帳號:guest(18.222.105.245)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:徐仲禹
作者(英文):Chung-Yu Hsu
論文名稱:花蓮新社海岸水稻田地景經營措施對生物多樣性及逕流水營養鹽影響之研究
論文名稱(英文):Effects of landscape management practices on biodiversity and nutrient runoff reduction in rice paddies of Xinshe coast, Hualien
指導教授:李光中
指導教授(英文):Kuang-Chung Lee
口試委員:李達源
楊懿如
楊大吉
陳吉村
李光中
口試委員(英文):Dar-Yuan Lee
Yi-Ju Yang
Ta-Chi Yang
Chi-Tsun Chen
Kuang-Chung Lee
學位類別:博士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:810654007
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:164
關鍵詞:人工濕地營養鹽逕流水生物多樣性生態系統服務
關鍵詞(英文):constructed wetlandsnutrientsrunoffnitrogenphosphourusbiodiversityecosystem services
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
長久以來,富含多餘營養鹽的農田逕流水排放到周邊水體的問題持續存在,並造成水體汙染,危害海洋生態。人工濕地技術已發展多年,但鮮少在國內運用於處理農業廢水問題,亦無相關農業政策支持與推動。本研究選擇花蓮縣豐濱鄉新社村位於東側的水稻田為研究場域,此處田區東鄰太平洋,且有豐富的漁業及珊瑚礁生態。為避免農田中多餘的營養鹽隨著逕流水排放至海洋,本研究自2018年以此處有機水稻田區作為研究樣區,其面積約為10,000 m2,於田區最低窪處建構人工濕地(CW處理),面積為1,164.74 m2,種植蕹菜 (Ipomoea aquatica),另擇北側有機水稻田區數塊,作為對照(RPF處理),面積為1,477.06 m2,比較CW處理及RPF處理對銨鹽、硝酸鹽、總磷及磷酸鹽之移除率。經兩年觀察及調查結果顯示,平均而言,CW處理可移除54.3 %銨鹽、42.7 %硝酸鹽、35.6 %總磷及29.5 %磷酸鹽,而RPF處理可移除16.4 %總磷及6.4 %磷酸鹽,銨鹽則增加了4.2 %,硝酸鹽增加51.3 %。進一步以累計營養鹽通量計算,CW處理可移除98.5 %銨鹽、47 %硝酸鹽、50.5 %總磷及47.0 %磷酸鹽,RPF處理可移除40.3 %銨鹽及6.0 %總磷,而硝酸鹽增加了26.8 %,磷酸鹽則增加8.6 %。第一年生物相調查結果顯示,CW處理及RPF處理周邊田區(皆為水稻田)之陸域及水棲無脊椎動物相無顯著差異,而隨採樣時間有顯著差異(水棲p = 0.017、陸域p < 0.001)。第二年CW處理相較於RPF處理有較為穩定的物種組成,推測係因蕹菜田區終年蓄水,無頻繁擾動(農業操作行為)所致。綜合本研究結果,人工濕地有淨化水質、提供經濟作物、穩定生物多樣性等多元生態系統服務,建議可納入「綠色環境給付」政策之一,鼓勵並支持農民建構人工濕地降低農業操作對整體環境之衝擊,以完善友善環境的政策推動。
Agricultural runoff with excessive nutrients from farmlands that drained to nearby water bodies has been a serious problem of water pollution and harm to marine life. Constructed wetlands had developed for decades but were not popularly implemented in Taiwan to treat agricultural wastewater. Furthermore, there are no agricultural policies to support and promote the establishment of this practice. The research fields were located in the eastern side of Xinshe Village, Fengbin Township, Hualien County. The rice paddy fields are close to the Pacific Ocean and there are abundant coral reefs and fishery resources. In order to treat the excessive nutrients from the runoff of the farmlands to the ocean since the starting of this study, 2018, the northern organic rice paddy fields were chosen to be treated with RPF in this research, and the contributing area is approximately 10,000 m2. Constructed wetlands covering 1,164.74 m2 were established as CW treatments in the low lands of this area, and water spinach (Ipomoea aquatica) was planted to treat the nutrient runoff from organic rice paddy fields. Water samples of the input and output of CW treatments were collected 51 times during the experiment period. The runoff of rice paddy fields without constructed wetlands was also sampled as a reference (RPF treatment). Ammonia, nitrate, total phosphorous, and phosphate concentrations were analyzed and calculated the nutrient load. On average, about 54.3 % ammonia and 42.7 % nitrate were removed from the runoff in CW treatment, while ammonia and nitrate increased by 4.2 % and 51.3 % in RPF treatment. Meanwhile, 35.6 % of total phosphorous and 29.5 % of phosphate were removed in CW treatment. In contrast, only 16.4 % of total phosphorous and 6.4 % of phosphate were removed in RPF treatment. Futhermore, to calculate the accumulative total nutrient load and the accumulative total removal efficiency, 98.5 % of ammonia, 47.0% of nitrate, 50.5 % of total phosphorous and 47.0% of phosphate were removed in CW treatment. In RPF treatment, 40.3 % of ammonia and 6.0 % of total phosphorous were removed, while nitrate and phosphate increased by 26.8 % and 8.6 %. It also showed great nutrient removal efficiency of CW treatment. In terms of the biological investigation in the first year, there were no significant differences of the terrestrial and aquatic invertebrates of nearby fields between CW treatment and RPF treatment. Treatments didn't affect the richness of terrestrial and aquatic invertebrates species; however, the species richness of terrestrial and aquatic invertebrates were correlated to the sampling time (aquatic: p = 0.017; terrestrial: p < 0.001). In the second year, the species composition in CW treatment was more stable than that in RPF treatment. It was suggested that the stable water level in water spinach fields, and there were no frequent agricultural operations in CW treatment fields. Based on the finding of this study, constructed wetlands can provide multiple ecosystem services, such as water purification, possibility of earning extra incomes from cash crops, and biodiversity stabilization. It is suggested that introducing the policy of Payments of Green Environment and encouraging and supporting farmers to establish constructed wetlands to reduce the impacts of agricultural operations on the environment. Establishing the environmental-friendly policy is also needed.
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第二章 文獻回顧 7
第一節 農業生物多樣性及生態系統服務 7
第二節 農業環境維護與健康度評估 18
第三節 營養鹽於農業環境中之宿命 26
第四節 水體汙染對生物之影響 29
第五節 處理水體汙染的方法 35
第六節 人工濕地(含植生緩衝帶)的建構與運用 41
第七節 生態及農業環境獎勵措施 54
第三章 研究方法 63
第一節 研究流程 63
第二節 研究問題 65
第三節 調查與分析方法 65
第四章 結果與討論 77
第一節 地景經營措施(人工濕地)降低水稻田逕流水中氮、磷之效果 77
第二節 地景經營措施(人工濕地)對水稻田營養鹽累積移除效果之探討 102
第三節 地景經營措施(人工濕地)對週邊水稻田生物多樣性之影響 113
第四節 不同肥培管理對水稻田水棲無脊椎動物相之影響 128
第五章 結論與建議 135
第一節 結論 135
第二節 建議 136
參考文獻 143
附錄 165
Abd Rasid, N. S., M. N. Naim, H. Che Man, N. F. Abu Bakar, & M. N. Mokhtar. (2019) Evaluation of surface water treated with lotus plant; Nelumbo nucifera. Journal of Environmental Chemical Engineering, 7(3), 103048. doi: 10.1016/j.jece.2019.103048
Abou-Elela, S. I., G. Golinielli, E. M. Abou-Tale, & M. S. Hellal. (2013). Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering, 61, 460–468. doi: 10.1016/j.ecoleng.2013.10.010
Akhter, M., I. Qayoom, & S. Khan. (2018). Relationship between Trophic Status and Population Dynamics of Cladocera in Dal Lake Kashmir. Research Journal of Agricultural Sciences, 9(3), 523–528.
Al-Baldawi, I. A., S. R. S. Abdullah, N. Anuar, F. Suja, & I. Mushrifah. (2015). Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecological Engineering, 74, 463–473. doi: 10.1016/j.ecoleng.2014.11.007
Alqaragholi, S. A., W. Kanoua, & P. Göbel. (2021). Comparative Investigation of Aquatic Invertebrates in Springs in Münsterland Area (Western Germany). Water, 13(3), 359–377. doi: 10.3390/w13030359
Arbenz, M., D. Gould, & C. Stopes. (2015). Organic 3.0 for truly sustainable farming and consumption. Discussion papers based on think tanking by SOAAN&IFOAM Organics International and launched at the ISOFAR International Organic EXPO.
Bambaradeniya, C. N. B., J. P. Edirisinghe, D. N. Silva, C. V. S. Gunatilleke, K. B. Ranawana, & S. Wijekoon. (2004). Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka. Biodiversity and Conservation, 13, 1715–1753. doi: 10.1023/B:BIOC.0000029331.92656.de
Barling, R. D. & I. D. Moore. (1994). Role of buffer strips in management of waterway pollution: A review. Environmental Management, 18, 543–558. doi: 10.1007/BF02400858
Bavor, H. J. & E. F. Andel. (1994). Nutrient removal and disinfection performance in the Byron Bay constructed wetland system. Water Science and Technology, 29(4), 201–208. doi: 10.2166/wst.1994.0191
Bindu, T., V. P. Sylas, M. Mahesh, P. S. Rakesh, & E. V. Ramasamy. (2008). Pollutant removal from domestic wastewater with taro (Colocasia esculenta) planted in a subsurface flow system. Ecological Engineering, 33(1), 68–82. doi: 10.1016/j.ecoleng.2008.02.007
Birol, E., K. Karousakis, & P. Koundouri. (2006). Using a choice experiment to account for preference heterogeneity in wetland at-tributes: The case of Cheimaditida wetland in Greece. Ecological Economics, 60(1), 145–156. doi: 10.1016/j.ecolecon.2006.06.002
Boets, P., E. Michels, E. Meers, K. Lock, F. M. G. Tack, & P. L. M. Goethals. (2011). Integrated constructed wetlands (ICW): Ecological development in constructed wetlands for manure Treatment. Wetlands, 31(4), 763–771. doi: 10.1007/s13157-011-0193-4
Bouwman, A. F., M. F. P. Bierkens, J. Griffioen, M. M. Hefting, J. J. Middelburg, H. Middelkoop & C. P. Slomp. (2013). Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences, 10, 1–23. doi: 10.5194/bg-10-1-2013
Budd, R., A. O’geen, K. S. Goh, S. Bondarenko, & J. Gan. (2011). Removal mechanisms and fate of insecticides in constructed wetlands. Chemosphere, 83(11), 1581–1587. doi: 10.1016/j.chemosphere.2011.01.012
Burak, E. S. (1997). Life tables of Moina macrocopa (Straus) in successive generations under food and temperature adaptation. Cladocera: the Biology of Model Organisms, 101–108. doi: 10.1007/978-94-011-4964-8_11
Camargo, J. A., Á. Alonso, & A. Salamanca. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58, 1255–1267. doi: 10.1016/j.chemosphere.2004.10.044
Camargo, J. A. & Á. Alonso. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32, 831–849. doi: 10.1016/j.envint.2006.05.002
Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences, 105(32), 11039–11040. doi: 10.1073/pnas.0806112105
Chalar, G., R. Arocena, J. P. Pacheco, & D. Fabián. (2011). Trophic assessment of streams in Uruguay: A Trophic State Index for Benthic Invertebrates (TSI-BI). Ecological Indicators, 11(2), 362–369. doi: 10.1016/j.ecolind.2010.06.004
Che Salmah, M. R., A. Z. Sirega, A. Abu Hassan, & Z. Nasution. (2017). Dynamics of aquatic organisms in a rice field ecosystem: effects of seasons and cultivation phases on abundance and predator-prey interactions. Tropical Ecology, 58(1), 177–191.
Chen, Q., X. Zhang, H. Zhang, P. Christie, X. Li, D. Horlacher, & H. P. Liebig. (2004). Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutrient Cycling in Agroecosystems, 69(1), 51–58. doi: 10.1023/B:FRES.0000025293.99199.ff
Choudhary, A.K.; Kumar, S.; Sharma, C. (2011). Constructed wetlands: An approach for wastewater treatment. Elixir Pollution, 37, 3666–2672.
Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253. doi: 10.3354/meps210223
Clergue, B., B. Amiaud, F. Pervanchon, F. Lasserre-Joulin, & S. Plantureux. (2005). Biodiversity: function and assessment in agricultural areas. A review. Agronomy for Sustainable Development, 25, 1–15. doi: 10.1007/978-90-481-2666-8_21
Collier, K. J. (1995). Environmental factors affecting the taxonomic composition of aquatic macroinvertebrate communities in lowland waterways of Northland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 29(4), 453–465. doi: 10.1080/00288330.1995.9516679
Conversa, G., C. Lazzizera, A. Bonasia, S. Cifarelli, F. Losavio, G. Sonnante, & A. Elia. (2019). Exploring on-farm agro biodiversity: a study case of vegetable landraces from Puglia region (Italy). Biodiversity and Conservation, 29, 747–770. doi: 10.1007/s10531-019-01908-3
Correll, D.L. (1998). The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 27(2), 261–266. doi: 10.2134/jeq1998.00472425002700020004x
Crossley Jr., D. A., D. C. Coleman, & P. F. Hendrix. (1989). The importance of the fauna in agricultural soils: Research approaches and perspectives. Agriculture, Ecosystems & Environment, 27(1–4), 47-55. doi: 10.1016/B978-0-444-88610-1.50007-3
Daniel J. (2016). Water movement and phosphorus leaching from managed and unmanaged grass buffer strips. (Master’s Thesis, Swedish University of Agricultural Sciences). Retrieved from https://stud.epsilon.slu.se/9219/
Díaz, F. J., T. O. Anthony, & R. A. Dahlgrena. (2012). Agricultural pollutant removal by constructed wetlands: Implications for water management and design. Agricultural Water Management, 104, 171–183. doi: 10.1016/j.agwat.2011.12.012
Dillaha, T. A., R.B. Reneau, S. Mostaghimi, & D. Lee. (1989). Vegetative filter strips for agricultural nonpoint source pollution control. American Society of Agricultural and Biological Engineers, 32(2), 0513–0519. doi: 10.13031/2013.31033
Dorioz, J. M., D. Wang, J. Poulenard, & D. Trevisan. (2006). The effect of grass buffer strips on phosphorus dynamics—a critical review and synthesis as a basis for application in agricultural landscapes in France. Agriculture, Ecosystems and Environment, 117(1), 4–21. doi: 10.1016/j.agee.2006.03.029
Duersch, B.G.; Powers, M.O.; Newman, S.; Ricca, J.G.; Bhadha, J.H.; Louda, J.W. (2021). Phosphorus retention within a relic agricultural ditch in a constructed wetland. Journal of Environmental Quality, 50(5), 1171–1183. doi: 10.1002/jeq2.20278
Edirisinghe, J. P. & C. N. B. Bambaradeniya. (2006). Rice fields: an ecosystem rich in biodiversity. Journal of the National Science Foundation of Sri Lanka, 34(2), 57–59. doi: 10.4038/jnsfsr.v34i2.2084
Ehrlich, P. & A. Ehrlich. (1981). Extinction: The Causes and Consequences of the Disappearance of Species. New York: Random House. 305 p.
Endut, A., A. Jusoh, N. Ali, W. N. S. Wan Nik, & A. Hassan. (2009). Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalination and Water Treatment, 5(1–3), 19–28. doi: 10.5004/dwt.2009.559
Epele, L. B. & M. L. Miserendino. (2015). Environmental quality and aquatic invertebrate metrics relationships at Patagonian Wetlands subjected to livestock grazing pressures. PLOS ONE, 10(10), e0137873 doi: 10.1371/journal.pone.0137873
European Commission. (1986). Agricultural and Environment: Management Agreements in Four Countries of the European Community (Luxembourg: Office for Official
European Commission. (2018). Direct payments for farmers 2015-2020.
Frison, E. A., J. Cherfas, & T. Hodgkin. (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability, 3, 238-253. doi: 10.3390/su3010238
Frison, E. A., I. F. Smith, T. Johns, J. Cherfas, & P. B. Eyzaguirre. (2006). Agricultural biodiversity, nutrition, and health: Making a difference to hunger and nutrition in the developing world. Food and Nutrition Bulletin, 27(2), 167–179. doi: 10.1177/156482650602700208
Gallimore, L. E., N. T. D. E. Storm, M. E. Payton, R. H. Huhnke, & M. D. Smolen. (1999). Water treatment residual to reduce nutrients in surface runoff from agricultural land. Journal of environmental quality, 28(5), 1474–1478. doi: 10.2134/jeq1999.00472425002800050012x
Galluzzi, G., P. Eyzaguirre, & V. Negri. (2010). Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodiversity and Conservation, 19, 3635–3654. doi: 10.1007/s10531-010-9919-5
Gaufin, A. R. (1973). Use of aquatic invertebrates in the assessment of water quality. In J. Cairns & K. Dickson (Eds.), Biological Methods for the Assessment of Water Quality. (pp. 96–116). West Conshohocken, PA: ASTM International. doi: 10.1520/STP34719S
Geng, Y., W. Han, C. Yu, Q. Jiang, J. Wu, J. Chang, & Y. Ge. (2017). Effect of plant diversity on phosphorus removal in hydroponic microcosms simulating floating constructed wetlands. Ecological Engineering, 107, 110–119. doi: 10.1016/j.ecoleng.2017.06.061
Ghermandi, A., J. C. J. M. van den Bergh, L. M. Brander, H. L. F. de Groot, P. A. L. D. Nunes. (2010). Values of natural and human‐made wetlands: A meta‐analysis. Water Resources Research, 46(12), W12516. doi: 10.1029/2010WR009071
Göthberg, A., M. Greger, K. Holm, & B. E. Bengtsson. (2004). Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. Journal of Environmental Quality, 33(4), 1247–1255. doi: 10.2134/jeq2004.1247
Göthberg, A.; M. Greger, & B. E. Bengtsson. (2002). Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environmental Toxicology and Chemistry, 21(9), 1934–1939. doi: 10.1897/1551-5028(2002)021<1934:AOHMIW>2.0.CO;2
Greenway, M. (2005).The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia. Ecological Engineering, 25(5), 501–509. doi: 10.1016/j.ecoleng.2005.07.008
Grismer, M. E., A. T. O’Geen, & D. Lewis. (2006). Vegetative filter strips for nonpoint source pollution control in agriculture (ANR Publication 8195). Retrieved from University of California, Agricultural and Natural Resources website: http://anrcatalog.ucanr.edu/
Gupta, P., T. -w. Ann, & S. -M. Lee. (2016). Use of biochar to enhance constructed wetland performance in wastewater reclamation. Environmental Engineering Research, 21(1), 36–44. doi: 10.4491/eer.2015.067
Gurr, G. M., S. D. Wratten, & J. M. Luna. (2003). Multi-function agricultural biodiversity: pest management and other benefits. Basic and Applied Ecology, 4, 107–116. doi: 10.1078/1439-1791-00122
Habibiandehkordi, R., D. A. Lobb, S. C. Sheppard, D. N. Flaten, & P. N. Owens. (2017). Uncertainties in vegetated buffer strip function in controlling phosphorus export from agricultural land in the Canadian prairies. Environmental Science and Pollution Research, 24, 18372–18382. doi: 10.1007/s11356-017-9406-6
Hanley, N., M. Whitby, & I. Simpson. (1999). Assessing the success of agri-environmental policy in the UK. Land use policy, 16(2), 67–80. doi: 10.1016/S0264-8377(98)00041-6
Hansson, L., C. Bronmark, P. A. Nilsson, & K. Abjornsson. (2005). Conflicting demands on wetland ecosystem services: nutrient and retention, biodiversity or both? Freshwater Biology, 50, 705–714. doi: 10.1111/j.1365-2427.2005.01352.x
Hayashi, K. & H. Nishimiya. (2010). Good practices of payments for ecosystem services in Japan. Nagoya University EcoTopia Science Institute.
Hénault-Ethier, L., M. Lucotte, É. Smedbol, M. P. Gomes, S. Maccario, M. E. L. Laprise, R. Perron, M. Larocque, L. Lepage, P. Juneau, & M. Labrecque. (2019). Potential Efficiency of Grassy or Shrub Willow Buffer Strips against Nutrient Runoff from Soybean and Corn Fields in Southern Quebec, Canada. Journal of Environmental Quality, 48(2), 352–361. doi: 10.2134/jeq2016.10.0391
Hentati, O., N. Abrantes, A. L. Caetano, S. Bouguerra, F. Gonçalves, J. Römbke, & R. Pereira. (2015). Phosphogypsum as a soil fertilizer: Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. Journal of Hazardous Materials, 294, 80–89. doi: 10.1016/j.jhazmat.2015.03.034
Herlinda, S., M. Alesia, Susilawati, C. Irsan, Hasbi, Suparman, E. Anggraini, & Arsi. (2020). Impact of mycoinsecticides and abamectin applications on species diversity and abundance of aquatic insects in rice fields of freshwater swamps of South Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 21(7), 3076–3083. doi: 10.13057/biodiv/d210727
Hille, S. D., K. Anderson, B. Kronvang, & A. Baattrup-Pedersen. (2018). Structural and functional characteristics of buffer strip vegetation in an agricultural landscape—high potential for nutrient removal but low potential for plant biodiversity. Science of the Total Environment, 628–629, 805–814. doi: 10.1016/j.scitotenv.2018.02.117
Hsu, C.-B., H.-L. Hsieh, L. Yang, S.-H. Wu, J.-S.Chang, S.-C. Hsiao, H.-C. Su, C.-H. Yeh, Y.-S. Ho, & H.-J. Lin. (2011). Biodiversity of constructed wetlands for wastewater treatment. Ecological Engineering, 37(10), 1533–1545. doi: 10.1016/j.ecoleng.2011.06.002
http://oapv.i-organic.org.tw
https://unfccc.int/
https://www.afa.gov.tw/cht/index.php?code=list&ids=286
https://www.cbd.int/
Il’yashuk, E. A. & B. P. Il’yashuk. (2004). Analysis of Chironomid Remains from Lake Sediments in Paleoecological Reconstruction. Water Resources, 31(2), 203–214. doi: 10.1023/B:WARE.0000021581.81107.46
Ismail, N.’I., S. R. S. Abdullah, M. Idris, S. B. Kurniawan, M. I. E. Halmi, N. H. A. L. Sbani, O. H. Jehawi, & H. A. Hasan. (2020). Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot con-structed wetlands. Journal of Environmental Management, 267, 110643. doi: 10.1016/j.jenvman.2020.110643
Imfeld, G., M. Braeckevelt, P. Kuschk, & H. H. Richnow. (2009). Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere, 74(3), 349–362. doi: 10.1016/j.chemosphere.2008.09.062
International Federation of Organic Agriculture Movements. (2016). Organic 3.0 for truly sustainable farming & consumption.
Jack, B. (2009). Agriculture and EU Environmental Law. Routledge. p 340.
Janssen, M., J. Frings, & B. Lennartz. (2018). Effect of grass buffer strips on nitrate export from a tile-drained field site. Agricultural Water Management, 208, 318–325. doi: 10.1016/j.agwat.2018.06.026
JRC-Ispra. (2014). Managing Nitrogen and Phosphorus Loads to Water Bodies: Characterisation and Solutions. European Commission Joint Research Centre Institute for Environment and Sustainability.
Kadlec, R. H. (2016). Large Constructed Wetlands for Phosphorus Control: A Review. Water, 8(6), 243–279. doi: 10.3390/w8060243
Kanabkaew, T. & U. Puetpaiboon. (2004). Aquatic plants for domestic wastewater treatment: Lotus (Nelumbo nucifera) and hydrilla (Hydrilla verticillata) systems. Journal of Science and Technology, 26, 749–756.
Kantawanichkul, S. & W. Duangjaisak. (2011). Domestic wastewater treatment by a constructed wetland system planted with rice. Water Science and Technology, 64(12), 2376–2380. doi: 10.2166/wst.2011.806
Karlen, D. L., S. S. Andrews, & J. W. Doran. (2001). Soil quality: Current concepts and applications. Advances in Agronomy, 74, 1–40. doi: 10.1016/S0065-2113(01)74029-1
Kasamesiri, P. & W. Thaimuangphol. (2019). Effects of agrochemical residues on aquatic invertebrates in semi-organic rice fields. International Journal of GEOMATE, 16(56), 54–58. doi: 10.21660/2019.56.4567
Kennedy, G. & T. Mayer. (2002). Natural and constructed wetlands in Canada: An overview. Water Quality Research Journal, 37(2), 295–325. doi: 10.2166/wqrj.2002.020
Knight, R. L., V. W. E. Payne Jr., R. E. Borer, R. A. Clarke Jr., & J. H. Pries. (2000). Constructed wetlands for livestock wastewater management. Ecological Engineering, 15(1–2), 41–55. doi: 10.1016/S0925-8574(99)00034-8
Kremen, C., A. Iles, & C. Bacon. (2012). Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture. Ecology and Society, 17(4), 44–63. doi: 10.5751/ES-05103-170444
Laber, J. (2000). Constructed wetland system for storm water treatment. Journal of Environmental Science and Health, Part A, 35(8), 1279–1288. doi: 10.1080/10934520009377036.
Lannas, K. S. M. & J. K. Turpie. (2009). Valuing the provisioning services of wetlands: Contrasting a rural wetland in Lesotho with a Peri-Urban Wetland in South Africa. Ecology and Society, 14(2), 18. doi: 10.5751/ES-02919-140218
Larsen, S. (1967). Soil phosphorus. Advances in Agronomy, 19, 151-210. doi: 10.1016/S0065-2113(08)60735-X
Lima, F. B., A. E. Schäfer, & R. M. Lanzer. (2013). Diversity and spatial and temporal variation of benthic macroinvertebrates with respect to the trophic state of Lake Figueira in the South of Brazil. Acta Limnologica Brasiliensia, 25(4), 429–441. doi: 10.1590/S2179-975X2013000400008
Limmer, M. & J. Burken. (2016). Phytovolatilization of organic contaminants. Environmental Science & Technology, 50(13), 6632–6643. doi: 10.1021/acs.est.5b04113
Lin, Y. F., S. R. Jing, D. Y. Lee, & T. W. Wang. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209(1-4), 169–184. doi: 10.1016/S0044-8486(01)00801-8
Luyen, L. T. & T. R. Preston. (2004). Effect of level of urea fertilizer on biomass production of water spinach (Ipomoea aquatica) grown in soil and in water. Livestock Research for Rural Development, 16, 81.
McInnes, R.J. (2013). Recognizing ecosystem services from wetlands of international importance: An example from Sussex, UK. Wetlands, 33(6), 1001–1017. doi: 10.1007/s13157-013-0458-1
Merckx, T., R. E. Feber, P. Riordan, M. C. Townsend, N. A. D. Bourn, M. S. Parsons, & D. W. Macdonald. (2009). Optimizing the biodiversity gain from agri-environment schemes. Agriculture, Ecosystems and Environment, 130(3–4), 177–182. doi: 10.1016/j.agee.2009.01.006
Masi, F., A. Rizzo, R. Bresciani, & G. Conte. (2017). Constructed wetlands for combined sewer overflow treatment: Ecosystem ser-vices at Gorla Maggiore, Italy. Ecological Engineering, 98, 427–438. doi: 10.1016/j.ecoleng.2016.03.043
Masi, F., A. Rizzo, & M. Regelsberger. (2017). The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. Journal of Environmental Management, 216, 275–284. doi: 10.1016/j.jenvman.2017.11.086
Mitsch, W. J., & J. G. Gosselink. (2000). The value of wetlands: Importance of scale and landscape setting. Ecological Economics, 35(1), 25–33. doi: 10.1016/S0921-8009(00)00165-8
Moreno-Mateos, D. & F. A. Comin. (2010). Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural landscapes. Journal of Environmental Management, 91(11), 2087–2095. doi: 10.1016/j.jenvman.2010.06.002
Negri, V. (2005). Agro-biodiversity conservation in Europe: Ethical issues. Journal of Agricultural and Environmental Ethics, 18(1), 3–25. doi: 10.1007/s10806-004-3084-3
The Organisation for Economic Co-operation and Development. (1999). Environmental indicators for agriculture_ Concept & framework. Paris, France.
Olawale, O., D. O. Raphael, O. Christopher, C. O. Akinbile, & K. Ishuwa. (2021). Comparison of heavy metal and nutrients removal in Canna indica and Oryza sativa L. based constructed wetlands for piggery effluent treatment in north-central Nigeria. International Journal of Phytoremediation, 23(13), 1–9. doi: 10.1080/15226514.2021.1900062
Owa, F. W. (2014). Water pollution: sources, effects, control and management. International Letters of Natural Sciences, 3, 1–6. doi: 10.18052/www.scipress.com/ILNS.8.1
Pan, X., L. Xu, Z. Yang, & B. Yu. (2017). Payments for ecosystem services in China: Policy, practice, and progress. Journal of Cleaner Production, 158, 200–208. doi: 10.1016/j.jclepro.2017.04.127
Pande, P.C., P. Awasthi, K. Bargali, & S.S. Bargali. (2016). Agro-Biodiversity of Kumaun Himalaya, India: A Review. Current Agriculture Research Journal, 4(1), 16–34. doi: 10.12944/CARJ.4.1.02
Paoletti, M.G. (1995). Biodiversity, traditional landscapes and agroecosystem management. Landscape and Urban Planning, 31(1–3), 117–128. doi: 10.1016/0169-2046(94)01040-F
Paoletti, M.G., D. Pimentel, B. R. Stinner, & D. Stinner. (1992). Agroecosystem biodiversity: matching production and conservation biology. Agriculture, Ecosystems & Environment, 40(1–4), 3–23. doi: 10.1016/0006-3207(93)90457-C
Passuni, E. O. & M. S. M. Fonkén. (2015). Relationships between aquatic invertebrates, water quality and vegetation in an Andean peatland system. Mires and Peat, 15, 1–21.
Peng, W., D. Kong, C. Wu, A. P. Møller, & T. Longcore. (2020). Predicted effects of Chinese national park policy on wildlife habitat provisioning: Experience from a plateau wetland ecosystem. Ecological Indicators, 115, 106346. doi: 10.1016/j.ecolind.2020.106346
Piorr, H. -P. (2003). Environmental policy, agri-environmental indicators and landscape indicators. Agriculture, Ecosystems & Environment, 98(1–3), 17–33. doi: 10.1016/S0167-8809(03)00069-0
Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of The Royal Society B Biological Sciences, 365(1554), 2959–2971. doi: 10.1098/rstb.2010.0143
Qian, J.-H., A. Zayed, Y.-L. Zhu, M. Yu, & N. Terry. (1999). Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. Journal of Environmental Quality, 28(5), 1448–1455. doi: 10.2134/jeq1999.00472425002800050009x
Rahman, M. E., M. I. E. B. Halmi, M. Y. B. A. Samad, M. K. Uddin, K. Mahmud, M. Y. A. Shukor, S. R. S. Abdullah, & S. M. Shamsuzzaman. (2020). Design, operation and optimization of constructed wetland for removal of pollutant. International Journal of Environmental Research and Public Health, 17(22), 8339. doi: 10.3390/ijerph17228339
Rasmussena, J. J., A. Baattrup-Pedersena, P. Wiberg-Larsena, U. S. McKnightb, & B. Kronvanga. (2011). Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management. Ecological Engineering, 37(12), 1990–1997. doi: 10.1016/j.ecoleng.2011.08.016
Reidsma, P., T. Tekelenburg, M. van den Berg, & R. Alkemade. (2006). Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agricultural, Ecosystems and Environment, 114(1), 86–102. doi: 10.1016/j.agee.2005.11.026
Rio Declaration on Environment and Development (1992).
Roseth, R. (2000). Shell sand: A new filter medium for constructed wetlands and wastewater treatment. Journal of Environmental Science and Health, Part A, 35(8), 1335–1355, doi: 10.1080/10934520009377039
Ryther, J. H. & W. H. Dunstan. (1971). Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment. Science, 171(3975), 1008–1013. doi: 10.1126/science.171.3975.1008
Sakadevan, K. & H. J. Bavor. (1999). Nutrient removal mechanisms in constructed wetlands and sustainable water management. Water Science and Technology, 40(2), 121–128. doi: 10.1016/S0273-1223(99)00478-3
Salazar, O., C. Rojas, F. Avendaño, P. Realini, F. Nájera, & Y. Tapia. (2015). Inorganic nitrogen losses from irrigated maize fields with narrow buffer strips. Nutrient Cycling in Agroecosystems, 102(3), 359–370. doi: 10.1007/s10705-015-9707-4
Savci, S. (2012). An Agricultural Pollutant: Chemical Fertilizer. International Journal of Environmental Science and Development, 3(1), 78–80. doi: 10.7763/IJESD.2012.V3.191
Schäfer, R. B., T. Caquet, K. Siimes, R. Mueller, L. Lagadic, & M. Liess. (2007). Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Science of the Total Environment, 382(2–3), 272–285. doi: 10.1016/j.scitotenv.2007.04.040
Schnoor, J. L., L. A. Licht, S. T. McCutcheon, N. L. Wolfe, & L. H. Carreira. (1995). Phytoremediation of Organic and Nutrient Contaminants. Environmental Science and Technology, 29(7), 318–323. doi: 10.1021/es00007a747
Sharafi, S., M. Tanha, & R. Hassanzade. (2015). Soil Agrobiodiversity Measurement Indicators. International Journal of Farming and Allied Sciences, 4(1), 6–12.
Sharma, B., G. Rasul, & N. Chettri. (2015). The economic value of wetland ecosystem services: Evidence from the Koshi Tappu Wild-life Reserve, Nepal. Ecosystem Services, 12, 84–93. doi: 10.1016/j.ecoser.2015.02.007
Shutes, R. B. E. (2001). Artificial wetlands and water quality improvement. Environment International, 26(5–6), 441–447. doi: 10.1016/S0160-4120(01)00025-3
Simpson, I. C., P. A. Roger, R. Oficial, & I. F. Grant. (1993). Impacts of agricultural practices on aquatic oligochaete populations in rice fields. Biology and Fertility of Soils, 16(1), 27–33. doi: 10.1007/BF00336511
Simpson, I. C., P. A. Roger, R. Oficial, & I. F. Grant. (1994). Effects of nitrogen fertilizer and pesticide management on floodwater ecology in a wetland ricefield. Biology and fertility of Soils, 17(2), 129–137. doi: 10.1007/BF00337745
Simpson, I. C. & P. A. Roger. (1995). The impact of pesticides on nontarget aquatic invertebrates in wetland ricefields: a review. In P. L. Pingali & P. A. Roger (Eds.), Impact of Pesticides on Farmer Health and the Rice Environment (pp. 249–270). Norwell, Massachusetts USA: International Rice Research Institute. doi: 10.1007/978-94-011-0647-4_9
Spieles, D. J. & W. J. Mitsch. (2000). Macroinvertebrate community structure in high-and low-nutrient constructed wetlands. Wetlands, 20(4), 716–729. doi: 10.1672/0277-5212(2000)020[0716:MCSIHA]2.0.CO;2
Sophea, K. & T. R. Preston. (2001). Comparison of biodigester effluent and urea as fertilizer for water spinach vegetable. Livestock Research for Rural Development, 13, 125–127.
Stehle, S., J. M. Dabrowski, U. Bangert, & R. Schulz. (2016). Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters. Science of the Total Environment, 545–546, 171–183. doi: 10.1016/j.scitotenv.2015.12.077
Steiner, F. (1990). The Living Landscape: An Ecological Approach to Landscape Planning. (1st ed.). ‎ Publisher: McGraw-Hill College.
Steven, A. J. D., E. S. Bakker, B. van Lith, A. Kersbergen, & E. van Donk. (2011). Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic and Applied Ecology, 12(5), 466–475. doi: 10.1016/j.baae.2011.05.001
Stone, K.C., P. G. Hunt, A. A. Szögi, F. J. Humenik, & J. M. Rice. (2002). Constructed wetland design and performance for swine lagoon wastewater treatment. Transactions of the American Society of Agricultural Engineers, 45(3), 723–730. doi: 10.13031/2013.8828
Sun, H., H. Zhang, Z. Yu, J. Wu, P. Jiang, X. Yuan, W. Shi. (2013). Combination system of full-scale constructed wetlands and wetland paddy fields to remove nitrogen and phosphorus from rural unregulated non-point sources. Environmental Geochemistry and Health, 35(6), 801–809. doi: 10.1007/s10653-013-9536-9
Tao, W., K. J. Hall, & S. J. B. Duff. (2006). Performance evaluation and effects of hydraulic retention time and mass loading rate on treatment of woodwaste leachate in surface-flow constructed wetlands. Ecological Engineering, 26(3), 252–265. doi: 10.1016/j.ecoleng.2005.10.006
Tate, K. W., M. D. G. C. Pereira, & E. R. Atwill. (2004). Efficacy of Vegetated Buffer Strips for Retaining. Journal of Environmental Quality, 33, 2243–2251. doi: 10.2134/jeq2004.2243
Thakur, A. & D. K. Kocher. (2017). Diversity and density of cladoceran population in different types of water bodies of Ludhiana, Punjab (India). Journal of Entomology and Zoology Studies, 5(3), 1568–1572.
Towa, A. N., T. E. Ewoukem, S. H. Z. Togouet, G. Fonkwa, T. Fonkou, V. Nguetsop, P. Zang, & Tchoumboue. (2019). Influence of Types and Doses of Fertilizer on the Physicochemical Characteristics of Water, Composition and Structure of Zooplankton Populations in Ponds. Advances in Oceanography & Marine Biology, 1(4), 1-11. doi: 10.33552/AOMB.2018.01.000516
Trepel, M. (2010). Assessing the cost-effectiveness of the water purification function of wetlands for environmental planning. Ecological Complexity, 7(3), 320–326. doi: 10.1016/j.ecocom.2010.02.006
Tung, T. V., Q. B. Tran, N. T. P. Thao, L. Q. Vi, T. T. Hieu, N. Q. Tuan, C. Sonne, S. S. Lam, L. T. Hai, & Q. V. Le. (2021). Recycling of aquaculture wastewater and sediment for sustainable corn and water spinach production. Chemosphere, 268, 1293629. doi: 10.1016/j.chemosphere.2020.129329
Vuuren, W.V. & P. Roy. (1993). Private and social returns from wetland preservation versus those from wetland conversion to agriculture. Ecological Economics, 8(3), 289–305. doi: 10.1016/0921-8009(93)90063-C
Vymazal, J. (2009). The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35(1), 1–17. doi: 10.1016/j.ecoleng.2008.08.016
Vymazal, J. & T. D. Březinová. (2018). Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch. Ecological Engineering, 118, 97–103. doi: 10.1016/j.ecoleng.2018.04.013
Wang, Y. W., H. Li, Y. Wu, Y. Cai, H. L. Song, Z. D. Zhai, & X. L. Yang. (2019). In Situ Nutrient Removal from Rural Runoff by A New Type Aerobic/Anaerobic/Aerobic Water Spinach Wetlands. Water, 11(5), 1100. doi: 10.3390/w11051100
Wang, X., B. Luo, L. Wang, Y. Zhao, Q. Wang, D. Li, B. Gu, Y. Min, S. X. Chang, Y. Ge, & J. Chang. (2020). Plant diversity improves the effluent quality and stability of floating constructed wetlands under increased ammonium/nitrate ratio in influent. Ecological Engineering, 266, 110607. doi: 10.1016/j.jenvman.2020.110607
Wilson, A. L., R. J. Watts, & M. M. Stevens. (2008). Effects of different management regimes on aquatic macroinvertebrate diversity in Australian rice fields. Ecological Research, 23(3), 565–572. doi: 10.1007/s11284-007-0410-z
Yamazaki, M., Y. Hamada, N. Kamimoto, T. Momii, Y. Aiba, N. Yasuda, S. Mizuno, S. Yoshida, & M. Kimura. (2003). Changes in the community structure of aquatic organisms after midseason drainage in the floodwater of Japanese paddy fields. Soil Science and Plant Nutrition, 49(1), 125–135. doi: 10.1080/00380768.2003.10409987
Yang, W., J. Chang, B. Xu, C. Peng, & Y. Ge. (2008). Ecosystem service value assessment for constructed wetlands: A case study in Hangzhou, China. Ecological Economics, 68(1–2), 116–125. doi: 10.1016/j.ecolecon.2008.02.008
Yang, W. & Q. Lu. (2018). Integrated evaluation of payments for ecosystem services programs in China: a systematic review. Ecosystem Health and Sustainability (EHS), 4(3), 73–84. doi: 10.1080/20964129.2018.1459867
Young, R. A., T. Huntrods, & W. Anderson. (1980). Effectiveness of Vegetated Buffer Strips in Controlling Pollution from Feedlot Runoff. Journal of environmental quality, 9(3), 483–487. doi: 10.2134/jeq1980.00472425000900030032x
Yu, H., W. Xie, L. Yang, A. Du, C. M. V. B. Almeida, & Y. Wang. (2020). From payments for ecosystem services to eco-compensation: Conceptual change or paradigm shift? Science of the Total Environment, 700, 1–12. doi: 10.1016/j.scitotenv.2019.134627
Yu, J. & K. Belcher. (2011). An economic analysis of landowners’ willingness to adopt wetland and riparian conservation management. Canadian Journal of Agricultural Economics, 59(2), 207–222. doi: 10.1111/j.1744-7976.2011.01219.x
Yu, R., Q. Wu, & X. Lu. (2012). Constructed wetland in a compact rural domestic wastewater treatment system for nutrient removal. Environmental Engineering Science, 29(8), 751–757. doi: 10.1089/ees.2011.0209
Yunus, I. S., Harwin, A. Kurniawan, D. Adityawarman, & A. Indarto. (2012). Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, 1(1), 136–148. doi: 10.1080/21622515.2012.733966
Zhang, C.-B., J. Wang, W.-L. Liu, S.-X. Zhu, H.-L. Ge, S. X. Chang, J. Chang, & Y. Ge. (2010). Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering, 36(1), 62–68. doi: 10.1016/j.ecoleng.2009.09.010
Zhang, L., T. Lv, Y. Zhang, O. R. Stein, C. A. Arias, H. Brix, & P. N. Carvalho. (2017). Effects of constructed wetland design on ibuprofen removal—A mesocosm scale study. Science of The Total Environment, 609, 38–45. doi: 10.1016/j.scitotenv.2017.07.130
Zhou, X., X. Wang, H. Zhang, & H. Wu. (2017). Enhanced nitrogen removal of low C/N domestic wastewater using a bio-char-amended aerated vertical flow constructed wetland. Bioresource Technology, 241, 269–275. doi: 10.1016/j.biortech.2017.05.072
Zhu, Y. L., A. M. Zayed, J.-H. Qian, M. de Souza, & N. Terry. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. Journal of Environmental Quality, 28(1), 339–341. doi: 10.2134/jeq1999.00472425002800010042x
Zulfahmi, I., R. N. Kandi, F. Huslina, L. Rahmawati, M. Muliari, K. A. Sumon, & M. M. Rahman. (2020). Phytoremediation of palm oil mill effluent (POME) using water spinach (Ipomoea aquatica Forsk). Environmental Technology & Innovation, 21, 101260. doi: 10.1016/j.eti.2020.101260
丁昭義、陳信雄(1979)。森林緩衝帶對農藥之過濾作用。中華水土保持學報,10(1), 115-126。doi: 10.29417/JCSWC.197907_10(1).0007
王兆桓、陳子英(2002)。林木健康指標評估方法之建立-以棲蘭地區老熟檜木為例。農委會林務局羅東林區管理處委託研究計畫。
于君宝、侯小凯、韩广轩、管博、郑垒(2013)。多介质人工湿地对生活污水中氮和磷的去除效率研究。湿地科学,11(2),233-239。
王為一、王銀波、王德男、李文立、吳正宗、林木連、林益賢、林景和、陳仁炫、陳鴻堂、彭德昌、黃伯恩、黃維廷、張金城、張庚鵬、張登和、張春梅、張繼中、謝元德、譚增偉、盧啟信、羅秋雄、蘭祐利(2005)。作物施肥手冊。取自http://www.chinesefa.org.tw/community.html
王敏昭(1997)。緩衝帶對營養鹽之截留作用。水土保持學報,29(1),69-92。
內政部(2015)。濕地保育法。
行政院農業委員會(2008)。獎勵輔導造林辦法(含樹種及每公頃植栽株樹基準表)。
行政院農業委員會(2018)。國土生態保育綠色網絡建置計畫(107 至110 年度)。
行政院農業委員會(2021)。國土生態保育綠色網絡建置計畫(111 至114 年度)。
行政院農業委員會(2020)。瀕危物種及重要棲地生態服務給付推動方案(110 至112年度)。
李光中、王鑫(2010)。參加生物多樣性公約第10屆締約方大會出國報告。
李玲玲(2000)。自然保育組階段性成果。永續台灣簡訊,2(2),9-10。
吳孟珊、詹為巽、王培蓉(2019)。結合生態系統服務支付的造林獎勵計畫。林業研究專訊,26(4),50-54。
闵庆文、甄霖、杨光梅(2007)。自然保护区生态补偿研究与实践进展。生态与农村环境学报,23(1),81-84。
金京淑(2010)。日本推行农业环境政策的措施及启示。农业环境,173(5),60-64。
林壯沛、黃良鑫、盧惠生、林昭遠、鄭皆達(2002)。三合溪集水區泥沙推估與濱水帶設置。水土保持學報,34(1),1-22。
林昭遠(1997)。集水區泥岩裸露邊坡植生復育之研究。水土保持學報,29(2),169-181。
范美玲(2016)。台灣東部水稻田無脊椎動物多樣性與指標物種研究(博士論文)。取自臺灣博碩士論文系統。
范美玲、林泰佑、林立、蔡思聖、黃鵬(2014)。水稻田濕地生態的生物多樣性。科學發展,497,18-23。
徐仲禹、倪禮豐(2011)。土壤肥力分析與植物營養診斷服務。花蓮區農業改良場農業專訊,77,21-24。doi: 10.29579/ZHWHGX.201109.0006
徐芝芬、李金城、莫德清、阙光龙、李文文、孙鑫、苏春良、黃朗妃(2011)。组合工艺对农村生活污水中氮磷的去除效果。桂林理工大学学报,31(2),252-257。
夏禹九、金恆鑣、洪富文、黃正良、王立志、劉瓊霜(1994)。植生型與施肥作業對濱岸帶土壤水化學性質的影響。林業試驗所研究報告季刊,9(1),39-50。doi: 10.7075/BTFRI.199403.0039
凌祯、杨具瑞、于国荣、程浩亮、李君宁(2011)。不同植物与水力负荷对人工湿地脱氮除磷的影响。中国科学环境,31(11),1815-1820。
張則周(1993)。總論。載於中華土壤肥料學會(主編),土壤分析手冊(1-18頁)。臺北市。
張聖函(2012)。德國巴伐利亞州農業環境補貼政策。農業生技產業季刊,32,64-71。
陶敏、贺锋、王敏、吴振斌(2014)。人工湿地强化脱氮研究进展。工业水处理,34(3),6-10。
陳平、劉大綱、陳厚宇、余進利(2012年11月)。台灣近岸海域環境優養化之評估。第34 屆海洋工程研討會發表之論文,國立成功大學。
陳光政、林文賜、林昭遠(2002)。大埔水庫集水區泥砂產量推估及濱水區緩衝帶效益之研究。水土保持學報,34(2),85-96。
梁雪、贺锋、徐栋、吴振斌(2012)。人工湿地植物的功能与选择。水生态学杂志,33(1),131-138。
陳郁蕙、陳雅惠(2014)。瑞士實施農業直接給付之經驗及對我國之啟示。國際農業科技新知,61,7-11。
馮豐隆、高義盛(2000)。台灣森林生態系經營準則和指標之研擬。林業研究季刊,22,79-90。
黃文利、陳明健(2004)。農業生產與生物多樣性維護之研究。農業與經濟,33,1-22。doi: 10.6181/AGEC.200412_(33).0001
黃鵬、楊大吉、沈聰明、陳吉村、宣大平(2010)。宜蘭、花蓮有機產業發展願景。東部有機樂活廊道研討會發表之論文,花蓮區農業改良場農業推廣大樓。
廖思涵、謝蕙蓮、林幸助(2012)。台灣亞熱帶濕地的不同植被對底棲小型無脊椎動物之影響。濕地學刊,1(1),65-74。doi:10.30124/JW.201201.0006
劉錦添(2005)。永續台灣的評量系統VI。國科會專題研究計畫報告。
蔡娟娟(2000)。營養鹽與溫度對墾丁南灣大型海藻生物量之影響(碩士論文)。取自臺灣博碩士論文系統。
闕雅文(2004)。加拿大永續農業環境之推動方案-農業環境健康計畫。農委會委託研究計畫報告。
薛美莉、林幸助(2012)。探討影響新海人工濕地氮削減的因子。濕地學刊,1(1),11-20。doi: 10.30124/JW.201201.0002
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *