帳號:guest(3.142.252.166)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:洪國凱
作者(英文):Guo-Kai Hong
論文名稱:以無機營養鹽施肥法量產橈腳類之研究
論文名稱(英文):Development of copepod mass production using inorganic fertilization method
指導教授:張桂祥
指導教授(英文):Kwee-Siong Tew
口試委員:張桂祥
呂明毅
孟培傑
謝泓諺
陳孟仙
蔡明安
口試委員(英文):Kwee-Siong Tew
Ming-Yih Leu
Pei-Jie Meng
Hung-Yen Hsieh
Meng-Hsien Chen
Ming-An Tsai
學位類別:博士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:810663002
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:87
關鍵詞:橈腳類安氏偽鏢水蚤(Pseudodiaptomus annandalei)無機鹽施肥法有機質施肥法矽藻魚苗活餌水產養殖
關鍵詞(英文):CopepodPseudodiaptomus annandaleiInorganic fertilization methodOrganic fertilization methodIronSilicaDiatomFish larvaeLive feedAquaculture
相關次數:
  • 推薦推薦:0
  • 點閱點閱:3
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
橈腳類作為富含營養的活餌,被大量使用於海水魚苗養殖。但現今主要使用有機質進行施肥所產出的橈腳類產量無法滿足市場需求。本研究評估目前用於淡水和海洋魚苗養殖的無機鹽施肥法應用於橈腳類量產的可行性,依序進行下列三個實驗。實驗一:比較無機鹽施肥法(N: 700 μg L-1, P: 100 μg L-1)與有機質施肥法(市售濃縮魚精)對於量產橈腳類的效果。結果顯示,無機鹽施肥法能穩定維持水體的酸鹼值,且不會累積高濃度的無機磷及長出大量絲狀藻。在橈腳類初始密度為1 ind L-1的條件下,兩種施肥法的橈腳類幼生平均密度相似,但以無機鹽施肥的橈腳類成體有明顯提高。與市售動浮產品相比,無機鹽施肥法所培養出的橈腳類具有體型更小、純度較高的優勢,也不含病原體,且每單位乾重的成本較低。本實驗顯示無機鹽施肥法在橈腳類的培養上可取代有機質施肥法,並有商業化的潛力。實驗二:接續實驗一,我們以添加鐵(Fe: 10 μg L-1)去改良無機鹽施肥法,並將其對橈腳類培養的效果與原方法(N: 700 μg L-1和P: 100 μg L-1;控制組)進行比較。結果顯示,添加鐵可延長浮游植物的生長期,並顯著產生出更多的小型浮游植物(0.45-20 μm)和橈腳類成體。與控制組相比,儘管添加鐵使橈腳類的生產成本增加23%,但估計的淨利潤卻增加97%。本實驗結論為:添加鐵(Fe: 10 μg L-1)成功優化無機鹽施肥法,使橈腳類產量及淨利潤加倍。實驗三:接續實驗二的成果,我們在N: 700 μg L-1, P: 100 μg L-1, Fe: 10 μg L-1 (控制組)之無機鹽施肥法基礎上,評估額外添加矽(Si: 100 μg L-1)的效果。實驗結果顯示,在添加矽的組別,綠藻作為優勢浮游植物的程度下降,取而代之的是甲藻比例上升,並且中期後以矽藻為主。橈腳類成體密度及總乾重在添加矽的組別中顯著下降。額外添加矽所需的肥料成本,使生產橈腳類的每單位乾重成本大幅提升。本實驗顯示無機鹽施肥法添加矽對於矽藻的培養確實有正向效果,但卻使橈腳類的產量下降,表示添加矽對於無機鹽施肥法去量產橈腳類是不必要的。
Copepods, which are a highly nutritious live feed, are extensively utilized in fish larviculture. However, the present production of copepods via organic fertilization method fails to meet the market demands. The aim of this study is to assess the viability of employing inorganic fertilization methods that are presently utilized in freshwater and marine fish larviculture for the purpose of copepod production. To assess the effects of inorganic and organic fertilization methods on copepod production, three sequential experiments were conducted. Experiment 1 compared the production of copepods under inorganic fertilization conditions (N: 700 μg L-1, P: 100 μg L-1) with those under organic fertilization using commercially available condensed fish solubles. The study revealed that the inorganic fertilization method was able to maintain water pH stability and avoid the accumulation of high levels of inorganic phosphorus and filamentous algae. Although both fertilization methods produced similar copepod larval densities at an initial density of 1 ind L-1, the inorganic fertilization method led to a significant increase in adult copepod density. Furthermore, copepods cultured with inorganic fertilization displayed smaller size range, higher purity, no pathogens, and lower unit cost than commercial zooplankton products. The findings suggest that inorganic fertilization has the potential to replace organic fertilization in copepod mass production and has commercial viability. Experiment 2 was conducted to further improve the inorganic fertilization method by adding iron (Fe: 10 μg L-1). The effects of this modification were compared to the original method (N: 700 μg L-1 and P: 100 μg L-1; control group) on culturing copepods. Results showed that adding iron prolonged the growth period of phytoplankton and significantly increased the production of small-sized phytoplankton (0.45-20 μm) and copepod adults. Although adding iron increased the production cost of copepods by 23%, estimated net income increased by 97% compared to the control group. In conclusion, this experiment demonstrated that adding iron (Fe: 10 μg L-1) successfully optimized the inorganic fertilization method, doubling the yield and net income of copepods. Experiment 3 aimed to evaluate the impact of adding silicate (Si: 100 μg L-1) to the inorganic fertilization method, based on N: 700 μg L-1, P: 100 μg L-1, and Fe: 10 μg L-1 (control group). The results indicated that the addition of silicate resulted in a decrease in the dominance of green algae as the primary phytoplankton, which was replaced by an increase in the proportion of diatoms. However, this increase in diatoms did not lead to an increase in the density and total dry weight of adult copepods, which significantly decreased in the group with added silicate. Additionally, the inclusion of silicate fertilizer significantly increased the unit cost of producing copepods. Therefore, this experiment concluded that although the addition of silicate had a positive effect on the culture of diatoms, it was unnecessary for the inorganic fertilization method to produce copepods. Overall, the results suggest that inorganic fertilization can replace organic fertilization in mass production of copepods with commercial viability. Adding iron (Fe: 10 μg L-1) can optimize the inorganic fertilization method, leading to a doubling of the yield and net income of copepods. However, adding silicate (Si: 100 μg L-1) was unnecessary for copepod production and resulted in decreased density and increased unit cost.
1. 前言 1
2. 材料方法 11
2.1 實驗設計 11
2.2 實驗地點、環境條件 11
2.3 施肥條件 12
2.4 實驗物種 12
2.5 水中物理化學參數分析 13
2.5.1 基本水質 13
2.5.2 無機鹽濃度 13
2.6 生物參數分析 14
2.6.1 葉綠素a分析 14
2.6.2 浮游動物分析 15
2.6.3 附著藻分析 15
2.6.4 市售浮游動物產品分析 15
2.6.5 乾重成本及淨利潤計算 16
2.6.6 浮游植物鑑種 16
2.7 統計分析 17
3. 實驗一:使用無機鹽施肥法(N: 700 L-1, P: 100 μg L-1)與有機質施肥法(市售濃縮魚精)去量產橈腳類的比較 19
3.1 實驗一前言 19
3.2 實驗一結果 20
3.3 實驗一討論 22
4. 實驗二:評估添加鐵的無機鹽施肥法(N: 700 L-1, P: 100 μg L-1, Fe: 10 μg L-1)量產橈腳類之成效 31
4.1 實驗二目的 31
4.2 實驗二結果 32
4.3 實驗二討論 34
5. 實驗三:評估添加鐵後的無機鹽施肥法進一步添加矽(N: 700 L-1, P: 100 μg L-1, Fe: 10 μg L-1, Si: 100 μg L-1)對量產橈腳類之成效 43
5.1 實驗三前言 43
5.2 實驗三結果 44
5.3 實驗三討論 46
6. 結論 55
7. 未來計畫 57
參考文獻 59
附錄 87
山路勇, 1984. 日本海洋プランクトン図鑑. 第 3 版. 保育社.
Abate, T.G., Nielsen, R., Nielsen, M., Drillet, G., Jepsen, P.M., Hansen, B.W., 2015. Economic feasibility of copepod production for commercial use: result from a prototype production facility. Aquaculture. 436, 72-79.
Abatzopoulos, T.J., Beardmore, J., Clegg, J., Sorgeloos, P., 2013. Artemia: basic and applied biology. Springer Science & Business Media.
Abraham, E.R., Law, C.S., Boyd, P.W., Lavender, S.J., Maldonado, M.T., Bowie, A.R., 2000. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature. 407, 727-730.
Adewumi, A., 2006. The growth and gonadal maturation of the African catfish, Clarias gariepinus (Burchell) broodstock fed differently heated soybean‐based diets. Aquaculture Nutrition. 12, 267-274.
Afshari, A., Sourinejad, I., Gharaei, A., Johari, S.A., Ghasemi, Z., 2021. The effects of diet supplementation with inorganic and nanoparticulate iron and copper on growth performance, blood biochemical parameters, antioxidant response and immune function of snow trout Schizothorax zarudnyi (Nikolskii, 1897). Aquaculture. 539, 736638.
Aguirre, L.E., Ouyang, L., Elfwing, A., Hedblom, M., Wulff, A., Inganäs, O., 2018. Diatom frustules protect DNA from ultraviolet light. Scientific Reports. 8, 1-6.
Ajiboye, O., Yakubu, A., Adams, T., Olaji, E., Nwogu, N., 2011. A review of the use of copepods in marine fish larviculture. Reviews in Fish Biology and Fisheries. 21, 225-246.
Alajmi, F., Zeng, C., 2014. The effects of stocking density on key biological parameters influencing culture productivity of the calanoid copepod, Parvocalanus crassirostris. Aquaculture. 434, 201-207.
Alajmi, F., Zeng, C., Jerry, D.R., 2015. Domestication as a novel approach for improving the cultivation of calanoid copepods: A case study with Parvocalanus crassirostris. PloS One. 10, e0133269.
Andersen, R.A., 2005. Algal Culturing Techniques. Elsevier.
Anraku, M., Azeta, M., 1967. The feeding activities of yellowtail larvae, Seriola quinqueradiata Temminck et Schlegel, associated with floating seaweeds. Bulletin of the Seikai National Fisheries Research Institute, Nagasaki. 35, 41-50.
Aragão, C., Conceição, L.E., Dinis, M.T., Fyhn, H.J., 2004. Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture. 234, 429-445.
Asai, S., Sanges, R., Lauritano, C., Lindeque, P.K., Esposito, F., Ianora, A., Carotenuto, Y., 2020. De novo transcriptome assembly and gene expression profiling of the copepod Calanus helgolandicus feeding on the PUA-producing diatom Skeletonema marinoi. Marine Drugs. 18, 392.
Ayoub, A.T., 1999. Fertilizers and the environment. Nutrient Cycling in Agroecosystems. 55, 117-121.
Baeza-Rojano, E., Hachero-Cruzado, I., Guerra-García, J.M., 2014. Nutritional analysis of freshwater and marine amphipods from the Strait of Gibraltar and potential aquaculture applications. Journal of Sea Research. 85, 29-36.
Balaguer, J., Koch, F., Hassler, C., Trimborn, S., 2022. Iron and manganese co-limit the growth of two phytoplankton groups dominant at two locations of the Drake Passage. Communications Biology. 5, 1-12.
Begum, M., Sahu, B.K., Das, A.K., Vinithkumar, N.V., Kirubagaran, R., 2015. Extensive Chaetoceros curvisetus bloom in relation to water quality in Port Blair Bay, Andaman Islands. Environmental Monitoring and Assessment. 187, 1-14.
Behrenfeld, M.J., Milligan, A.J., 2013. Photophysiological expressions of iron stress in phytoplankton. Annual Review of Marine Science. 5, 217-246.
Bell, J., McEvoy, L., Estevez, A., Shields, R., Sargent, J., 2003. Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture. 227, 211-220.
Bengtson, D.A., 2003. Status of marine aquaculture in relation to live prey: past, present and future. Live Feeds in Marine Aquaculture, 1-16.
Berggreen, U., Hansen, B., Kiørboe, T., 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: Implications for determination of copepod production. Marine Biology. 99, 341-352.
Berk, S., Brownlee, D., Heinle, D., Kling, H., Colwell, R., 1977. Ciliates as a food source for marine planktonic copepods. Microbial Ecology. 4, 27-40.
Beyrend-Dur, D., Kumar, R., Rao, T.R., Souissi, S., Cheng, S.H., Hwang, J.S., 2011. Demographic parameters of adults of Pseudodiaptomus annandalei (Copepoda: Calanoida): temperature–salinity and generation effects. Journal of Experimental Marine Biology and Ecology. 404, 1-14.
Bi, R., Sommer, U., 2020. Food quantity and quality interactions at phytoplankton–zooplankton interface: chemical and reproductive responses in a calanoid copepod. Frontiers in Marine Science. 7.
Blanda, E., Drillet, G., Huang, C.C., Hwang, J.S., Jakobsen, H.H., Rayner, T.A., Su, H.M., Wu, C.H., Hansen, B.W., 2015. Trophic interactions and productivity of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds. Aquaculture. 445, 11-21.
Blanda, E., Drillet, G., Huang, C.C., Hwang, J.S., Højgaard, J.K., Jakobsen, H.H., Rayner, T.A., Su, H.M., Hansen, B.W., 2017. An analysis of how to improve production of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds. Aquaculture. 479, 432-441.
Breteler, W.K., Schogt, N., Rampen, S., 2005. Effect of diatom nutrient limitation on copepod development: role of essential lipids. Marine Ecology Progress Series. 291, 125-133.
Briat, J.F., Dubos, C., Gaymard, F., 2015a. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science. 20, 33-40.
Briat, J.F., Rouached, H., Tissot, N., Gaymard, F., Dubos, C., 2015b. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Frontiers in Plant Science. 6, 290.
Browning, T.J., Achterberg, E.P., Engel, A., Mawji, E., 2021. Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean. Nature Communications. 12, 1-9.
Brugnano, C., Granata, A., Guglielmo, L., Minutoli, R., Zagami, G., Ianora, A., 2016. The deleterious effect of diatoms on the biomass and growth of early stages of their copepod grazers. Journal of Experimental Marine Biology and Ecology. 476, 41-49.
Burgess, A.I., Callan, C.K., 2018. Effects of supplemental wild zooplankton on prey preference, mouth gape, osteological development and survival in first feeding cultured larval yellow tang (Zebrasoma flavescens). Aquaculture. 495, 738-748.
Buskey, E.J., 2005. Behavioral characteristics of copepods that affect their suitability as food for larval fishes. Copepods in Aquaculture, 91-105.
Buskey, E.J., Coulter, C., Strom, S., 1993. Locomotory patterns of microzooplankton: potential effects on food selectivity of larval fish. Bulletin of Marine Science. 53, 29-43.
Buttino, I., 1994. The effect of low concentrations of phenol and ammonia on egg production rates, fecal pellet production and egg viability of the calanoid copepod Acartia clausi. Marine Biology. 119, 629-634.
Cahu, C., Infante, J.Z., 2001. Substitution of live food by formulated diets in marine fish larvae. Aquaculture. 200, 161-180.
Cahu, C., Infante, J.Z., Takeuchi, T., 2003. Nutritional components affecting skeletal development in fish larvae. Aquaculture. 227, 245-258.
Calbet, A., Saiz, E., 2005. The ciliate-copepod link in marine ecosystems. Aquatic Microbial Ecology. 38, 157-167.
Camus, T., Zeng, C., 2009. The effects of stocking density on egg production and hatching success, cannibalism rate, sex ratio and population growth of the tropical calanoid copepod Acartia sinjiensis. Aquaculture. 287, 145-151.
Camus, T., Zeng, C., McKinnon, A.D., 2009. Egg production, egg hatching success and population increase of the tropical paracalanid copepod, Bestiolina similis (Calanoida: Paracalanidae) fed different microalgal diets. Aquaculture. 297, 169-175.
Chaijarasphong, T., Munkongwongsiri, N., Stentiford, G.D., Aldama-Cano, D.J., Thansa, K., Flegel, T.W., Sritunyalucksana, K., Itsathitphaisarn, O., 2021. The shrimp microsporidian Enterocytozoon hepatopenaei (EHP): Biology, pathology, diagnostics and control. Journal of Invertebrate Pathology. 186, 107458.
Chen, J.Y., Zeng, C., 2021a. The effects of live prey and greenwater on the early larval rearing of orchid dottyback Pseudochromis fridmani. Aquaculture. 543, 737008.
Chen, J.Y., Zeng, C., 2021b. Transition to Artemia feeding phase for orchid dottyback Pseudochromis fridmani larvae: Establishing suitable prey shift time and strategy. Aquaculture. 545, 737180.
Chen, Q., Sheng, J., Lin, Q., Gao, Y., Lv, J., 2006. Effect of salinity on reproduction and survival of the copepod Pseudodiaptomus annandalei Sewell, 1919. Aquaculture. 258, 575-582.
Chen, X., Wakeham, S.G., Fisher, N.S., 2011. Influence of iron on fatty acid and sterol composition of marine phytoplankton and copepod consumers. Limnology and Oceanography. 56, 716-724.
Cheng, P., Cheng, J.J., Cobb, K., Zhou, C., Zhou, N., Addy, M., Chen, P., Yan, X., Ruan, R., 2020. Tribonema sp. and Chlorella zofingiensis co-culture to treat swine wastewater diluted with fishery wastewater to facilitate harvest. Bioresource Technology. 297, 122516.
Chesney, E.J., 2005. Copepods as live prey: a review of factors that influence the feeding success of marine fish larvae. Copepods in Aquaculture, 133-150.
Christopher, B., Behrenfeld, M., Randerson, J., Falkowski, P., 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237-237.
Clegg, J.S., Drinkwater, L.E., Sorgeloos, P., 1996. The metabolic status of diapause embryos of Artemia franciscana (SFB). Physiological Zoology. 69, 49-66.
Conceição, L.E., Yúfera, M., Makridis, P., Morais, S., Dinis, M.T., 2010. Live feeds for early stages of fish rearing. Aquaculture Research. 41, 613-640.
Culver, D.A., 1991. Effects of the N: P ratio in fertilizer for fish hatchery ponds. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen. 24, 1503-1507.
Culver, D.A., Madon, S.P., Qin, J., 1994. Percid pond production techniques: timing, enrichment, and stocking density manipulation. Journal of Applied Aquaculture. 2, 9-32.
Das, P., Mandal, S.C., Bhagabati, S., Akhtar, M., Singh, S., 2012. Important live food organisms and their role in aquaculture. Frontiers in Aquaculture. 5, 69-86.
Davis, A.K., Anderson, R.S., Spierling, R., Leader, S., Lesne, C., Mahan, K., Lundquist, T., Benemann, J.R., Lane, T., Polle, J.E.W., 2021. Characterization of a novel strain of Tribonema minus demonstrating high biomass productivity in outdoor raceway ponds. Bioresource Technology. 331, 125007.
de F Côrtes, G., Tsuzuki, M.Y., 2012. Effect of different live food on survival and growth of first feeding barber goby, Elacatinus figaro (Sazima, Moura & Rosa 1997) larvae. Aquaculture Research. 43, 831-834.
de la Peña, M.R., Fermin, A.C., Lojera, D.P., 1998. Partial replacement of Artemia sp. by the brackishwater cladoceran, Diaphanosoma celebensis (Stingelin), in the larval rearing of sea bass, Lates calcarifer (Bloch). The Israeli Journal of Aquaculture-Bamidgeh. 50, 25-32.
Degidio, J.M.L., Yanong, R.P., Ohs, C.L., Watson, C.A., Cassiano, E.J., Barden, K., 2018. First feeding parameters of the milletseed butterflyfish Chaetodon miliaris. Aquaculture Research. 49, 1087-1094.
Delgado, M., Alcaraz, M., 1999. Interactions between red tide microalgae and herbivorous zooplankton: the noxious effects of Gyrodinium corsicum (Dinophyceae) on Acartia grani (Copepoda: Calanoida). Journal of Plankton Research. 21, 2361-2371.
Dhert, P., Rombaut, G., Suantika, G., Sorgeloos, P., 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture. 200, 129-146.
Dhont, J., Dierckens, K., Støttrup, J., Van Stappen, G., Wille, M., Sorgeloos, P., 2013. Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture, Advances in aquaculture hatchery technology. Elsevier, pp. 157-202.
Divya, K.R., AkbarAli, I., Schmidt, B.V., John, E.M., Sureshkumar, S., Thazhakot Vasunambesan, S., 2020. Improvement of nutritional quality of live feed for aquaculture: An overview. Aquaculture Research. 51, 1-17.
Doan, N.X., Vu, M.T., Nguyen, H.T., Tran, H.T., Pham, H.Q., Dinh, K.V., 2018. Temperature‐and sex‐specific grazing rate of a tropical copepod Pseudodiaptomus annandalei to food availability: Implications for live feed in aquaculture. Aquaculture Research. 49, 3864-3873.
Domingues, P.M., Sykes, A., Andrade, J.P., 2001. The use of Artemia sp. or mysids as food source for hatchlings of the cuttlefish (Sepia officinalis L.); effects on growth and survival throughout the life cycle. Aquaculture International. 9, 319-331.
Donnini, S., Dell'Orto, M., Zocchi, G., 2011. Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes. Tree Physiology. 31, 102-113.
Dortch, Q., Whitledge, T.E., 1992. Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research. 12, 1293-1309.
Drillet, G., Lombard, F., 2015. A first step towards improving copepod cultivation using modelling: the effects of density, crowding, cannibalism, tank design and strain selection on copepod egg production yields. Aquaculture Research. 46, 1638-1647.
Drillet, G., Rais, M., Novac, A., Jepsen, P.M., Mahjoub, M.S., Hansen, B.W., 2015. Total egg harvest by the calanoid copepod Acartia tonsa (Dana) in intensive culture–effects of high stocking densities on daily egg harvest and egg quality. Aquaculture Research. 46, 3028-3039.
Drillet, G., Frouël, S., Sichlau, M.H., Jepsen, P.M., Højgaard, J.K., Joarder, A.K., Hansen, B.W., 2011. Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture. 315, 155-166.
Dutz, J., Koski, M., Jínasdí ttir, S.H., 2008. Copepod reproduction is unaffected by diatom aldehydes or lipid composition. Limnology and Oceanography. 53, 225-235.
Falkowski, P.G., Barber, R.T., Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science. 281, 200-206.
Ferreira, M., Cortina-Burgueño, Á., Freire, I., Otero, A., 2018. Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp. Aquaculture. 491, 351-357.
Ferreira, M., Coutinho, P., Seixas, P., Fábregas, J., Otero, A., 2009. Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Marine Biotechnology. 11, 585-595.
Franco, S.C., Augustin, C.B., Geffen, A.J., Dinis, M.T., 2017. Growth, egg production and hatching success of Acartia tonsa cultured at high densities. Aquaculture. 468, 569-578.
Fresh, K.L., Kim, H., Small, D.J., 2006. Juvenile salmon use of Sinclair Inlet, Washingtion in 2001 and 2002. Washington State Department of Fish & Wildlife, Fish Program, Science Division. Olympia, Washington.
Geider, R.J., La Roche, J., 1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Research. 39, 275-301.
Glibert, P.M., Maranger, R., Sobota, D.J., Bouwman, L., 2014. The Haber Bosch–harmful algal bloom (HB–HAB) link. Environmental Research Letters. 9, 105001.
Golez, M.N., Takahashi, T., Ishimarul, T., Ohno, A., 2004. Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida). Plankton Biology and Ecology. 51, 15-25.
GrØnning, J., Doan, N.X., Dinh, N.T., Dinh, K.V., Nielsen, T.G., 2019. Ecology of Pseudodiaptomus annandalei in tropical aquaculture ponds with emphasis on the limitation of production. Journal of Plankton Research. 41, 741-758.
Guillard, R.R., Ryther, J.H., 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology. 8, 229-239.
Hagiwara, A., Marcial, H.S., 2019. The use of non-Brachionus plicatilis species complex rotifer in larviculture. Hydrobiologia. 844, 163-172.
Hamm, C.E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K., Smetacek, V., 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature. 421, 841-843.
Hammock, B.G., Lesmeister, S., Flores, I., Bradburd, G.S., Hammock, F.H., Teh, S.J., 2016. Low food availability narrows the tolerance of the copepod Eurytemora affinis to salinity, but not to temperature. Estuaries and Coasts. 39, 189-200.
Hamre, K., Yúfera, M., Rønnestad, I., Boglione, C., Conceição, L.E., Izquierdo, M., 2013. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Reviews in Aquaculture. 5, S26-S58.
Han, J., Park, J.S., Park, Y., Lee, J., Shin, H.H., Lee, K.W., 2021. Effects of paralytic shellfish poisoning toxin-producing dinoflagellate Gymnodinium catenatum on the marine copepod Tigriopus japonicus. Marine Pollution Bulletin. 163, 111937.
Hansen, B.W., Hansen, P.J., Nielsen, T.G., Jepsen, P.M., 2017. Effects of elevated pH on marine copepods in mass cultivation systems: practical implications. Journal of Plankton Research. 39, 984-993.
Hargreaves, J.A., 1998. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture. 166, 181-212.
Hassett, R.P., 2004. Supplementation of a diatom diet with cholesterol can enhance copepod egg‐production rates. Limnology and Oceanography. 49, 488-494.
Hutchins, D., Hare, C., Weaver, R., Zhang, Y., Firme, G., DiTullio, G., Alm, M., Riseman, S., Maucher, J., Geesey, M., 2002. Phytoplankton iron limitation in the Humboldt Current and Peru Upwelling. Limnology and Oceanography. 47, 997-1011.
Hutchins, D.A., Bruland, K.W., 1998. Iron-limited diatom growth and Si: N uptake ratios in a coastal upwelling regime. Nature. 393, 561-564.
Ianora, A., Poulet, S.A., Miralto, A., 2003. The effects of diatoms on copepod reproduction: a review. Phycologia. 42, 351-363.
Ianora, A., Miralto, A., Poulet, S.A., Carotenuto, Y., Buttino, I., Romano, G., Casotti, R., Pohnert, G., Wichard, T., Colucci-D'Amato, L., 2004. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature. 429, 403-407.
Ianora, A., Bastianini, M., Carotenuto, Y., Casotti, R., Roncalli, V., Miralto, A., Romano, G., Gerecht, A., Fontana, A., Turner, J.T., 2015. Non-volatile oxylipins can render some diatom blooms more toxic for copepod reproduction. Harmful Algae. 44, 1-7.
Irigoien, X., Harris, R.P., Verheye, H.M., Joly, P., Runge, J., Starr, M., Pond, D., Campbell, R., Shreeve, R., Ward, P., 2002. Copepod hatching success in marine ecosystems with high diatom concentrations. Nature. 419, 387-389.
Jacob, A.P., Culver, D.A., 2010. Experimental evaluation of the impacts of reduced inorganic phosphorus fertilization rates on juvenile saugeye production. Aquaculture. 304, 22-33.
Jepsen, P.M., Andersen, C.V., Schjelde, J., Hansen, B.W., 2015. Tolerance of un‐ionized ammonia in live feed cultures of the calanoid copepod Acartia tonsa Dana. Aquaculture Research. 46, 420-431.
Jepsen, P.M., van Someren Gréve, H., Jørgensen, K.N., Kjær, K.G., Hansen, B.W., 2021. Evaluation of high-density tank cultivation of the live-feed cyclopoid copepod Apocyclops royi (Lindberg 1940). Aquaculture. 533, 736125.
Jepsen, P.M., Thoisen, C.V., Carron‐Cabaret, T., Pinyol‐Gallemí, A., Nielsen, S.L., Hansen, B.W., 2019. Effects of salinity, commercial salts, and water type on cultivation of the cryptophyte microalgae Rhodomonas salina and the calanoid copepod Acartia tonsa. Journal of the World Aquaculture Society. 50, 104-118.
Jin, C.W., Liu, Y., Mao, Q.Q., Wang, Q., Du, S.T., 2013. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.). Food Chemistry. 138, 2188-2194.
Jin, C.W., Du, S.T., Chen, W.W., Li, G.X., Zhang, Y.S., Zheng, S.J., 2009. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiology. 150, 272-280.
Jones, R.H., Flynn, K.J., 2005. Nutritional status and diet composition affect the value of diatoms as copepod prey. Science. 307, 1457-1459.
Kaatz, S.E., Morris, J.E., Rudacille, J.B., Johnson, J.A., Clayton, R.D., 2011. Role of organic fertilizers in walleye (Sander vitreus) production in plastic‐lined culture ponds. Aquaculture Research. 42, 490-498.
Kandathil Radhakrishnan, D., AkbarAli, I., Schmidt, B.V., John, E.M., Sivanpillai, S., Thazhakot Vasunambesan, S., 2020. Improvement of nutritional quality of live feed for aquaculture: An overview. Aquaculture Research. 51, 1-17.
Kang'ombe, J., Brown, J.A., Halfyard, L.C., 2006. Effect of using different types of organic animal manure on plankton abundance, and on growth and survival of Tilapia rendalli (Boulenger) in ponds. Aquaculture Research. 37, 1360-1371.
Kasozi, N., Tandlich, R., Fick, M., Kaiser, H., Wilhelmi, B., 2019. Iron supplementation and management in aquaponic systems: A review. Aquaculture Reports. 15, 100221.
Kessler, E., Czygan, F.-C., 1968. The effect of iron supply on the activity of nitrate and nitrite reduction in green algae. Archiv fuer Mikrobiologie. 60, 282-284.
Kiørboe, T., Tiselius, P., Mitchell‐Innes, B., Hansen, J.L., Visser, A.W., Mari, X., 1998. Intensive aggregate formation with low vertical flux during an upwelling‐induced diatom bloom. Limnology and Oceanography. 43, 104-116.
Kleppel, G.S., Holliday, D., Pieper, R., 1991. Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnology and Oceanography. 36, 172-178.
Kline, M.D., Laidley, C.W., 2015. Development of intensive copepod culture technology for Parvocalanus crassirostris: Optimizing adult density. Aquaculture. 435, 128-136.
Kotani, T., Genka, T., Fushimi, H., Hayashi, M., Dierckens, K., Sorgeloos, P., 2009. Effect of cultivation methods on nutritional enrichment of euryhaline rotifer Brachionus plicatilis. Fisheries Science. 75, 975-984.
Kranzler, C.F., Krause, J.W., Brzezinski, M.A., Edwards, B.R., Biggs, W.P., Maniscalco, M., McCrow, J.P., Van Mooy, B.A., Bidle, K.D., Allen, A.E., 2019. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nature Microbiology. 4, 1790-1797.
Kuo, J., Chen, C.Y., Han, C.C., Ju, Y.M., Tew, K.S., 2021. Analyses of diet preference of larval orange-spotted grouper (Epinephelus coioides) grown under inorganic fertilization method using next-generation sequencing. Aquaculture. 531, 735916.
La Roche, J., Geider, R.J., Graziano, L.M., Murray, H., Lewis, K., 1993. Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. Journal of Phycology. 29, 767-777.
Lavens, P., Sorgeloos, P., 1996. Manual on the production and use of live food for aquaculture. Food and Agriculture Organization (FAO).
Lebour, M.V., 1922. The food of plankton organisms. Journal of the Marine Biological Association of the United Kingdom. 12, 644-677.
Lechner, C.C., Becker, C.F., 2015. Silaffins in silica biomineralization and biomimetic silica precipitation. Marine Drugs. 13, 5297-5333.
Lee, C.H., Dahms, H.U., Cheng, S.H., Souissi, S., Schmitt, F.G., Kumar, R., Hwang, J.S., 2010. Predation of Pseudodiaptomus annandalei (Copepoda: Calanoida) by the grouper fish fry Epinephelus coioides under different hydrodynamic conditions. Journal of Experimental Marine Biology and Ecology. 393, 17-22.
Lee, I.S., Ohs, C.L., Broach, J.S., DiMaggio, M.A., Watson, C.A., 2018. Determining live prey preferences of larval ornamental marine fish utilizing fluorescent microspheres. Aquaculture. 490, 125-135.
Leising, A.W., Pierson, J.J., Halsband-Lenk, C., Horner, R., Postel, J., 2005. Copepod grazing during spring blooms: does Calanus pacificus avoid harmful diatoms? Progress in Oceanography. 67, 384-405.
Leu, M.Y., Tai, K.Y., Meng, P.J., Tang, C.H., Wang, P.H., Tew, K.S., 2018. Embryonic, larval and juvenile development of the longfin batfish, Platax teira (Forsskål, 1775) under controlled conditions with special regard to mitigate cannibalism for larviculture. Aquaculture. 493, 204-213.
Leu, M.Y., Hsu, Y.C., Tu, Y.H., Chiu, P.S., Yu, B.H., Wang, J.B., Tew, K.S., Meng, P.J., 2022. Natural spawning, early development and first successful hatchery production of the bluestreak cleaner wrasse, Labroides dimidiatus (Valenciennes, 1839), with application of an inorganic fertilization method in larviculture. Aquaculture. 553, 738056.
Li, C., Luo, X., Huang, X., Gu, B., 2009. Influences of temperature on development and survival, reproduction and growth of a calanoid copepod (Pseudodiaptomus dubia). The Scientific World Journal. 9, 866-879.
Li, J., Wang, Y., Liang, Y., Huang, J., Liu, Y., Lu, J., 2019. Production of aldehydes in diatoms and dinoflagellates and the detrimental effect on copepod grazers. International Journal of Agriculture and Biology. 22, 763-768.
Liao, I.C., Su, H.M., Chang, E.Y., 2001. Techniques in finfish larviculture in Taiwan. Aquaculture. 200, 1-31.
Lin, H.Y., Yeh, W.Y., Tsai, S.F., Chiang, K.P., Lin, J.H.Y., Tsao, C.C., Lin, H.J., 2020. Biological protective effects against Vibrio infections in grouper larvae using the Strombidium sp. NTOU1, a marine ciliate amenable for scaled-up culture and with an excellent bacteriovorous ability. Frontiers in Marine Science. 7, 373.
Liu, G.X., Xu, D.h., 2010. Feeding, egg production and laboratory culture of Schmackeria poplesia Shen (Copepoda: Calanoida). Aquaculture Research. 41, 1817-1826.
Low, J.S., Chew, L.L., Ng, C.C., Goh, H.C., Lehette, P., Chong, V.C., 2018. Heat shock response and metabolic stress in the tropical estuarine copepod Pseudodiaptomus annandalei converge at its upper thermal optimum. Journal of Thermal Biology. 74, 14-22.
Lubzens, E., Zmora, O., Barr, Y., 2001. Biotechnology and aquaculture of rotifers. Rotifera IX, 337-353.
Luo, X., Li, C., Huang, X., 2019. Effect of diet on the development, survival, and reproduction of the calanoid copepod Pseudodiaptomus dubia. Journal of Oceanology and Limnology. 37, 1756-1767.
Magouz, F.I., Essa, M.A., Matter, M., Mansour, A.T., Gaber, A., Ashour, M., 2021a. Effect of different salinity levels on population dynamics and growth of the cyclopoid copepod Oithona nana. Diversity. 13, 190.
Magouz, F.I., Essa, M.A., Matter, M., Tageldein Mansour, A., Alkafafy, M., Ashour, M., 2021b. Population dynamics, fecundity and fatty acid composition of Oithona nana (Cyclopoida, Copepoda), fed on different diets. Animals. 11, 1188.
Malej, A., Harris, R.P., 1993. Inhibition of copepod grazing by diatom exudates: a factor in the development of mucus aggregates? Marine Ecology Progress Series, 33-42.
Martin‐Jézéquel, V., Hildebrand, M., Brzezinski, M.A., 2000. Silicon metabolism in diatoms: implications for growth. Journal of Phycology. 36, 821-840.
Martin, J.H., Gordon, M., Fitzwater, S.E., 1991. The case for iron. Limnology and Oceanography. 36, 1793-1802.
Mathews, L., Faithfull, C.L., Lenz, P.H., Nelson, C.E., 2018. The effects of food stoichiometry and temperature on copepods are mediated by ontogeny. Oecologia. 188, 75-84.
McKinnon, A., Duggan, S., Nichols, P., Rimmer, M., Semmens, G., Robino, B., 2003. The potential of tropical paracalanid copepods as live feeds in aquaculture. Aquaculture. 223, 89-106.
Meirelles, M.E., Tsuzuki, M.Y., Ribeiro, F.F., Medeiros, R.C., Silva, I.D., 2009. Reproduction, early development and larviculture of the barber goby, Elacatinus figaro (Sazima, Moura & Rosa 1997). Aquaculture Research. 41, 11-18.
Mendes, C., Chambel, J., Lopes, J., Calado, R., Maranhão, P., 2016. Effect of different diets on growth of the ciliate protozoan Euplotes sp, Frontiers in Marine Science. Conference Abstract: International Meeting on Marine Research.
Michels, J., Gorb, S.N., 2015a. Mandibular gnathobases of marine planktonic copepods–feeding tools with complex micro-and nanoscale composite architectures. Beilstein Journal of Nanotechnology. 6, 674-685.
Michels, J., Gorb, S.N., 2015b. Mandibular gnathobases of marine planktonic copepods—structural and mechanical challenges for diatom frustules, Evolution of Lightweight Structures. Springer, Dordrecht, pp. 59-73.
Milione, M., Zeng, C., Group, T.C.A.R., 2007. The effects of algal diets on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis. Aquaculture. 273, 656-664.
Miller, C., Nelson, D., Weiss, C., Soeldner, A., 1990. Morphogenesis of opal teeth in calanoid copepods. Marine Biology. 106, 91-101.
Miralto, A., Barone, G., Romano, G., Poulet, S., Ianora, A., Russo, G., Buttino, I., Mazzarella, G., Laabir, M., Cabrini, M., 1999. The insidious effect of diatoms on copepod reproduction. Nature. 402, 173-176.
Mischke, C.C., Zimba, P.V., 2004a. Plankton community responses in earthen channel catfish nursery ponds under various fertilization regimes. Aquaculture. 233, 219-235.
Mischke, C.C., Zimba, P.V., 2004b. Plankton community responses in earthen channel catfish nursery ponds under various fertilization regimes. Aquaculture. 233, 219-235.
Mitchell, J.G., Seuront, L., Doubell, M.J., Losic, D., Voelcker, N.H., Seymour, J., Lal, R., 2013. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS One. 8, e59548.
Moorhead, J.A., Zeng, C., 2011. Breeding of the forktail blenny Meiacanthus atrodorsalis: broodstock management and larval rearing. Aquaculture. 318, 248-252.
Naman, N., Kassim, Z., Rasdi, N., 2021. The effect of copepod enriched-vegetable based diet on Giant Tiger Prawn (Penaeus monodon) post-larvae, IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd, Bristol, pp. 012081.
Nogueira, N., Sumares, B., Andrade, C.A.P., Afonso, A., 2018. The effects of temperature and photoperiod on egg hatching success, egg production and population growth of the calanoid copepod, Acartia grani (Calanoida: Acartiidae). Aquaculture Research. 49, 93-103.
Nurhidayati, T., Purnobasuki, H., Muslihatin, W., Ferdianto, A., Purwani, K.I., 2023. The influences of N and Si on growth and lipid content of microalgae Skeletonema costatum, AIP Conference Proceedings. AIP Publishing LLC, Surabaya, pp. 090005.
O'Brien, W.J., deNoyelles Jr, F., 1972. Photosynthetically elevated pH as a factor in zooplankton mortality in nutrient enriched ponds. Ecology. 53, 605-614.
O'Bryen, P.J., Lee, C.S., 2005. Culture of copepods and applications to marine finfish larval rearing workshop discussion summary. Copepods in Aquaculture, 245-253.
Oliveira, M.A.C.L.d., Monteiro, M.P.C., Robbs, P.G., Leite, S.G.F., 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International. 7, 261-275.
Olivotto, I., Piccinetti, C.C., Avella, M.A., Rubio, C.M., Carnevali, O., 2010. Feeding strategies for striped blenny Meiacanthus grammistes larvae. Aquaculture Research. 41, e307-e315.
Pai, S.C., Riley, J., 1994. Determination of nitrate in the presence of nitrite in natural waters by flow injection analysis with a non-quantitative on-line cadmium reductor. International Journal of Environmental Analytical Chemistry. 57, 263-277.
Pančić, M., Torres, R.R., Almeda, R., Kiørboe, T., 2019. Silicified cell walls as a defensive trait in diatoms. Proceedings of the Royal Society B. 286, 20190184.
Pandey, B.D., Yeragi, S., 2004. Preliminary and mass culture experiments on a heterotrichous ciliate, Fabrea salina. Aquaculture. 232, 241-254.
Parsons, T., Maita, Y., Lalli, C.M., 1984. Amanual of chemical and biological methods for seawater analysis. Oxford: Pergamon. 1, 173.
Payne, M., Rippingale, R., 2000. Evaluation of diets for culture of the calanoid copepod Gladioferens imparipes. Aquaculture. 187, 85-96.
Pedersen, M.F., Hansen, P.J., 2003. Effects of high pH on a natural marine planktonic community. Marine Ecology Progress Series. 260, 19-31.
Piasecki, W., Goodwin, A.E., Eiras, J.C., Nowak, B.F., 2004. Importance of copepoda in freshwater aquaculture. Zoological Studies. 43, 193-205.
Picó, E.A., López, C., Cruz-Izquierdo, Á., Munarriz, M., Iruretagoyena, F.J., Serra, J.L., Llama, M.J., 2018. Easy reuse of magnetic cross-linked enzyme aggregates of lipase B from Candida antarctica to obtain biodiesel from Chlorella vulgaris lipids. Journal of Bioscience and Bioengineering. 126, 451-457.
Pondaven, P., Gallinari, M., Chollet, S., Bucciarelli, E., Sarthou, G., Schultes, S., Jean, F., 2007. Grazing-induced changes in cell wall silicification in a marine diatom. Protist. 158, 21-28.
Prado-Cabrero, A., Herena-Garcia, R., Nolan, J.M., 2022. Intensive production of the harpacticoid copepod Tigriopus californicus in a zero-effluent ‘green water’bioreactor. Scientific Reports. 12, 1-12.
Qin, J., Culver, D.A., 1992. The survival and growth of larval walleye, Stizostedion vitreum, and trophic dynamics in fertilized ponds. Aquaculture. 108, 257-276.
Rahman, K.A., Zhang, D., 2018. Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability. 10, 759.
Rasdi, N., Arshad, A., Ikhwanuddin, M., Hagiwara, A., Yusoff, F.M., Azani, N., 2020. A review on the improvement of cladocera (Moina) nutrition as live food for aquaculture: Using valuable plankton fisheries resources. Journal of Environmental Biology. 41, 1239-1248.
Rasdi, N.W., Qin, J.G., 2018a. Impact of food type on growth, survival and reproduction of the cyclopoid copepod Cyclopina kasignete as a potential live food in aquaculture. Aquaculture International. 26, 1281-1295.
Rasdi, N.W., Qin, J.G., 2018b. Copepod supplementation as a live food improved growth and survival of Asian seabass Lates calcarifer larvae. Aquaculture Research. 49, 3606-3613.
Rasdi, N.W., Suhaimi, H., Yuslan, A., Sung, Y.Y., Ikhwanuddin, M., Omar, S.S., Qin, J.G., Kassim, Z., Yusoff, F.M., 2018. Effect of mono and binary diets on growth and reproduction of cyclopoid copepod. Aquaculture, Aquarium, Conservation & Legislation. 11, 1658-1671.
Rayner, T.A., Hwang, J.-S., Hansen, B.W., 2017a. Anticipating the free amino acid concentrations in newly hatched pelagic fish larvae based on recently fertilized eggs and temperature. Journal of Plankton Research. 39, 1012-1019.
Rayner, T.A., Højgaard, J.K., Hansen, B.W., Hwang, J.S., 2017b. Density effect on the ovigerous rate of the calanoid copepod Pseudodiaptomus annandalei (Sewell 1919): implications for aquaculture. Aquaculture Research. 48, 4573-4577.
Rayner, T.A., Jørgensen, N.O., Blanda, E., Wu, C.H., Huang, C.C., Mortensen, J., Hwang, J.S., Hansen, B.W., 2015. Biochemical composition of the promising live feed tropical calanoid copepod Pseudodiaptomus annandalei (Sewell 1919) cultured in Taiwanese outdoor aquaculture ponds. Aquaculture. 441, 25-34.
Ringler, N.H., Hall, J.D., 1975. Effects of logging on water temperature, and dissolved oxygen in spawning beds. Transactions of the American Fisheries Society. 104, 111-121.
Romann, J., Valmalette, J.C., Chauton, M.S., Tranell, G., Einarsrud, M.A., Vadstein, O., 2015. Wavelength and orientation dependent capture of light by diatom frustule nanostructures. Scientific Reports. 5, 1-6.
Rueler, J.G., Ades, D.R., 1987. The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae). Journal of Phycology. 23, 452-457.
Russo, E., Ianora, A., Carotenuto, Y., 2019. Re-shaping marine plankton communities: Effects of diatom oxylipins on copepods and beyond. Marine Biology. 166, 1-11.
Ryderheim, F., Grønning, J., Kiørboe, T., 2022. Thicker shells reduce copepod grazing on diatoms. Limnology and Oceanography Letters. 7, 435-442
Sarkisian, B.L., Lemus, J.T., Apeitos, A., Blaylock, R.B., Saillant, E.A., 2019. An intensive, large-scale batch culture system to produce the calanoid copepod, Acartia tonsa. Aquaculture. 501, 272-278.
Satoh, S., Haga, Y., Fushimi, H., Kotani, T., 2008. Effect of zinc and manganese supplementation in Artemia on growth and vertebral deformity in red sea bream (Pagrus major) larvae. Aquaculture. 285, 184-192.
Schipp, G., 2006. The use of calanoid copepods in semi-intensive, tropical marine fish larviculture. Avances en Nutrición Acuicola.
Sedlacek, C., Marcus, N.H., 2005. Egg production of the copepod Acartia tonsa: The influence of hypoxia and food concentration. Journal of Experimental Marine Biology and Ecology. 318, 183-190.
Shaked, Y., Lis, H., 2012. Disassembling iron availability to phytoplankton. Frontiers in Microbiology. 3, 123.
Shan, X., Lin, M., 2014. Effects of algae and live food density on the feeding ability, growth and survival of miiuy croaker during early development. Aquaculture. 428, 284-289.
Shao, L., Zeng, C., 2020. Survival, growth, ingestion rate and foraging behavior of larval green mandarin fish (Synchiropus splendidus) fed copepods only versus co-fed copepods with rotifers. Aquaculture. 520, 734958.
Shields, R.J., Bell, J.G., Luizi, F.S., Gara, B., Bromage, N.R., Sargent, J.R., 1999. Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary essential fatty acids. The Journal of Nutrition. 129, 1186-1194.
Shikata, T., Nukata, A., Yoshikawa, S., Matsubara, T., Yamasaki, Y., Shimasaki, Y., Oshima, Y., Honjo, T., 2009. Effects of light quality on initiation and development of meroplanktonic diatom blooms in a eutrophic shallow sea. Marine Biology. 156, 875-889.
Sommer, U., Stibor, H., Katechakis, A., Sommer, F., Hansen, T., 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production, Sustainable Increase of Marine Harvesting: Fundamental Mechanisms and New Concepts. Springer, Dordrecht, pp. 11-20.
Sørensen, T.F., Drillet, G., Engell-Sørensen, K., Hansen, B.W., Ramløv, H., 2007. Production and biochemical composition of eggs from neritic calanoid copepods reared in large outdoor tanks (Limfjord, Denmark). Aquaculture. 263, 84-96.
Sorgeloos, P., Dhert, P., Candreva, P., 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture. 200, 147-159.
Støttrup, J., 2000. The elusive copepods: their production and suitability in marine aquaculture. Aquaculture Research. 31, 703-711.
Støttrup, J., Norsker, N., 1997. Production and use of copepods in marine fish larviculture. Aquaculture. 155, 231-247.
Støttrup, J.G., 2003. Production and nutritional value of copepods. Live Feeds in Marine Aquaculture, 145-205.
Street, J.H., Paytan, A., 2005. Iron, phytoplankton growth, and the carbon cycle. Metal Ions in Biological Systems, 153-193.
Takeda, S., 1998. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature. 393, 774-777.
Tammilehto, A., Nielsen, T.G., Krock, B., Møller, E.F., Lundholm, N., 2015. Induction of domoic acid production in the toxic diatom Pseudo-nitzschia seriata by calanoid copepods. Aquatic Toxicology. 159, 52-61.
Tang, M., Wu, R., Jiang, X., Deng, D., Xiang, C., Cheng, Y., Turchini, G.M., Wu, X., 2020. Effects of four natural diets on the culture performance and biochemical composition of megalopa of Eriocheir sinensis during desalination period. Aquaculture Research. 51, 2831-2841.
Tew, K.S., Conroy, J.D., Culver, D.A., 2006. Effects of lowered inorganic phosphorus fertilization rates on pond production of percid fingerlings. Aquaculture. 255, 436-446.
Tew, K.S., Meng, P.J., Lin, H.S., Chen, J.H., Leu, M.Y., 2013. Experimental evaluation of inorganic fertilization in larval giant grouper (Epinephelus lanceolatus Bloch) production. Aquaculture Research. 44, 439-450.
Tew, K.S., Chang, Y.C., Meng, P.J., Leu, M.Y., Glover, D.C., 2016. Towards sustainable exhibits–application of an inorganic fertilization method in coral reef fish larviculture in an aquarium. Aquaculture Research. 47, 2748-2756.
Torres, G.A., Merino, G.E., Prieto-Guevara, M.J., Portillo, J.E.A., Gamboa, J.H., Imués, M.A., Chapman, F.A., 2021. Spawning of calanoid copepod Acartia tonsa at low temperature and high salinity improves hatch success for cold-stored egg production. Aquaculture. 530, 735725.
Tulsankar, S.S., Cole, A.J., Gagnon, M.M., Fotedar, R., 2021. Temporal variations and pond age effect on plankton communities in semi-intensive freshwater marron (Cherax cainii, Austin and Ryan, 2002) earthen aquaculture ponds in Western Australia. Saudi Journal of Biological Sciences. 28, 1392-1400.
Turner, J.T., Tester, P.A., 1997. Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnology and Oceanography. 42, 1203-1213.
Valencia, G.A.T., Merino, G.E., Prieto-Guevara, M.J., Portillo, J.E.A., Arboleda, J.E.L., Chapman, F.A., 2022. Spawning Parvocalanus crassirostris at a high adult density: Explaining low adult population numbers and means for improving their intensive culture. Aquaculture. 546, 737347.
van der Meeren, T., Olsen, R.E., Hamre, K., Fyhn, H.J., 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture. 274, 375-397.
Vargas, C.A., Escribano, R., Poulet, S., 2006. Phytoplankton food quality determines time windows for successful zooplankton reproductive pulses. Ecology. 87, 2992-2999.
Vaulot, D., Olson, R., Merkel, S., Chisholm, S., 1987. Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae. Marine Biology. 95, 625-630.
Vu, M.T., Hansen, B.W., Kiørboe, T., 2017. The constraints of high density production of the calanoid copepod Acartia tonsa Dana. Journal of Plankton Research. 39, 1028-1039.
Vu, M.T.T., Douëtte, C., Rayner, T.A., Thoisen, C., Nielsen, S.L., Hansen, B.W., 2016. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. Journal of Applied Phycology. 28, 1485-1500.
Walter, T.C., Ohtsuka, S., Castillo, L.V., 2006. A new species of Pseudodiaptomus (Crustacea: Copepoda: Calanoida) from the Philippines, with a key to pseudodiaptomids from the Philippines and comments on the status of the genus Schmackeria. Proceedings of the Biological Society of Washington. 119, 202-221.
Wang, B., Xin, M., Wei, Q., Xie, L., 2018. A historical overview of coastal eutrophication in the China Seas. Marine Pollution Bulletin. 136, 394-400.
Wang, W., Lu, J., Ren, T., Li, Y., Zou, J., Su, W., Li, X., 2012. Inorganic fertilizer application ensures high crop yields in modern agriculture: a large-scale field case study in Central China. Journal of Food, Agriculture & Environment. 10, 703-709.
Watson, A., Liss, P., Duce, R., 1991. Design of a small‐scale in situ iron fertilization experiment. Limnology and Oceanography. 36, 1960-1965.
Wenning, R., 2020. The state of world fisheries and aquaculture 2020, Sustainability in action, Food and Agriculture Organization of the United Nations, Rome.
Whyte, J.N., Nagata, W.D., 1990. Carbohydrate and fatty acid composition of the rotifer, Brachionus plicatilis, fed monospecific diets of yeast or phytoplankton. Aquaculture. 89, 263-272.
Willett, C.S., 2010. Potential fitness trade-offs for thermal tolerancein the intertidal copepod Tigriopus californicus. Evolution. 64, 2521-2534.
Wilson, J.M., Ignatius, B., Santhosh, B., Sawant, P.B., Soma, S.A., 2022. Effect of adult density on egg production, egg hatching success, adult mortality, nauplii cannibalism and population growth of the tropical calanoid copepod Acartia tropica. Aquaculture. 547, 737508.
Woods, C.M., 2009. Caprellid amphipods: an overlooked marine finfish aquaculture resource? Aquaculture. 289, 199-211.
Woods, C.M.C., Valentino, F., 2003. Frozen mysids as an alternative to live Artemia in culturing seahorses Hippocampus abdominalis. Aquaculture Research. 34, 757-763.
Wu, F., Dai, M., Huang, H., Qi, Z., 2018. Plankton ciliate community responses to different aquatic environments in Nan’ao Island, a representative mariculture base in the South China Sea. Marine and Freshwater Research. 70, 426-436.
Xu, H., Shi, Z., Zhang, X., Pang, M., Pan, K., Liu, H., 2021. Diatom frustules with different silica contents affect copepod grazing due to differences in the nanoscale mechanical properties. Limnology and Oceanography. 66, 3408-3420.
Xu, T., Zeng, C., 2022. Establishing larval feeding regimens for the decorator crab Camposcia retusa: Effects of live prey types and density on larval survival and development. Aquaculture Research. 53, 2772-2784.
Yúfera, M., Darias, M., 2007. The onset of exogenous feeding in marine fish larvae. Aquaculture. 268, 53-63.
Yadavalli, V., Neelam, S., Rao, A.S., Reddy, A.R., Subramanyam, R., 2012. Differential degradation of photosystem I subunits under iron deficiency in rice. Journal of plant physiology. 169, 753-759.
Yeh, H.D., Questel, J.M., Maas, K.R., Bucklin, A., 2020. Metabarcoding analysis of regional variation in gut contents of the copepod Calanus finmarchicus in the North Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography. 180, 104738.
Yin, K., Qian, P.Y., Chen, J.C., Hsieh, D.P., Harrison, P.J., 2000. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation. Marine Ecology Progress Series. 194, 295-305.
Yoshimatsu, T., Hossain, M.A., 2014. Recent advances in the high-density rotifer culture in Japan. Aquaculture International. 22, 1587-1603.
Zeng, C., Romano, N., 2013. Nitrogenous wastes: often overlooked pollutants in aquatic environments. Journal of Marine Science Research and Development. 3, 1-1.
Zeng, C., Shao, L., Ricketts, A., Moorhead, J., 2018. The importance of copepods as live feed for larval rearing of the green mandarin fish Synchiropus splendidus. Aquaculture. 491, 65-71.
Zhang, A., Zhang, J., Liu, S., Xuan, J., Zhu, Z., 2020. Evaluation of silicic acid sources for spring diatom blooms on the continental shelf: Insights from stable silicon isotopes in the East China Sea. Journal of Geophysical Research: Oceans. 125, e2019JC015478.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *