. 653–688.
49 M.Hasanpour and M.Hatami, J. Mol. Liq., 2020, 309, 113094.
50 A.Saravanan, P. S.Kumar, D. V. N.Vo, P. R.Yaashikaa, S.Karishma, S.Jeevanantham, B.Gayathri and V. D.Bharathi, Environ. Chem. Lett., 2021, 19, 441–463.
51 M.Silvi, E.Arceo, I. D.Jurberg, C.Cassani and P.Melchiorre, J. Am. Chem. Soc., 2015, 137, 6120–6123.
52 H.Hao and X.Lang, ChemCatChem, 2019, 11, 1378–1393.
53 B.Weng, M. Y.Qi, C.Han, Z. R.Tang and Y. J.Xu, ACS Catal., 2019, 9, 4642–4687.
54 X.Zhang, J.Qin, Y.Xue, P.Yu, B.Zhang, L.Wang and R.Liu, Sci. Rep., 2014, 4, 1–8.
55 K.Balasubramanian and M.Burghard, Anal. Bioanal. Chem., 2006, 385, 452–468.
56 H.Li, X.Wang and Z.Yu, J. Solid State Electrochem., 2014, 18, 105–113.
57 M. A.Raj and S.A. John, Graphene-Based Electrochem. Sensors Biomol. A Vol. Micro Nano Technol., 2018, 1–41.
58 M. S.Faber and S.Jin, Energy Environ. Sci., 2014, 7, 3519–3542.
59 Y.Jiao, Y.Zheng, M.Jaroniec and S. Z.Qiao, Chem. Soc. Rev., 2015, 44, 2060–2086.
60 M. G.Walter, E. L.Warren, J. R.McKone, S. W.Boettcher, Q.Mi, E. A.Santori and N. S.Lewis, Chem. Rev., 2010, 110, 6446–6473.
61 A.Lasia, Handb. Fuel Cells, , DOI:10.1002/9780470974001.f204033.
62 T. R.Cook, D. K.Dogutan, S. Y.Reece, Y.Surendranath, T. S.Teets and D. G.Nocera, Chem. Rev., 2010, 110, 6474–6502.
63 N. T.Suen, S. F.Hung, Q.Quan, N.Zhang, Y. J.Xu and H. M.Chen, Chem. Soc. Rev., 2017, 46, 337–365.
64 K.Kabra, R.Chaudhary and R. L.Sawhney, Ind. Eng. Chem. Res., 2004, 43, 7683–7696.
65 A.Fujishima and K.Honda, Nature, 1972, 238, 37–38.
66 A.Sharma and B. K.Lee, Appl. Catal. A Gen., 2016, 523, 272–282.
67 A.Sharma and B. K.Lee, Catal. Today, 2017, 287, 113–121.
68 C. B.Ong, L. Y.Ng and A. W.Mohammad, Renew. Sustain. Energy Rev., 2018, 81, 536–551.
69 F.Liu, Y. H.Leung, A. B.Djuriš Ić,Ić, A.Man, C.Ng and W. K.Chan, J. Phys. Chem. C, 2013, 117, 23, 12218-12228.
70 V.Hasija, P.Raizada, A.Sudhaik, P.Singh, V. K.Thakur andA. A. P.Khan, Solid State Sci., 2020, 100, 106095.
71 Z.Chen, Z.Jiao, D.Pan, Z.Li, M.Wu, C. H.Shek, C. M. L.Wu and J. K. L.Lai, Chem. Rev., 2012, 112, 3833–3855.
72 H.Xu, W.Liu, Y.Zhao, D.Wang and J.Zhao, J. Colloid Interface Sci., 2019, 540, 585–592.
73 A.Cots, P.Bonete and R.Gómez, ACS Appl. Mater. Interfaces, 2018, 10, 26348–26356.
74 H.-S.Jo, M.-W.Kim, B.Joshi, E.Samuel, H.Yoon, M. T.Swihart and S. S.Yoon, Nanoscale, 2018, 10, 9720–9728.
75 S.Masudy-Panah, R.Siavash Moakhar, C. S.Chua, A.Kushwaha and G. K.Dalapati, ACS Appl. Mater. Interfaces, 2017, 9, 27596–27606.
76 S. K.Shinde, D. Y.Kim, G. S.Ghodake, N. C.Maile, A. A.Kadam, D. S.Lee, M. C.Rath and V. J.Fulari, Ultrason. Sonochem., 2018, 40, 314–322.
77 K.Henzler, A.Heilemann, J.Kneer, P.Guttmann, H.Jia, E.Bartsch, Y.Lu and S.Palzer, Sci. Rep., 2015, 5, 17729.
78 B. A.Nejand, V.Ahmadi, S.Gharibzadeh and H. R.Shahverdi, ChemSusChem, 2016, 9, 302–313.
79 G.Zhao, W.Wang, T.-S.Bae, S.-G.Lee, C.Mun, S.Lee, H.Yu, G.-H.Lee, M.Song and J.Yun, Nat. Commun., 2015, 6, 8830.
80 S.Wu, G.Fu, W.Lv, J.Wei, W.Chen, H.Yi, M.Gu, X.Bai, L.Zhu, C.Tan, Y.Liang, G.Zhu, J.He, X.Wang, K. H. L.Zhang, J.Xiong and W.He, Small, 2018, 14, 1702667.
81 K.-L.Bae, J.Kim, C. K.Lim, K. M.Nam and H.Song, Nat. Commun., 2017, 8, 1156.
82 R.Gusain and O. P.Khatri, J. Mater. Chem. A, 2013, 1, 5612–5619.
83 P.Raizada, A.Sudhaik, P.Singh, P.Shandilya, P.Thakur and H.Jung, Arab. J. Chem., 2020, 13, 3196–3209.
84 A. C.Nogueira, L. E.Gomes, J. A. P.Ferencz, J. E. F. S.Rodrigues, R.V.Goncąlves and H.Wender, J. Phys. Chem. C, 2019, 123, 25680–25690.
85 R.Saravanan, S.Joicy, V. K.Gupta, V.Narayanan and A.Stephen, Mater. Sci. Eng. C, 2013, 33, 4725–4731.
86 H.Li, K.Yu, X.Lei, B.Guo, C.Li, H.Fu and Z.Zhu, Dalt. Trans., 2015, 44, 10438–10447.
87 W.Shi and N.Chopra, ACS Appl. Mater. Interfaces, 2012, 4, 5590–5607.
88 Z.Behzadifard, Z.Shariatinia and M.Jourshabani, J. Mol. Liq., 2018, 262, 533–548.
89 E. D.Sherly, J.Judith Vijaya and L.John Kennedy, Cuihua Xuebao/Chinese J. Catal., 2015, 36, 1263–1272.
90 T.Sun, Z.Zhao, Z.Liang, J.Liu, W.Shi and F.Cui, Chem. Eng. J., 2018, 334, 1527–1536.
91 Y.Belaissa, D.Nibou, A. A.Assadi, B.Bellal and M.Trari, J. Taiwan Inst. Chem. Eng., 2016, 68, 254–265.
92 J.Ran, H.Chen, X.Bai, S.Bi, H.Jiang, G.Cai, D.Cheng and X.Wang, Appl. Surf. Sci., 2019, 493, 1167–1176.
93 N.Kumaresan, M. M. A.Sinthiya, K.Ramamurthi, R.Ramesh Babu and K.Sethuraman, Arab. J. Chem., 2020, 13, 3910–3928.
94 H.Salari andM.Sadeghinia, J. Photochem. Photobiol. A Chem., 2019, 376, 279–287.
95 P.Ma, Y.Yu, J.Xie and Z.Fu, Adv. Powder Technol., 2017, 28, 2797–2804.
96 Z.Shaghaghi, A. R.Amani-Ghadim and M.Seraji, Mater. Chem. Phys., 2020, 243, 122635.
97 L.Vimala Devi, S.Sellaiyan, T.Selvalakshmi, H. J.Zhang, A.Uedono, K.Sivaji and S.Sankar, Adv. Powder Technol., 2017, 28, 3026–3038.
98 J. D.Rodney, S.Deepapriya, P.Annie Vinosha, S.Krishnan, S.Janet Priscilla, R.Daniel and S.Jerome Das, Optik (Stuttg)., 2018, 161, 204–216.
99 P.Vomáčka, V.Štengl, J.Henych and M.Kormunda, J. Colloid Interface Sci., 2016, 481, 28–38.
100 R. G.Sethuraman, T.Venkatachalam and S. D.Kirupha, Mater. Sci. Pol., 2018, 36, 520–529.
101 N. F.Khusnun, A. A.Jalil, S.Triwahyono, C. N. C.Hitam, N. S.Hassan, F.Jamian, W.Nabgan, T. A. T.Abdullah, M. J.Kamaruddin and D.Hartanto, Powder Technol., 2018, 327, 170–178.
102 S.Liang, Y.Zhou, W.Wu, Y.Zhang, Z.Cai and J.Pan, J. Photochem. Photobiol. A Chem., 2017, 346, 168–176.
103 Y.Duan, Mater. Res. Bull., 2018, 105, 68–74.
104 J.Wang, H.Xu, X.Qian, Y.Dong, J.Gao, G.Qian and J.Yao, Chem. - An Asian J., 2015, 10, 1276–1280.
105 A.Arshad, J.Iqbal, M.Siddiq, M. U.Ali, A.Ali, H.Shabbir, U.BinNazeer and M. S.Saleem, Ceram. Int., 2017, 43, 10654–10660.
106 M.Darvishi, G.Mohseni-Asgerani and J.Seyed-Yazdi, Surfaces and Interfaces, 2017, 7, 69–73.
107 Y.Wu, H.Wang, W.Tu, Y.Liu, Y. Z.Tan, X.Yuan and J. W.Chew, J. Hazard. Mater., 2018, 347, 412–422.
108 Y.Wu, H.Wang, W.Tu, S.Wu, Y.Liu, Y. Z.Tan, H.Luo, X.Yuan and J. W.Chew, Appl. Catal. B Environ., 2018, 229, 181–191.
109 M.Ismael and Y.Wu, Sustain. Energy Fuels, 2019, 3, 2907–2925.
110 W.-J.Ong, L.-L.Tan, Y. H.Ng, S.-T.Yong and S.-P.Chai, Chem. Rev., 2016, 116, 7159–7329.
111 I. F.Teixeira, E. C. M.Barbosa, S. C. E.Tsang and P. H. C.Camargo, Chem. Soc. Rev., 2018, 47, 7783–7817.
112 Y.Che, B.Lu, Q.Qi, H.Chang, J.Zhai, K.Wang and Z.Liu, Sci. Rep., 2018, 8, 16504.
113 M.Humayun, Z.Hu, A.Khan, W.Cheng, Y.Yuan, Z.Zheng, Q.Fu and W.Luo, J. Hazard. Mater., 2019, 364, 635–644.
114 G.Di, Z.Zhu, H.Zhang, J.Zhu, Y.Qiu, D.Yin and S.Küppers, J. Colloid Interface Sci., 2019, 538, 256–266.
115 X.Liu, N.Chen, Y.Li, D.Deng, X.Xing and Y.Wang, Sci. Rep., 2016, 6, 39531.
116 X.Wei, C.Shao, X.Li, N.Lu, K.Wang, Z.Zhang and Y.Liu, Nanoscale, 2016, 8, 11034–11043.
117 A.Kumar, A.Rana, G.Sharma, M.Naushad, A. H.Al-Muhtaseb, C.Guo, A.Iglesias-Juez and F. J.Stadler, ACS Appl. Mater. Interfaces, 2018, 10, 40474–40490.
118 Y.Wu, H.Wang, W.Tu, Y.Liu, S.Wu, Y. Z.Tan and J. W.Chew, Appl. Catal. B Environ., 2018, 233, 58–69.
119 D.Choi and D. J.Jang, New J. Chem., 2017, 41, 2964–2972.
120 R.Nehru, P. K.Gopi and S. M.Chen, New J. Chem., 2020, 44, 4590–4603.
121 B.Dinesh and R.Saraswathi, Sensors Actuators, B Chem., 2017, 253, 502–512.
122 H.Yin, Y.Zhou, S.Ai, X.Liu, L.Zhu and L.Lu, Microchim. Acta, 2010, 169, 87–92.
123 D.Xu, P.Diao, T.Jin, Q.Wu, X.Liu, X.Guo, H.Gong, F.Li, M.Xiang and Y.Ronghai, ACS Appl. Mater. Interfaces, 2015, 7, 16738–16749.
124 G.Wu, X.Liang, L.Zhang, Z.Tang, M.Al-Mamun, H.Zhao and X.Su, ACS Appl. Mater. Interfaces, 2017, 9, 18207–18214.
125 Z.Jin, C.Liu, K.Qi and X.Cui, Sci. Rep., 2017, 7, 1–9.
126 E.Pavitra, G. S.Rama Raju, S. M.Ghoreishian, L. K.Bharat, S. R.Dugasani, J. Y.Park, S. H.Park, J. S.Yu, Y. K.Han andY. S.Huh, J. Mater. Chem. A, 2019, 7, 23105–23120.
127 M.Ponnar, C.Thangamani, P.Monisha, S. S.Gomathi andK.Pushpanathan, Appl. Surf. Sci., 2018, 449, 132–143.
128 L.Chen, M.Liu, Y.Zhao, Q.Kou, Y.Wang, Y.Liu, Y.Zhang, J.Yang andY. M.Jung, Appl. Surf. Sci., 2018, 435, 72–78.
129 P. C.Rath, D.Saikia, M.Mishra and H. M.Kao, Appl. Surf. Sci., 2018, 427, 1217–1226.
130 A.Sharma, R. K.Dutta, A.Roychowdhury, D.Das, A.Goyal and A.Kapoor, Appl. Catal. A Gen., 2017, 543, 257–265.
131 Y.Guo, M.Dai, Z.Zhu, Y.Chen, H.He and T.Qin, Appl. Surf. Sci., 2019, 480, 601–610.
132 Y.Liang, Z.Chen, W.Yao, P.Wang, S.Yu and X.Wang, Langmuir, 2017, 33, 7606–7614.
133 A. K.Sasmal, S.Dutta and T.Pal, Dalt. Trans., 2016, 45, 3139–3150.
134 Y.Bao and K.Chen, Mol. Catal., 2017, 432, 187–195.
135 J. J.Wu, D.Bahnemann and A.Emeline, Colloids Surfaces A, 2017, 527, 34–41.
136 P.Zhang, T.Wang and H.Zeng, Appl. Surf. Sci., 2017, 391, 404–414.
137 D.Li, S.Zuo, H.Xu, J.Zan, L.Sun, D.Han, W.Liao, B.Zhang and D.Xia, J. Colloid Interface Sci., 2018, 531, 28–36.
138 S.Han, X.Hu, W.Yang, Q.Qian, X.Fang and Y.Zhu, ACS Appl. Energy Mater., 2018, 2, 1803–1811.
139 D. J.Nutt, A.Lingford-Hughes, D.Erritzoe and P. R. A.Stokes, Nat. Rev. Neurosci., 2015, 16, 305–312.
140 A. K.Mishra, B.Mukherjee, A.Kumar, D. K.Jarwal, S.Ratan, C.Kumar and S.Jit, RSC Adv., 2019, 9, 1772–1781.
141 S.Cheng, X.Gao, S.DelaCruz, C.Chen, Z.Tang, T.Shi, C.Carraro and R.Maboudian, J. Mater. Chem. B, 2019, 4990–4996.
142 R. K.Sahoo, A.Das, K.Samantaray, S. K.Singh, R. S.Mane, H. C.Shin, J. M.Yun and K. H.Kim, CrystEngComm, 2019, 21, 1607–1616.
143 M. M.Alam, A. M.Asiri, M. T.Uddin, Inamuddin, M. A.Islam, M. R.Awual and M. M.Rahman, New J. Chem., 2019, 43, 4849–4858.
144 B.Li, Y.Zhou, W.Wu, M.Liu, S.Mei, Y.Zhou andT.Jing, Biosens. Bioelectron., 2015, 67, 121–128.
145 B.Liu, X.Ouyang, Y.Ding, L.Luo, D.Xu and Y.Ning, Talanta, 2016, 146, 114–121.
146 H.Öztürk Doğan, B.Kurt Urhan, E.Çepni and M.Eryiğit, Microchem. J., 2019, 150, 104157.
147 J.Zhu, L.Hu, P.Zhao, L. Y. S.Lee andK. Y.Wong, Chem. Rev., 2020, 120, 851–918.
148 H. B.Gray, Nat. Chem., 2009, 1, 7.
149 S. M.Pawar, B. S.Pawar, B.Hou, J.Kim, A. T.Aqueel Ahmed, H. S.Chavan, Y.Jo, S.Cho, A. I.Inamdar, J. L.Gunjakar, H.Kim, S.Cha and H.Im, J. Mater. Chem. A, 2017, 5, 12747–12751.
150 K. S.Joya and H. J. M.DeGroot, ACS Catal., 2016, 6, 1768–1771.
151 X.Liu, S.Cui, M.Qian, Z.Sun and P.Du, Chem. Commun., 2016, 52, 5546–5549.
152 S.Cui, X.Liu, Z.Sun and P.Du, ACS Sustain. Chem. Eng., 2016, 4, 2593–2600.
153 R.Medhi, M. D.Marquez and T. R.Lee, ACS Appl. Nano Mater., 2020, 3, 6156–6185.
154 B. E.Yoldas, J. Mater. Sci., 1979, 14, 1843–1849.
155 L. L.Hench and J. K.West, Chem. Rev., 1990, 90, 33–72.
156 M.Parashar, V. K.Shukla and R.Singh, J. Mater. Sci. Mater. Electron., 2020, 31, 3729–3749.
157 J.Li, Q.Wu and J.Wu, in Handbook of Nanoparticles, Springer International Publishing, 2015, pp. 1–28.
158 L.Cano-Casanova, A.Amorós-Pérez, M. Á.Lillo-Ródenas and M. del C.Román-Martínez, Materials, 2018, 11(11), 2227.
159 P.Deka, R. C.Deka and P.Bharali, New J. Chem., 2014, 38, 1789–1793.
160 S.Yu, R. D.Webster, Y.Zhou and X.Yan, Catal. Sci. Technol., 2017, 7, 2050–2056.
161 A.Jiamprasertboon, M. J.Powell, S. C.Dixon, R.Quesada-Cabrera, A. M.Alotaibi, Y.Lu, A.Zhuang, S.Sathasivam, T.Siritanon, I. P.Parkin and C. J.Carmalt, J. Mater. Chem. A, 2018, 6, 12682–12692.
162 J.Lee, S.Ham, D.Choi and D.-J.Jang, Nanoscale, 2018, 10, 14254–14263.
163 A. C.Pradhan and T.Uyar, ACS Appl. Mater. Interfaces, 2017, 9, 35757–35774.
164 J.Cao, B.Xu, H.Lin, B.Luo and S.Chen, Dalt. Trans., 2012, 41, 11482–11490.
165 A. S.Zoolfakar, R. A.Rani, A. J.Morfa, A. P.O’Mullane and K.Kalantar-zadeh, J. Mater. Chem. C, 2014, 2, 5247–5270.
166 Y.-J.Yuan, Y.Yang, Z.Li, D.Chen, S.Wu, G.Fang, W.Bai, M.Ding, L.-X.Yang, D.-P.Cao, Z.-T.Yu and Z.-G.Zou, ACS Appl. Energy Mater., 2018, 1, 1400–1407.
167 P. V. R. K.Ramacharyulu, S. J.Abbas, S. R.Sahoo and S.-C.Ke, Catal. Sci. Technol., 2018, 8, 2825–2834.
168 W.-J.Ong, L.-L.Tan, S.-P.Chai and S.-T.Yong, Dalt. Trans., 2015, 44, 1249–1257.
169 S.Nayak, L.Mohapatra and K.Parida, J. Mater. Chem. A, 2015, 3, 18622–18635.
170 Y.Liu, Y.Zhu, J.Xu, X.Bai, R.Zong and Y.Zhu, Appl. Catal. B Environ., 2013, 142–143, 561–567.
171 S.Siahrostami, G.-L.Li, V.Viswanathan and J. K.Nørskov, J. Phys. Chem. Lett., 2017, 8, 1157–1160.
172 L.Lin, C.Hou, X.Zhang, Y.Wang, Y.Chen and T.He, Appl. Catal. B Environ., 2018, 221, 312–319.
173 Y.Li, H.Xu, S.Ouyang, D.Lu, X.Wang, D.Wang and J.Ye, J. Mater. Chem. A, 2016, 4, 2943–2950.
174 S.Cao, N.Zhou, F.Gao, H.Chen and F.Jiang, Appl. Catal. B Environ., 2017, 218, 600–610.
175 M.Chauhan, B.Sharma, R.Kumar, G. R.Chaudhary, A. A.Hassan and S.Kumar, Environ. Res., 2019, 168, 85–95.
176 H.-T.Ren, S.-Y.Jia, Y.Wu, S.-H.Wu, T.-H.Zhang and X.Han, Ind. Eng. Chem. Res., 2014, 53, 17645–17653.
177 P.Wu, J.Wang, J.Zhao, L.Guo and F. E.Osterloh, J. Mater. Chem. A, 2014, 2, 20338–20344.
178 J.Lee, N. G.Subramaniam, J.Lee, J.Lee and T.Kang, Phys. status solidi, 2013, 210, 2638–2643.
179 J.-W.Ci, W.-C.Tu, W.-Y.Uen, S.-M.Lan, J.-X.Zeng, T.-N.Yang, C.-C.Shen and J.-C.Jhao, J. Electrochem. Soc., 2014, 161, D321–D326.
180 S. V. P.Vattikuti, B. P.Reddy, C.Byon and J.Shim, J. Solid State Chem., 2018, 262, 106–111.
181 D. P.Jaihindh, B.Thirumalraj, S.-M.Chen, P.Balasubramanian and Y.-P.Fu, J. Hazard. Mater., 2019, 367, 647–657.
182 Y.Wu, B.Yuan, M.Li, W.-H.Zhang, Y.Liu and C.Li, Chem. Sci., 2015, 6, 1873–1878.
183 J.Wen, J.Xie, X.Chen and X.Li, Appl. Surf. Sci., 2017, 391, 72–123.
184 L.Xu and J.Wang, Environ. Sci. Technol., 2012, 46, 10145–10153.
185 P.Deka, A.Hazarika, R. C.Deka and P.Bharali, RSC Adv., 2016, 6, 95292–95305.
186 D.Galvan, J. R.Orives, R. L.Coppo, E. T.Silva, K. G.Angilelli and D.Borsato, Energy & Fuels, 2013, 27, 6866–6871.
187 V. K.Gupta, R.Jain, S.Agarwal, A.Nayak and M.Shrivastava, J. Colloid Interface Sci., 2012, 366, 135–140.
188 L.Yang, S.Luo, Y.Li, Y.Xiao, Q.Kang and Q.Cai, Environ. Sci. Technol., 2010, 44, 7641–7646.
189 J.Meijide, E.Rosales, M.Pazos and M. A.Sanromán, Chemosphere, 2017, 185, 726–736.
190 X.Liu, L.Zhao, H.Lai, S.Li and Z.Yi, J. Chem. Technol. Biotechnol., 2017, 92, 2417–2424.
191 I.Ibrahim, C.Athanasekou, G.Manolis, A.Kaltzoglou, N. K.Nasikas, F.Katsaros, E.Devlin, A. G.Kontos and P.Falaras, J. Hazard. Mater., 2019, 372, 37–44.
192 H. T.Fan, X. G.Liu, X. J.Xing, B.Li, K.Wang, S. T.Chen, Z.Wu and D. F.Qiu, Dalt. Trans., 2019, 48, 2692–2700.
193 R. L.Wang, D. P.Li, L. J.Wang, X.Zhang, Z. Y.Zhou, J. L.Mu and Z. M.Su, Dalt. Trans., 2019, 48, 1051–1059.
194 Y.Yang, D.Zeng, S.Shao, S.Hao, G.Zhu and B.Liu, J. Colloid Interface Sci., 2019, 538, 377–386.
195 Z. S.Lv, X. Y.Zhu, H.BinMeng, J. J.Feng and A. J.Wang, J. Colloid Interface Sci., 2019, 538, 349–356.
196 W.Zhang, G.Li, W.Wang, Y.Qin, T.An, X.Xiao and W.Choi, Appl. Catal. B Environ., 2018, 232, 11–18.
197 W.Pan, G.Zhang, T.Zheng and P.Wang, RSC Adv., 2015, 5, 27043–27051.
198 J.Yang, J. J.Pignatello, B.Pan and B.Xing, Environ. Sci. Technol., 2017, 51, 8972–8980.
199 A. H.Keihan, R.Hosseinzadeh, M.Farhadian, H.Kooshki and G.Hosseinzadeh, RSC Adv., 2016, 6, 83673–83687.
200 X.Wei, J.Cao and F.Fang, RSC Adv., 2018, 8, 31822–31829.
201 B.Chang, Y.Yang, Z.Ye and S.Liu, Dalt. Trans., 2019, 48, 891–897.
202 J.Liu, T.Zhang, Z.Wang, G.Dawson and W.Chen, J. Mater. Chem., 2011, 21, 14398–14401.
203 V.Vinod Kumar, A.Dharani, M.Mariappan and S. P.Anthony, RSC Adv., 2016, 6, 85083–85090.
204 M.Vaseem, A.Umar, S. H.Kim and Y. B.Hahn, J. Phys. Chem. C, 2008, 112, 5729–5735.
205 Y.Zhao, H.Shi, M.Chen and F.Teng, CrystEngComm, 2014, 16, 2417–2423.
206 X.Deng, C.Wang, M.Shao, X.Xu and J.Huang, RSC Adv., 2017, 7, 4329–4338.
207 F.Zhang, Z.Cheng, L.Kang, L.Cui, W.Liu and X.Xu, 2015, 32088–32091.
208 X.Qian, X.Meng, J.Sun, L.Jiang, Y.Wang, J.Zhang, X.Hu, M.Shalom and J.Zhu, ACS Appl. Mater. Interfaces, 2019, 11, 27226–27232.
209 B.Liu, Y.Wu, J.Zhang, X.Han and H.Shi, J. Photochem. Photobiol. A Chem., 2019, 378, 1–8.
210 Z.Sun, W.Fang, L.Zhao, H.Chen, X.He, W.Li, P.Tian and Z.Huang, Environ. Int., 2019, 130, 0–9.
211 M. Y.Guo, F.Liu, J.Tsui, A. A.Voskanyan, A. M. C.Ng, A. B.Djurišić, W. K.Chan, K. Y.Chan, C.Liao, K.Shih and C.Surya, J. Mater. Chem. A, 2015, 3, 3627–3632.
212 L.Cheng, Y.Tian and J.Zhang, J. Colloid Interface Sci., 2018, 526, 470–479.
213 L.Liu, Y.Qi, J.Hu, Y.Liang and W.Cui, Appl. Surf. Sci., 2015, 351, 1146–1154.
214 D. P.Sahoo, S.Patnaik, D.Rath, B.Nanda and K.Parida, 2016, 112602–112613.
215 C.Cai, S.Han, Q.Wang and M.Gu, ACS Nano, 2019, 13, 8865–8871.
216 S.Wei, A.Li, J.Liu, Z.Li, W.Chen, Y.Gong, Q.Zhang, W.Cheong, Y.Wang, L.Zheng, H.Xiao, C.Chen and D.Wang, Nat. Nanotechnology, 2018, 13, 856-861.
217 S.Huang, Y.Zhao and R.Tang, RSC Adv., 2016, 6, 90887–90896.
218 W.Gong, Q.Wu, G.Jiang and G.Li, J. Mater. Chem. A, 2019, 13449–13454.
219 W.Zhou, Y.Fang, J.Ren and S.Dong, Chem. Commun., 2019, 55, 373–376.
220 P. P.Ghimire, L.Zhang, U. A.Kinga, Q.Guo, B.Jiang and M.Jaroniec, J. Mater. Chem. A, 2019, 7, 9618–9628.
221 T.Binh, C. P.Huang and R.Doong, Appl. Catal. B Environ., 2019, 240, 337–347.
222 T.Aditya, J.Jana, N. K.Singh, A.Pal and T.Pal, ACS Omega, 2017, 2, 1968–1984.
223 P.Chandra, D.Saikia, M.Mishra and H.Kao, Appl. Surf. Sci., 2018, 427, 1217–1226.
224 X.Zhang, X.He, Z.Kang, M.Cui, D.-P.Yang and R.Luque, ACS Sustainable Chem. Eng., 2019, 7(18), 15762-15771.
225 Y.Xie, B.Liu, Y.Li, Z.Chen, Y.Cao and D.Jia, New J. Chem., 2019, 43, 12118–12125.
226 G.Hu, Y.Guo and S.Shaoa, Electroanalysis, 2009, 21, 1200–1206.
227 E.Cudjoe and J.Pawliszyn, J. Chromatogr. A, 2014, 1341, 1–7.
228 M. R.Moghadam, S.Dadfarnia, A. M. H.Shabani and P.Shahbazikhah, Anal. Biochem., 2011, 410, 289–295.
229 X.Liu, W.Zhang, L.Huang, N.Hu, W.Liu, Y.Liu, S.Li, C.Yang, Y.Suo and J.Wang, Microchim. Acta, 2018, 185, 234.
230 S.Xu, H.Zhu, W.Cao, Z.Wen, J.Wang, C. P.François-Xavier and T.Wintgens, Appl. Catal. B Environ., 2018, 234, 223–233.
231 J.Zou, S.Wu, Y.Liu, Y.Sun, Y.Cao, J. P.Hsu, A. T.Shen Wee and J.Jiang, Carbon N. Y., 2018, 130, 652–663.
232 X.Wang, E.Liu andX.Zhang, Electrochim. Acta, 2014, 130, 253–260.
233 M.Devaraj, R.Saravanan, R.Deivasigamani, V. K.Gupta, F.Gracia and S.Jayadevan, J. Mol. Liq., 2016, 221, 930–941.
234 S.Yang, G.Li, Y.Yin, R.Yang, J.Li and L.Qu, J. Electroanal. Chem., 2013, 703, 45–51.
235 S.Reddy, B. E.Kumara Swamy and H.Jayadevappa, Electrochim. Acta, 2012, 61, 78–86.
236 L.Vivas, I.Chi-Duran, J.Enriquez, N.Barraza and D. P.Singh, Mater. Res. Express, 2019, 6, 065033.
237 J.Jiang, S.Park and L.Piao, CrystEngComm, 2019, 22, 18–23.
238 X.Ma, J.Zhang, B.Wang, Q.Li and S.Chu, Appl. Surf. Sci., 2018, 427, 907–916.
239 Y.Guo, H.Lei, L.Xiong, B.Li, Z.Chen, J.Wen, G.Yang, G.Li and G.Fang, J. Mater. Chem. A, 2017, 5, 11055–11062.
240 J.Xiong, Y.Wang, Q.Xue and X.Wu, Green Chem., 2011, 13, 900–904.
241 M.Balık, V.Bulut and I. Y.Erdogan, Int. J. Hydrogen Energy, 2019, 44, 18744–18755.
242 Q.Yu, H.Huang, R.Chen, P.Wang, H.Yang, M.Gao, X.Peng andZ.Ye, Nanoscale, 2012, 4, 2613–2620.
243 A.Sahai, N.Goswami, S. D.Kaushik and S.Tripathi, Appl. Surf. Sci., 2016, 390, 974–983.
244 J.Li, Z.Zhang, Y.Ji, Z.Jin, S.Zou, Z.Zhong and F.Su, Nano Res., 2016, 9, 1377–1392.
245 P. P.Ghimire, L.Zhang, U. A.Kinga, Q.Guo, B.Jiang and M.Jaroniec, J. Mater. Chem. A, 2019, 7, 9618–9628.
246 A.Verma, S.Kumar, W. K.Chang and Y. P.Fu, Dalt. Trans., 2020, 49, 625–637.
247 J.Li, W.Liu, Y.Ding, L.Liu, F.Li and Q.Li, Korean J. Chem. Eng, 2019, 36, 851–859.
248 W.Gong, Q.Wu, G.Jiang and G.Li, J. Mater. Chem. A, 2019, 7, 13449–13454.
249 Y.Cui, K.Ma, Z.Chen, J.Yang, Z.Geng and J.Zeng, J. Catal., 2020, 381, 427–433.
250 Y.Huang, K.Zheng, X.Liu, X.Meng and D.Astruc, Inorg. Chem. Front., 2020, 7, 939–945.
251 A. K.Sasmal, S.Dutta and T.Pal, Dalt. Trans., 2016, 45, 3139–3150.
252 S.Kapoor, A.Sheoran, M.Riyaz, J.Agarwal, N.Goel and S.Singhal, J. Catal., 2020, 381, 329–346.
253 J. L.Ortiz-Quiñonez and U.Pal, ACS Omega, 2019, 4, 10129–10139.
254 X.Sun, P.He, Z.Gao, Y.Liao, S.Weng, Z.Zhao, H.Song and Z.Zhao, J. Colloid Interface Sci., 2019, 553, 1–13.
255 D.Eguchi, M.Sakamoto and T.Teranishi, Chem. Sci., 2017, 9, 261–265.
256 A. A.Dubale, C. J.Pan, A. G.Tamirat, H. M.Chen, W. N.Su, C. H.Chen, J.Rick, D. W.Ayele, B. A.Aragaw, J. F.Lee, Y. W.Yang and B. J.Hwang, J. Mater. Chem. A, 2015, 3, 12482–12499.
257 M.Cheng, C.Xiao and Y.Xie, J. Mater. Chem. A, 2019, 7, 19616–19633.
258 X.Li, X.Sun, L.Zhang, S.Sun and W.Wang, J. Mater. Chem. A, 2018, 6, 3005–3011.
259 S.Zhang, Y.Zhao, R.Shi, C.Zhou, G. I. N.Waterhouse, Z.Wang, Y.Weng and T.Zhang, Angew. Chemie Int. Ed., 2020, anie.202013594.
260 X.Chen, N.Li, Z.Kong, W. J.Ong and X.Zhao, Mater. Horizons, 2018, 5, 9–27.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *