帳號:guest(18.119.119.26)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:王騰輝
作者(英文):Teng-Hui Wang
論文名稱:透過壓力紅外光譜比較多種材料對於離子液體陽離子環上的官能基作用力比較
論文名稱(英文):Using infrared spectroscopy to study 1-alkyl-3-methylimidazolium-based ionic liquid to interact with different materials at various pressures.
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:張海舟
劉振倫
楊天賜
賴建智
胡安仁
口試委員(英文):Hai-Chou Chang
Chen-Lun Liu
Tien-Syh Yang
Chien-Chih Lai
Anren Hu
學位類別:博士
校院名稱:國立東華大學
系所名稱:化學系
學號:810712101
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:180
關鍵詞:離子液體高壓紅外線光譜
關鍵詞(英文):ionic liquids (ILs)high pressuresinfrared spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏收藏:0
在本論文中,整理出幾篇曾發表的相似離子液體陽離子結構文章,並比較其共有的嘧唑鎓環狀結構上的碳氫共價鍵訊號。透過添加物添加於離子液體中,以及高壓紅外線光譜訊號可以推測嘧唑鎓陽離子與其它分子之間的作用力大小趨勢。嘧唑鎓陽離子主要可以使用凡德瓦力、氫鍵作用力、靜電吸引力以及芳香環堆疊作用力與其它分子作用。在正常大氣壓下,比較出分子或是離子與1-丁基-3-甲基嘧唑鎓環上碳氫共價鍵官能基作用的吸引力趨勢。在高壓環境下,整理出與1-丁基-3-甲基嘧唑鎓或是1-丙基-3-甲基嘧唑鎓環上碳氫共價鍵作用的生物分子結合力趨勢。透過多面向比較相似離子液體陽離子與分子之間在常壓或是高壓的作用力變化,並且排列比較多個可能的作用力大小趨勢。
This thesis studied the C-H stretching frequency of 1-substituent-3-methylimidazolium-based ionic liquids (ILs) at various pressures to study the hydrogen bonding between imidazolium and additives. Examining high-pressure IR spectrums may study the relationship between imidazolium and molecules. Imidazolium may be linked to additives through van der Waal forces, electrostatic attraction, or pi-pi interaction. The tendency of interacting between 1-butyl-3-methylimidazolium ([BMIM]) and molecules was compared at ambient pressure. The 1-alkyl-3-methylimidazolium associated with DNA or beta-cyclodextrin (beta-CD) was also contrasted with various pressures. Different views of various IR studies were discussed and compared in this thesis.
摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xix
公式目錄 xxiii
1、 介紹 1
1.1、 前言 1
1.2、 離子液體 2
1.3、 紅外光振動光譜 3
1.4、 高壓實驗 3
2、 文獻回顧 5
2.1、 離子液體 5
2.1.1、 嘧唑鎓型離子液體 5
2.1.2、 陰離子與陽離子之間的作用力 9
2.1.3、 紅外線光譜的表徵 21
2.2、 添加物 29
2.2.1、 孔洞二氧化矽 30
2.2.2、 β環糊精 31
2.2.3、 鮭魚精子DNA 32
2.2.4、 PEO (分子量為900,000 g/mol) 33
2.2.5、 PVdF (分子量為534,000 g/mol) 34
3、 藥品、儀器、操作方法 35
3.1、 藥品與儀器 35
3.1.1、 藥品 35
3.1.2、 實驗與儀器 38
3.2、 方法與校正 41
3.2.1、 藥品製備 41
3.2.2、 常壓實驗操作 43
3.2.3、 高壓實驗操作 43
3.2.4、 壓力校正 44
3.3、 實驗參數與操作程序 47
3.3.1、 DAC使用方式 47
3.3.2、 紅外線光譜儀 49
3.3.3、 圖譜製作與轉檔 50
4、 數據結果 51
4.1、 離子液體與二氧化矽混和 (Nanomaterials, 2019, 9, 620) 55
4.1.1、 常壓結果 59
4.1.2、 高壓結果 61
4.2、 離子液體與β環糊精混和 (AIP Adv., 2019, 9, 075007) 65
4.2.1、 常壓結果 69
4.2.2、 高壓結果 71
4.3、 離子液體與鮭魚DNA混和 (Materials, 2019, 12, 4202) 75
4.3.1、 常壓結果 79
4.3.2、 高壓結果 81
4.4、 離子液體與PEO混和 (Int. J. Mol. Sci., 2021, 22, 981) 85
4.4.1、 常壓結果 89
4.4.2、 高壓結果 91
4.5、 離子液體與PVdF混和 (Nanomaterials, 2021, 11, 2099) 95
4.5.1、 常壓結果 97
4.5.2、 高壓結果 97
5、 綜合討論 99
5.1、 常壓討論 103
5.1.1、 [BMIM]陽離子型離子液體的咪唑鎓C-H振動波數比較 (常壓) 103
5.1.2、 咪唑鎓型離子液體的環上C-H振動波數比較 (位移量小) 108
5.1.3、 咪唑鎓型離子液體的環上C-H振動波數比較 (位移量較大) 111
5.2、 高壓討論 117
5.2.1、 可用於自組裝之生物分子與離子液體之間的討論 117
5.2.2、 可用能源材料薄膜高分子與離子液體之間的討論 125
5.2.3、 離子液體在高壓下的結晶形貌 130
6、 結論 135
7、 參考文獻 137
1. Karuppasamy, K.; Theerthagiri, J.; Vikraman, D.; Yim, C.J.; Hussain, S.; Sharma, R.; Maiyalagan, T.; Qin, J., and Kim, H.S., Ionic Liquid-Based Electrolytes for Energy Storage Devices: A Brief Review on Their Limits and Applications. Polymers (Basel), 2020, 12(4), 918.
2. Francis, C.F.J.; Kyratzis, I.L., and Best, A.S., Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Adv. Mater., 2020, 32 (18), 1904205.
3. Shahzad, S.; Shah, A.; Kowsari, E.; Iftikhar, F.J.; Nawab, A.; Piro, B.; Akhter, M.S.; Rana, U.A., and Zou, Y., Ionic Liquids as Environmentally Benign Electrolytes for High-Performance Supercapacitors. Glob. Chall., 2019, 3 (1), 1800023.
4. Zhang, X.; Kar, M.; Mendes, T.C.; Wu, Y., and MacFarlane, D.R., Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors. Adv. Energy Mater., 2018, 8 (15), 1702702.
5. Friess, K.; Izak, P.; Karaszova, M.; Pasichnyk, M.; Lanc, M.; Nikolaeva, D.; Luis, P., and Jansen, J.C., A Review on Ionic Liquid Gas Separation Membranes. Membranes (Basel), 2021, 11 (2), 97.
6. Ahmad, N.N.R.; Leo, C.P.; Mohammad, A.W.; Shaari, N., and Ang, W.L., Recent progress in the development of ionic liquid‐based mixed matrix membrane for CO2 separation: A review. Int. J. Energy Res., 2021, 45 (7), 9800-9830.
7. Welton, T., Ionic liquids: a brief history. Biophys. Rev., 2018, 10, 691-706.
8. Wang, Y.L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z.Y.; Yuan, J.; Laaksonen, A., and Fayer, M.D., Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem. Rev., 2020, 120 (13), 5798-5877.
9. Bugatti, V.; Viscusi, G.; Di Bartolomeo, A.; Iemmo, L.; Zampino, D.C.; Vittoria, V., and Gorrasi, G., Ionic Liquid as Dispersing Agent of LDH-Carbon Nanotubes into a Biodegradable Vinyl Alcohol Polymer. Polymers (Basel), 2020, 12 (2), 495
10. Dai, Z.; Ansaloni, L.; Ryan, J.J.; Spontak, R.J., and Deng, L., Nafion/IL hybrid membranes with tuned nanostructure for enhanced CO2 separation: effects of ionic liquid and water vapor. Green Chem., 2018, 20, 1391-1404.
11. Chen, Y.; Dai, Z.; Ji, X., and Lu, X., CO2 absorption using a hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol absorbent. Fluid Phase Equilib., 2021, 538 (15), 113011.
12. Shamsuri, A.A.; Jamil, S.N.A.M., and Abdan, K., Processes and Properties of Ionic Liquid-Modified Nanofiller/Polymer Nanocomposites—A Succinct Review. Processes, 2021, 9 (3), 480.
13. Zhang, J.; Xu, L.; Yu, J.; Wu, J.; Zhang, X.; He, J., and Zhang, J., Understanding cellulose dissolution: effect of the cation and anion structure of ionic liquids on the solubility of cellulose. Sci. China Chem., 2016, 59, 1421-1429.
14. Liu, C.; Chen, B.; Shi, W.; Huang, W., and Qian, H., Ionic Liquids for Enhanced Drug Delivery: Recent Progress and Prevailing Challenges. Mol. Pharm., 2022, 19 (4), 1033-1046.
15. Cole, J. and Syres, K.L., Ionic liquids on oxide surfaces. J. Phys. Condens. Matter., 2022, 34, 213002.
16. Atkins, P.J.; Paula, J.D., and Keeler, J., Atkins Physical Chemistry (11th ed.)., Oxford Univ.; Press: Oxford., 2017
17. Ganesan, V., Ion transport in polymeric ionic liquids: recent developments and open questions. Mol. Syst. Des. Eng., 2019, 4, 280-293.
18. El Seoud, O.A.; Keppeler, N.; Malek, N.I., and Galgano, P.D., Ionic liquid-based surfactants: Recent advances in their syntheses, solution properties, and applications. Polymers, 2021, 13 (7), 1100.
19. Bhargava, B.L. and Klein, M.L., Aqueous solutions of imidazolium ionic liquids: molecular dynamics studies. Soft Matter, 2009, 5, 3475.
20. Mbondo Tsamba, B.E.; Sarraute, S.; Traïkia, M., and Husson, P., Transport Properties and Ionic Association in Pure Imidazolium-Based Ionic Liquids as a Function of Temperature. J. Chem. Eng. Data, 2014, 59 (6), 1747-1754.
21. Zhao, Y.; Gao, S.; Wang, J., and Tang, J., Aggregation of Ionic Liquids [C n mim] Br (n= 4, 6, 8, 10, 12) in D2O: A NMR Study. J. Phys. Chem. B, 2008, 112 (7), 2031-2039.
22. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H., and Watanabe, M., Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B, 2004, 108 (42), 16593-16600.
23. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H., and Watanabe, M., Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B, 2005, 109 (13), 6103-6110.
24. Nanda, R.; Rai, G., and Kumar, A., Interesting viscosity changes in the aqueous urea–ionic liquid system: effect of alkyl chain length attached to the cationic ring of an ionic liquid. J. Solution Chem., 2015, 44, 742-753.
25. Binetti, E.; Panniello, A.; Triggiani, L.; Tommasi, R.; Agostiano, A.; Curri, M.L., and Striccoli, M., Spectroscopic study on imidazolium-based ionic liquids: effect of alkyl chain length and anion. J. Phys. Chem. B, 2012, 116 (11), 3512-3518.
26. Shimizu, K.; Bernardes, C.E., and Canongia Lopes, J.N., Structure and aggregation in the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid homologous series. J. Phys. Chem. B, 2014, 118 (2), 567-576.
27. Chen, S.; Zhang, S.; Liu, X.; Wang, J.; Wang, J.; Dong, K.; Sun, J., and Xu, B., Ionic liquid clusters: structure, formation mechanism, and effect on the behavior of ionic liquids. Phys. Chem. Chem. Phys., 2014, 16, 5893-5906.
28. Silva, W.; Zanatta, M.; Ferreira, A.S.; Corvo, M.C., and Cabrita, E.J., Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis. Int. J. Mol. Sci., 2020, 21 (20), 7745
29. Dutta, R.; Kundu, S., and Sarkar, N., Ionic liquid-induced aggregate formation and their applications. Biophys. Rev., 2018, 10, 861-871.
30. Kossmann, S.; Thar, J.; Kirchner, B.; Hunt, P.A., and Welton, T., Cooperativity in ionic liquids. J. Chem. Phys., 2006, 124, 174506.
31. Berthod, A.; Kozak, J.J.; Anderson, J.L.; Ding, J., and Armstrong, D.W., Ionic liquid-alkane association in dilute solutions. Theor. Chem. Acc., 2006, 117, 127-135.
32. Ren, F.; Wang, J.; Yu, J.; Xiang, F.; Wang, S.; Wang, S., and Copeland, L., Dissolution of Maize Starch in Aqueous Ionic Liquids: The Role of Alkyl Chain Length of Cation and Water:Ionic Liquid Ratio. ACS Sustainable Chem. Eng., 2019, 7 (7), 6898-6905.
33. Cimini, A.; Palumbo, O.; Trequattrini, F., and Paolone, A., Influence of the Alkyl Chain Length on the Low Temperature Phase Transitions of Imidazolium Based Ionic Liquids. J. Sol. Chem., 2021, 51, 279-295.
34. Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A., and Rogers, R.D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green chem., 2001, 3, 156-164.
35. Consorti, C.S.; Suarez, P.A.; de Souza, R.F.; Burrow, R.A.; Farrar, D.H.; Lough, A.J.; Loh, W.; da Silva, L.H., and Dupont, J., Identification of 1, 3-dialkylimidazolium salt supramolecular aggregates in solution. J. Phys. Chem. B, 2005, 109 (10), 4341-4349.
36. Kuddushi, M.; Kumar, A.; Ray, D.; Aswal, V.K.; El Seoud, O.A., and Malek, N.I., Concentration-and temperature-responsive reversible transition in amide-functionalized surface-active ionic liquids: micelles to vesicles to organogel. ACS omega, 2020, 5 (38), 24272-24284.
37. Wang, Y.; Dai, C.; Huang, W.; Ni, T.; Cao, J.; Pang, J.; Wei, H., and Wang, C., Density Functional Method Study on the Cooperativity of Intermolecular H-bonding and π-π+ Stacking Interactions in Thymine-[Cnmim] Br (n= 2, 4, 6, 8, 10) Microhydrates. Molecules, 2022, 27 (19), 6242.
38. Biswas, A. and Mallik, B.S., Microheterogeneity-Induced Vibrational Spectral Dynamics of Aqueous 1-Alkyl-3-methylimidazolium Tetrafluoroborate Ionic Liquids of Different Cationic Chain Lengths. J. Phys. Chem. B, 2022, 126 (29), 5523-5533.
39. Triolo, A.; Russina, O.; Bleif, H.-J., and Di Cola, E., Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem. B, 2007, 111 (18), 4641-4644.
40. Matthews, R.P.; Ashworth, C.; Welton, T., and Hunt, P.A., The impact of anion electronic structure: similarities and differences in imidazolium based ionic liquids. J. Phys.: Condens. Matter, 2014, 26, 284112.
41. Dong, K.; Zhang, S., and Wang, J., Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem. Commun. (Camb), 2016, 52, 6744-6764.
42. Matthews, R.P.; Welton, T., and Hunt, P.A., Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids. Phys. Chem. Chem. Phys., 2014, 16, 3238-3253.
43. Hunt, P.A.; Ashworth, C.R., and Matthews, R.P., Hydrogen bonding in ionic liquids. Chem. Soc. Rev., 2015, 44, 1257-1288.
44. Desiraju, G.R., A bond by any other name. Angew. Chem. Int. Ed., 2011, 50, 52-59.
45. Pauling, L., The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J. Am. Chem. Soc., 1931, 53 (9), 3225-3237.
46. Tsuzuki, S.; Tokuda, H.; Hayamizu, K., and Watanabe, M., Magnitude and directionality of interaction in ion pairs of ionic liquids: Relationship with ionic conductivity. J. Phys. Chem. B, 2005, 109 (34), 16474-16481.
47. Matthews, R.P.; Welton, T., and Hunt, P.A., Hydrogen bonding and π–π interactions in imidazolium-chloride ionic liquid clusters. Phys. Chem. Chem. Phys., 2015, 17, 14437-14453.
48. Dong, K.; Zhang, S.; Wang, D., and Yao, X., Hydrogen bonds in imidazolium ionic liquids. J. Phys. Chem. A, 2006, 110 (31), 9775-9782.
49. Hammond, O.S. and Mudring, A.-V., Ionic liquids and deep eutectics as a transformative platform for the synthesis of nanomaterials. Chem Commun (Camb), 2022, 58, 3865-3892.
50. Kruse, F. and Lefkoff, A., Analysis of spectral data of manmade materials, military targets, and background using an expert system based approach. Proceedings ISSSR99, 1999, 31, 339-350.
51. Remko, M. and Polčcin, J., MO Investigations on Lignin Model Compounds. Z. Phys. Chem., 1980, 120, 1-8.
52. Hobza, P., The H-index unambiguously discriminates between hydrogen bonding and improper blue-shifting hydrogen bonding. Phys. Chem. Chem. Phys., 2001, 3, 2555-2556.
53. Roth, C.; Chatzipapadopoulos, S.; Kerlé, D.; Friedriszik, F.; Lütgens, M.; Lochbrunner, S.; Kühn, O., and Ludwig, R., Hydrogen bonding in ionic liquids probed by linear and nonlinear vibrational spectroscopy. New J. Phys., 2012, 14, 105026.
54. Hobza, P. and Havlas, Z., Improper, blue-shifting hydrogen bond. Theor. Chem. Acc., 2002, 108, 325-334.
55. Joseph, J. and Jemmis, E.D., Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J. Am. Chem. Soc., 2007, 129 (15), 4620-4632.
56. Hobza, P. and Havlas, Z., Blue-shifting hydrogen bonds. Chem. Rev., 2000, 100 (11), 4253-4264.
57. Li, X.; Liu, L., and Schlegel, H.B., On the physical origin of blue-shifted hydrogen bonds. J. Am. Chem. Soc., 2002, 124 (32), 9639-9647.
58. Wishart, J.F. and Castner, Jr., E.W., The Physical Chemistry of Ionic Liquids. J. Phys. Chem. B, 2007, 111 (18), 4639-4640.
59. Masunov, A.; Dannenberg, J., and Contreras, R.H., C−H bond-shortening upon hydrogen bond formation: Influence of an electric field. J. Phys. Chem. A, 2001, 105 (19), 4737-4740.
60. Gu, Y.; Kar, T., and Scheiner, S., Fundamental properties of the CH⊙⊙⊙ O interaction: is it a true hydrogen bond?, J. Am. Chem. Soc., 1999, 121 (40), 9411-9422.
61. Romano, E.; Castillo, M.V.; Pergomet, J.L.; Zinczuk, J., and Brandán, S.A., Synthesis, structural study and spectroscopic characterization of a quinolin-8-yloxy derivative with potential biological properties. open J. Synth. Theor. Appl. (OJSTA), 2013, 2 (1), 8-32.
62. Sowmiah, S.; Srinivasadesikan, V.; Tseng, M.-C., and Chu, Y.-H., On the chemical stabilities of ionic liquids. Molecules, 2009, 14 (9), 3780-3813.
63. Desiraju, G. and Steiner, T., The Weak Hydrogen Bond In Structural Chemistry and Biology., Oxford Univ.; Press: Int. Union Cryst. Monogr. Cryst. (IUCr)., 1999
64. Verma, Y.L. and Singh, R.K., Conformational States of Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide in Bulk and Confined Silica Nanopores Probed by Crystallization Kinetics Study. J. Phys. Chem. C, 2015, 119 (43), 24381-24392.
65. Gupta, A.K.; Singh, M.P.; Singh, R.K., and Chandra, S., Low density ionogels obtained by rapid gellification of tetraethyl orthosilane assisted by ionic liquids. Dalton Trans., 2012, 41, 6263-6271.
66. Zhang, S.; Zhang, J.; Zhang, Y., and Deng, Y., Nanoconfined Ionic Liquids. Chem. Rev., 2017, 117 (10), 6755-6833.
67. Garaga, M.N.; Dracopoulos, V.; Werner-Zwanziger, U.; Zwanziger, J.W.; Marechal, M.; Persson, M.; Nordstierna, L., and Martinelli, A., A long-chain protic ionic liquid inside silica nanopores: enhanced proton mobility due to efficient self-assembly and decoupled proton transport. Nanoscale, 2018, 10, 12337-12348.
68. Federici Canova, F.; Mizukami, M.; Imamura, T.; Kurihara, K., and Shluger, A.L., Structural stability and polarisation of ionic liquid films on silica surfaces. Phys. Chem. Chem. Phys., 2015, 17, 17661-9.
69. Gupta, A.K.; Singh, R.K., and Chandra, S., Crystallization kinetics behavior of ionic liquid [EMIM][BF4] confined in mesoporous silica matrices. RSC Adv., 2014, 4, 22277-22287.
70. Roy, A.; Saha, S.; Datta, B., and Roy, M.N., Insertion behavior of imidazolium and pyrrolidinium based ionic liquids into α and β-cyclodextrins: mechanism and factors leading to host–guest inclusion complexes. RSC Adv., 2016, 6, 100016-100027.
71. Mondal, M.; Basak, S.; Ali, S.; Roy, D.; Saha, S.; Ghosh, B.; Ghosh, N.N.; Lepcha, K.; Roy, K., and Roy, M.N., Exploring inclusion complex of an anti-cancer drug (6-MP) with beta-cyclodextrin and its binding with CT-DNA for innovative applications in anti-bacterial activity and photostability optimized by computational study. RSC Adv., 2022, 12, 30936-30951.
72. Roy, A.; Saha, S.; Roy, D.; Bhattacharyya, S., and Roy, M.N., Formation & specification of host–guest inclusion complexes of an anti-malarial drug inside into cyclic oligosaccharides for enhancing bioavailability. J. Incl. Phenom. Macrocycl. Chem., 2020, 97, 65-76.
73. Crini, G., Review: A History of Cyclodextrins. Chem. Rev., 2014, 114 (21), 10940-10975.
74. Wu, A.; Lu, F.; Sun, P.; Qiao, X.; Gao, X., and Zheng, L., Low-Molecular-Weight Supramolecular Ionogel Based on Host-Guest Interaction. Langmuir, 2017, 33 (49), 13982-13989.
75. Travers, A. and Muskhelishvili, G., DNA structure and function. FEBS J., 2015, 282 (12), 2279-2295.
76. Chandran, A.; Ghoshdastidar, D., and Senapati, S., Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids?, J. Am. Chem. Soc., 2012, 134 (50), 20330-20339.
77. Tateishi-Karimata, H. and Sugimoto, N., Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids. Biophys. Rev., 2018, 10, 931-940.
78. Garai, A.; Ghoshdastidar, D.; Senapati, S., and Maiti, P.K., Ionic liquids make DNA rigid. J. Chem. Phys., 2018, 149, 045104.
79. Manojkumar, K.; Prabhu Charan, K.T.; Sivaramakrishna, A.; Jha, P.C.; Khedkar, V.M.; Siva, R.; Jayaraman, G., and Vijayakrishna, K., Biophysical characterization and molecular docking studies of imidazolium based polyelectrolytes-DNA complexes: role of hydrophobicity. Biomacromolecules, 2015, 16 (3), 894-903.
80. Ghoshdastidar, D. and Senapati, S., Dehydrated DNA in B-form: ionic liquids in rescue. Nucleic Acids Res., 2018, 46 (9), 4344-4353.
81. Nowak, E.; Wisla-Swider, A.; Khachatryan, G.; Fiedorowicz, M., and Danel, K., Possible sensor applications of selected DNA-surfactant complexes. Eur. Biophys. J., 2019, 48, 371-381.
82. Teng, Y.; Tateishi-Karimata, H.; Tsuruoka, T., and Sugimoto, N., A Turn-On Detection of DNA Sequences by Means of Fluorescence of DNA-Templated Silver Nanoclusters via Unique Interactions of a Hydrated Ionic Liquid. Molecules, 2018, 23 (11), 2889.
83. Mehrdad, A. and Niknam, Z., Investigation on the Interactions of Poly(ethylene oxide) and Ionic Liquid 1-Butyl-3-methyl-imidazolium Bromide by Viscosity and Spectroscopy. J. Chem. Eng. Data, 2016, 61 (5), 1700-1709.
84. Arya, A. and Sharma, A.L., Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J. Phys. D: Appl. Phys., 2017, 50, 443002.
85. Ren, Y.; Guo, J.; Liu, Z.; Sun, Z.; Wu, Y.; Liu, L., and Yan, F., Ionic liquid–based click-ionogels. Sci. Adv., 2019, 5 (8), eaax0648.
86. Kitazawa, Y.; Ueno, K., and Watanabe, M., Advanced Materials Based on Polymers and Ionic Liquids. Chem. Rec., 2018, 18 (4), 391-409.
87. Xue, Z.; He, D., and Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A, 2015, 3, 19218-19253.
88. Lee, H.-N. and Lodge, T.P., Lower Critical Solution Temperature (LCST) Phase Behavior of Poly(ethylene oxide) in Ionic Liquids. J. Phys. Chem. Lett., 2010, 1 (13), 1962-1966.
89. Chen, G.; Bai, Y.; Gao, Y.; Wang, Z.; Zhang, K.; Ni, Q.; Wu, F.; Xu, H., and Wu, C., Inhibition of Crystallization of Poly(ethylene oxide) by Ionic Liquid: Insight into Plasticizing Mechanism and Application for Solid-State Sodium Ion Batteries. ACS Appl. Mater. Interfaces, 2019, 11 (46), 43252-43260.
90. Chen, G.; Bai, Y.; Gao, Y.; Wang, Z.; Zhang, K.; Ni, Q.; Wu, F.; Xu, H., and Wu, C., Correction to "Inhibition of Crystallization of Poly(ethylene oxide) by Ionic Liquid: Insight into Plasticizing Mechanism and Application for Solid-State Sodium Ion Batteries". ACS Appl. Mater. Interfaces, 2020, 12 (18), 21143-21144.
91. Liang, C.L.; Mai, Z.H.; Xie, Q.; Bao, R.Y.; Yang, W.; Xie, B.H., and Yang, M.B., Induced formation of dominating polar phases of poly(vinylidene fluoride): positive ion-CF2 dipole or negative ion-CH2 dipole interaction. J. Phys. Chem. B, 2014, 118 (30), 9104-9111.
92. Xing, C.; Zhao, L.; You, J.; Dong, W.; Cao, X., and Li, Y., Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly (vinylidene fluoride). J. Phys. Chem. B, 2012, 116 (28), 8312-8320.
93. Guo, S.; Duan, X.; Xie, M.; Aw, K.C., and Xue, Q., Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review. Micromachines (Basel), 2020, 11 (12), 1076.
94. Lang, S.B. and Muensit, S., Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl. Phys. A, 2006, 85, 125-134.
95. Shamsuri, A.A.; Daik, R., and Md. Jamil, S.N.A., A Succinct Review on the PVDF/Imidazolium-Based Ionic Liquid Blends and Composites: Preparations, Properties, and Applications. Processes, 2021, 9 (5), 761.
96. Xing, C.; Zhao, M.; Zhao, L.; You, J.; Cao, X., and Li, Y., Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym. Chem., 2013, 4, 5726-5734.
97. Correia, D.M.; Costa, C.M.; Lizundia, E.; Sabater i Serra, R.; Gómez-Tejedor, J.A.; Biosca, L.T.; Meseguer-Dueñas, J.M.; Gomez Ribelles, J.L., and Lanceros-Méndez, S., Influence of Cation and Anion Type on the Formation of the Electroactive β-Phase and Thermal and Dynamic Mechanical Properties of Poly(vinylidene fluoride)/Ionic Liquids Blends. J. Phys. Chem. C, 2019, 123 (45), 27917-27926.
98. Sarkar, R. and Kundu, T.K., Density functional theory studies on PVDF/ionic liquid composite systems. J. Chem. Sci., 2018, 130, 115.
99. Niemann, T.; Zaitsau, D.; Strate, A.; Villinger, A., and Ludwig, R., Cationic clustering influences the phase behaviour of ionic liquids. Sci. Rep., 2018, 8, 14753.
100. Wang, T.-H.; Lin, E.-Y., and Chang, H.-C., Pressure-dependent confinement effect of ionic liquids in porous silica. Nanomaterials, 2019, 9 (4), 620.
101. Wang, T.-H.; Hong, S.-Y., and Chang, H.-C., The validity of high pressure IR for detecting the interactions between β-cyclodextrin and imidazolium based ionic liquids. AIP Adv., 2019, 9, 075007.
102. Wang, T.-H.; Shen, M.-H., and Chang, H.-C., Pressure-dependent stability of imidazolium-based ionic liquid/DNA materials investigated by high-pressure infrared spectroscopy. Materials, 2019, 12 (24), 4202.
103. Wang, T.-H.; Hsu, L.-W., and Chang, H.-C., Structural reorganization of imidazolium ionic liquids induced by pressure-enhanced ionic liquid—Polyethylene oxide interactions. Int. J. Mol. Sci., 2021, 22 (2), 981.
104. Wang, T.-H.; Wang, W.-X., and Chang, H.-C., Pressure-Dependent Clustering in Ionic-Liquid-Poly (Vinylidene Fluoride) Mixtures: An Infrared Spectroscopic Study. Nanomaterials, 2021, 11 (8), 2099.
105. Wong, P.T.T. and Moffatt, D.J., The Uncoupled O-H or O-D Stretch in Water as an Internal Pressure Gauge for High-Pressure Infrared Spectroscopy of Aqueous Systems. Appl. Spectrosc., 1987, 41 (6), 1070-1072.
106. Wong, P.T.T.; Moffatt, D.J., and Baudais, F.L., Crystalline Quartz as an Internal Pressure Calibrant for High-Pressure Infrared Spectroscopy. Appl. Spectrosc., 1985, 39 (4), 733-735.
107. 陳在沂。利用高壓紅外線光譜觀測含有寡聚醚結構的四級銨鹽之離子液體與水的特殊交互作用力。碩士論文,國立東華大學化學系研究所,2013。https://hdl.handle.net/11296/2n9nak
108. 王騰輝、蕭港玉、丘硯文,和張海舟。以高壓紅外光振動光譜技術探討離子液體對多種材料的作用力與區域結構。化學, 2021, 79 (2), 105-119.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *