帳號:guest(52.15.166.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Sanath Kumar
作者(英文):Sanath Kumar
論文名稱:鋅鈷氧化物與層狀雙氫氧化物複合材料於電化學的應用
論文名稱(英文):Development of ZnCo-Oxides and layered double hydroxide based composites for electrochemical application
指導教授:傅彥培
指導教授(英文):Yen-Pei Fu
口試委員:翁明壽
傅彥培
陳怡嘉
劉哲文
胡安仁
口試委員(英文):Ming-Show Wong
Yen-Pei Fu
Yi-Jia Chen
Je-Wen Liou
Anren Hu
學位類別:博士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:810722203
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:157
關鍵詞(英文):SensorElectrochemicalSupercapacitorsOxidation/Reduction reactionAlcohol
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏收藏:0
Electrochemical studies play a crucial role in many fields of science and technology, from batteries and energy storage to environmental science and medicine. Electrochemical studies provide a deeper understanding of chemical reactions involving the transfer of electrons, which is critical for designing and developing materials, improving existing products, and solving environmental problems. Hence, electrochemical applications are considered as a futuristic tool to safeguard our environment and make a general point in moving away from extracting non-renewable sources to produce energy. Hence, we have explored and developed ZnCo2O4 spinel composite for various electrochemical applications, which include supercapacitors, electrochemical glucose sensors, electrochemical hydrogen peroxide production, and fuel cell cathode application. All these mentioned applications aim to preserve a clean environment for future generations. Considering the safe reaction setup, we have used hydrothermal reaction to synthesize a ZnCo2O4-based composite.
In the first work, we developed a ZnCo2O4-based composite for supercapacitor and electrochemical glucose sensor application. The hybrid combination had ZnCo2O4, g-C3N4, and polyaniline. The synthesized materials were confirmed with various characterization tools, which include structural, chemical, morphological, electronic, and electrochemical studies and further applications. The synthesized materials were developed for bifunctional targe, including supercapacitors and electrochemical glucose sensors. The fabricated supercapacitor delivered energy density and power density of 6.75 kWh/kg and 375 W/kg, respectively. When applied as an electrochemical sensor, the high-performing optimized material combination delivered the sensing activity of 15.64 mA mM-1 cm-2 in a linear range of 0.1 mM to 3 mM with an acceptable detection limit of 4 uM.
In the second work, ZnCo2O4 was coupled with g-C3N4 by using a hydrothermal process. The detailed confirmation of materials with various characterizations is done similarly to the first work for synthesis confirmation. The application targeted is electrochemical hydrogen peroxide production and methanol oxidation reaction. In both applications, the reaction mechanisms are clearly explained and illustrated by schematic representation. The developed composite material in hydrogen peroxide production delivered an excellent electron transfer number of 2.30 and a higher H2O2 selectivity of 86.74 % at 0.55 V vs. RHE. The same material showed methanol oxidation reaction activity of 162.5 mA/cm2 at 10 mA/cm2 in the electrolyte mixture of 1 M potassium hydroxide + 0.5 M Methanol.
In the final work, we developed a bimetallic double hydroxide with Zinc and Cobalt ions and coupled it with PANI-derived porous carbon. The developed material showed a hydrotalcite structure which confirms the synthesized material. Upon explicit confirmation of the material, the application studies are targeted to supercapacitor and ethanol oxidation reactions. For supercapacitor fabrication, the asymmetric hybrid supercapacitor delivered an energy density of 30.13 Wh/kg at a power density of 1.6 kW/kg, and remained up to 15.33 Wh/kg at 3.9 kW/kg. Further, stability studies and practical demonstrations were performed with a fabricated supercapacitor. In the ethanol oxidation reaction application, the ZnCo-LDH/Porous carbon material delivered the activity of 55 mA/cm2 at 0.6 V, and other studies like Tafel, active sites analysis, and electron transfer kinetic analysis are in good agreement with activity results. Hence, all the above works are meant to be satisfactory and can be oriented to sustainable, green development in the energy and environment sector.
Table of contents Page no
Abstract…………………………………………………………………… i
Acknowledgments……………………………………………………….. iii
List of Publications……………………………………………………….. iv
List of Figures…………………………………………………………….. x
List of Tables……………………………………………………………… xv
List of schemes……………………………………………………………. xvi
List of abbreviations………………………………………………………. xvii

1. Chapter 1
Introduction
1.1. ZnCo2O4 properties and its applications…………………………………. 3
1.2. Layered double hydroxide properties and applications………………….. 5
1.3. Supercapacitors………………………………………………………….. 6
1.4. Electrochemical glucose sensors………………………………………… 11
1.5. Electrochemical Hydrogen peroxide (H2O2) production……………...... 12
1.6. Alcohol oxidation reaction………………………………………………. 14
1.7. Objectives………………………………………………………………… 16

2. Chapter 2
Literature survey
2.1. ZnCo2O4 and Composites in supercapacitor application……………….. 21
2.1.1. ZnCo2O4 with different morphology in supercapacitors………………... 22
2.1.2. ZnCo2O4 composite with carbonaceous material………………………. 24
2.1.3. ZnCo2O4 composite with conducting polymers………………………… 26
2.2. ZnCo2O4 and its composite towards electrochemical glucose sensors…. 27
2.3. ZnCo2O4 and its composite towards electrochemical H2O2 synthesis….. 28
2.4. ZnCo2O4 and its composite for the methanol oxidation reaction……….. 29
2.5. ZnCo-LDH and composite towards supercapacitor……………………… 29
2.6. ZnCo-LDH and composite towards ethanol oxidation reaction………….. 30

3. Chapter 3
Experimental and characterizations
3.1. Material synthesis strategies……………………………………………… 33
3.1.1. Hydrothermal process……………………………………………………. 33
3.1.2. In-situ polymerization method…………………………………………... 34
3.2. Characterization instruments…………………………………………….. 36
3.2.1. X-ray Diffractometer…………………………………………………….. 36
3.2.2. Field emission scanning electron microscopy…………………………… 36
3.2.3. Transmission electron microscopy………………………………………. 37
3.2.4. X-ray photoelectron spectroscopy……………………………………….. 37
3.2.5. Electrochemical work station……………………………………………. 38

4. Chapter 4
PANI/g-C3N4 composite over ZnCo2O4/Ni-foam as a bi-functional electrode towards supercapacitor and electrochemical glucose sensor
4.1. Experimental procedure………………………………………………….. 43
4.1.1. Preparation of ZnCo2O4/Ni foam materials……………………………… 43
4.1.2. Preparation of g-C3N4........................................... 43
4.1.3. Preparation of ZnCo2O4/g-C3N4/PANI ternary composite materials……. 43
4.1.4. Electrolyte preparation…………………………………………………… 44
4.1.5. Materials Characterizations……………………………………………… 44
4.1.6. Electrochemical measurements for three electrodes assembly…………… 45
4.1.7. Electrode preparation for kinetic studies and measurements…………….. 45
4.1.8 Fabrication of supercapacitors and measurement………………………… 46
4.1.9 Fabrication and analysis for electrochemical glucose sensing……………. 46
4.2. Results and discussion…………………………………………………… 48
4.2.1. Structural, Chemical, and surface area properties………………………… 48
4.2.2. Kinetic studies……………………………………………………………. 50
4.2.3. SEM images………………………………………………………………. 52
4.2.4. XPS study…………………………………………………………………. 56
4.2.5. Electrochemical performance of ZCO-based fabricated electrodes……… 58
4.2.6. Asymmetric supercapacitor performance of ZGP-3 electrode…………… 62
4.2.7. Electrochemical glucose sensing performance of ZGP-3 electrode……… 64
4.3. Conclusion………………………………………………………………… 68

5. Chapter 5
Dual morphology ZnCo2O4 coupled graphitic carbon nitride: an efficient electro-catalyst for electrochemical H2O2 production and Methanol oxidation reaction
5.1. Experiments and experimental…………………………………………… 72
5.1.1. Synthesis of ZnCo2O4/g-C3N4 composite………………………………... 72
5.1.2. Electrode preparation for electrochemical studies………………………. 73
5.1.3 Electrode preparation for kinetic studies and measurements……………. 73
5.1.4. Electrochemical studies for H2O2 production……………………………. 74
5.1.5. Electrochemical studies for MOR……………………………………….. 74
5.2. Results and discussion…………………………………………………… 75
5.2.1. Structural, chemical, and surface area analysis………………………….. 75
5.2.2. Electronic structure analysis…………………………………………….. 77
5.2.3. Morphology and microstructural analysis………………………………. 79
5.2.4. Electrochemical properties with rotational disk electrode………………. 82
5.2.5. Electrochemical H2O2 production activity………………………………. 87
5.2.6. Methanol oxidation reaction activity…………………………………… 92
5.2.7. Post-stability morphology studies……………………………………….. 96
5.3. Conclusion……………………………………………………………… 97

6. Chapter 6
ZnCo-layered double hydroxides coupled polyaniline-derived porous carbon: An efficient electro-catalyst towards supercapacitor and fuel cells application.
6.1. Experimental procedure…………………………………………………. 102
6.1.1. Synthesis of PANI-derived porous carbon………………………………. 102
6.1.2. Synthesis of ZnCo-LDH/PC…………………………………………….. 102
6.1.3. Material characterizations………………………………………………. 103
6.1.4. Electrode preparation procedure for supercapacitors…………………… 104
6.1.5. Three-electrode assembly for electrochemical measurements…………... 104
6.1.6. Fabrication of solid-state supercapacitors and analysis…………………. 104
6.1.7. Electrodes preparation and analysis for EOR and ORR………………… 105
6.1.8. Electron transfer number calculation……………………………………. 105
6.2. Results and discussion…………………………………………………… 106
6.2.1. Structural, chemical, thermal, and surface area analysis………………… 106
6.2.2. Electronic studies………………………………………………………… 108
6.2.3. Morphological studies…………………………………………………… 110
6.2.4. Three-electrode assembly electrochemical analysis…………………….. 112
6.2.5. Fabrication of solid-state hybrid supercapacitor………………………… 118
6.2.6. Fuel cell cathode application……………………………………………. 120
6.3. Conclusion……………………………………………………………….. 125

7. Chapter 7
Future works and conclusion
7.1. Future works……………………………………………………………... 128
7.1.1. Electrochemical Nitrate reductions……………………………………..... 128
7.1.2. Role of ZnCo2O4 in electrochemical nitrate reduction…………………… 129
7.2. Final conclusions…………………………………………………………. 129
References………………………………………………………………… 132

(1) Deng, J.; Yu, X.; Qin, X.; Liu, B.; He, Y. B.; Li, B.; Kang, F. Controlled Synthesis of Anisotropic Hollow ZnCo2O4 Octahedrons for High-Performance Lithium Storage. Energy Storage Mater. 2018, 11, 184–190.
(2) Wu, L.; Sun, L.; Li, X.; Zhang, Q.; Si, H.; Zhang, Y.; Wang, K.; Zhang, Y. Mesoporous ZnCo2O4-CNT Microflowers as Bifunctional Material for Supercapacitive and Lithium Energy Storage. Appl. Surf. Sci. 2020, 506, 144964.
(3) Bai, J.; Li, X.; Liu, G.; Qian, Y.; Xiong, S. Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material. Adv. Funct. Mater. 2014, 24 (20), 3012–3020.
(4) Liu, X.; Li, Q.; Qin, Y.; Jiang, Y. Constructing High-Performance Electrode Materials Using Core-Shell ZnCo2O4@PPy Nanowires for Hybrid Batteries and Water Splitting. RSC Adv. 2020, 10 (47), 28324–28331.
(5) Gonçalves, J. M.; da Silva, M. I.; Silva, M. N. T.; Martins, P. R.; Nossol, E.; Toma, H. E.; Angnes, L. Recent Progress in ZnCo2O4 and Its Composites for Energy Storage and Conversion: A Review . Energy Adv. 2022, 1 (11), 793–841.
(6) Yu, D.; Zhang, Z.; Meng, Y.; Teng, Y.; Wu, Y.; Zhang, X.; Sun, Q.; Tong, W.; Zhao, X.; Liu, X. The Synthesis of Hierarchical ZnCo2O4@MnO2 Core-Shell Nanosheet Arrays on Ni Foam for High-Performance All-Solid-State Asymmetric Supercapacitors. Inorg. Chem. Front. 2018, 5 (3), 597–604.
(7) Hou, H.; Shao, H.; Zhang, X.; Liu, G.; Hussain, S.; Qiao, G. RGO-Loaded Flower-like ZnCo2O4 Nanohybrid as Counter Electrode for Dye-Sensitized Solar Cells. Mater. Lett. 2018, 225, 5–8.
(8) Qi, J.; Mao, J.; Zhang, A.; Jiang, L.; Sui, Y.; He, Y.; Meng, Q.; Wei, F.; Zhang, X. Facile Synthesis of Mesoporous ZnCo2O4 Nanosheet Arrays Grown on RGO as Binder-Free Electrode for High-Performance Asymmetric Supercapacitor. J. Mater. Sci. 2018, 53 (23), 16074–16085.
(9) Chakrabarty, S.; Mukherjee, A.; Su, W. N.; Basu, S. Improved Bi-Functional ORR and OER Catalytic Activity of Reduced Graphene Oxide Supported ZnCo2O4 Microsphere. Int. J. Hydrogen Energy 2019, 44 (3), 1565–1578.
(10) Li, L.; Xie, Z.; Jiang, G.; Wang, Y.; Cao, B.; Yuan, C. Efficient Laser-Induced Construction of Oxygen-Vacancy Abundant Nano- ZnCo2O4/Porous Reduced Graphene Oxide Hybrids toward Exceptional Capacitive Lithium Storage. Small 2020, 16 (32), 2001526.
(11) Yang, X.; Wang, P.; Tang, Y.; Peng, C.; Lai, Y.; Li, J.; Zhang, Z. Bimetallic ZIF–Derived Polyhedron ZnCo2O4 Anchored on the Reduced Graphene Oxide as an Anode for Sodium-Ion Battery. Ionics, 2019, 25 (6), 2945–2950.
(12) Askari, M. B.; Salarizadeh, P.; Beheshti-Marnani, A. A Hierarchical Hybrid of ZnCo2O4 and RGO as a Significant Electrocatalyst for Methanol Oxidation Reaction: Synthesis, Characterization, and Electrocatalytic Performance. Int. J. Energy Res. 2020, 44 (11), 8892–8903.
(13) Thoka, S.; Tong, Z.; Jena, A.; Hung, T.-F.; Wu, C.-C.; Chang, W.-S.; Wang, F.-M.; Wang, X.-C.; Yin, L.-C.; Chang, H. High-Performance Na–CO2 Batteries with ZnCo2O4@ CNT as the Cathode Catalyst. J. Mater. Chem. A 2020, 8 (45), 23974–23982.
(14) Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4Quantum Dots Anchored on Nitrogen-Doped Carbon Nanotubes as Reversible Oxygen Reduction/Evolution Electrocatalysts. Adv. Mater. 2016, 28 (19), 3777–3784..
(15) Liu, J.; Xie, Y.; Nan, Y.; Gou, G.; Li, X.; Fang, Y.; Wang, X.; Tang, Y.; Yang, H.; Ma, J. ZnCo2O4 Nanoparticles Derived from Dual-Metal-Organic-Frameworks Embedded in Multiwalled Carbon Nanotubes: A Favorable Electrocatalyst for the Water Splitting. Electrochim. Acta 2017, 257, 233–242.
(16) Yan, L.; Xu, Z.; Hu, W.; Ning, J.; Zhong, Y.; Hu, Y. Formation of Sandwiched Leaf-like CNTs-Co/ZnCo2O4@NC-CNTs Nanohybrids for High-Power-Density Rechargeable Zn-Air Batteries. Nano Energy 2021, 82, 105710.
(17) Wang, J.; Wang, B.; Wang, Z.; Chen, L.; Gao, C.; Xu, B.; Jia, Z.; Wu, G. Synthesis of 3D Flower-like ZnO/ZnCo2O4 Composites with the Heterogeneous Interface for Excellent Electromagnetic Wave Absorption Properties. J. Colloid Interface Sci. 2021, 586, 479–490.
(18) Ge, X.; Li, Z.; Wang, C.; Yin, L. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery. ACS Appl. Mater. Interfaces 2015, 7 (48), 26633–26642.
(19) Amiri, M.; Mahmoudi-Moghaddam, H. Green Synthesis of ZnO/ZnCo2O4 and Its Application for Electrochemical Determination of Bisphenol A. Microchem. J. 2021, 160, 105663.
(20) Liu, Y.; Jiang, H.; Hao, J.; Liu, Y.; Shen, H.; Li, W.; Li, J. Metal-Organic Framework-Derived Reduced Graphene Oxide-Supported ZnO/ZnCo2O4/C Hollow Nanocages as Cathode Catalysts for Aluminum-O2 Batteries. ACS Appl. Mater. Interfaces 2017, 9 (37), 31841–31852.
(21) Maity, D.; Karmakar, K.; Pal, D.; Saha, S.; Khan, G. G.; Mandal, K. One-Dimensional p-ZnCo2O4/n-ZnO Nanoheterojunction Photoanode Enabling Photoelectrochemical Water Splitting. ACS Appl. Energy Mater. 2021, 4 (10), 11599–11608.
(22) Sun, J.; Li, S.; Han, X.; Liao, F.; Zhang, Y.; Gao, L.; Chen, H.; Xu, C. Rapid Hydrothermal Synthesis of Snowflake-like ZnCo2O4/ZnO Mesoporous Microstructures with Excellent Electrochemical Performances. Ceram. Int. 2019, 45 (9), 12243–12250.
(23) Sharma, M.; Gaur, A. Designing of Carbon Nitride Supported ZnCo2O4 Hybrid Electrode for High-Performance Energy Storage Applications. Sci. Rep. 2020, 10 (1), 1–9.
(24) Xiao, H.; Ma, G.; Tan, J.; Ru, S.; Ai, Z.; Wang, C. Three-Dimensional Hierarchical ZnCo2O4@ C3N4-B Nanoflowers as High-Performance Anode Materials for Lithium-Ion Batteries. RSC Adv. 2020, 10 (54), 32609–32615.
(25) Gao, R.; Mei, X.; Yan, D.; Liang, R.; Wei, M. Nano-Photosensitizer Based on Layered Double Hydroxide and Isophthalic Acid for Singlet Oxygenation and Photodynamic Therapy. Nat. Commun. 2018, 9 (1), 1–10.
(26) Gao, R.; Yan, D. Layered Host-Guest Long-Afterglow Ultrathin Nanosheets: High-Efficiency Phosphorescence Energy Transfer at 2D Confined Interface. Chem. Sci. 2016, 8 (1), 590–599.
(27) Li, Z.; Lu, J.; Qin, Y.; Li, S.; Qin, S. Two Dimensional Restriction-Induced Luminescence of Tetraphenyl Ethylene within the Layered Double Hydroxide Ultrathin Films and Its Fluorescence Resonance Energy Transfer. J. Mater. Chem. C 2013, 1 (37), 5944–5952.
(28) Gao, R.; Yan, D. Fast Formation of Single-Unit-Cell-Thick and Defect-Rich Layered Double Hydroxide Nanosheets with Highly Enhanced Oxygen Evolution Reaction for Water Splitting. Nano Res. 2018, 11 (4), 1883–1894.
(29) Jing, C.; Dong, B.; Zhang, Y. Chemical Modifications of Layered Double Hydroxides in the Supercapacitor. Energy Environ. Mater. 2020, 3 (3), 346–379.
(30) Yi, H.; Liu, S.; Lai, C.; Zeng, G.; Li, M.; Liu, X.; Li, B.; Huo, X.; Qin, L.; Li, L.; et al. Recent Advance of Transition-Metal-Based Layered Double Hydroxide Nanosheets: Synthesis, Properties, Modification, and Electrocatalytic Applications. Adv. Energy Mater. 2021, 11 (14), 2002863.
(31) Gao, R.; Yan, D. Recent Development of Ni/Fe-Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation. Adv. Energy Mater. 2020, 10 (11), 1900954.
(32) Yang, H.; Guo, T.; Qin, K.; Liu, Q. Different Interlayer Anions Controlled Zinc Cobalt Layered Double Hydroxide Nanosheets for Ethanol Electrocatalytic Oxidation. J. Phys. Chem. C 2021, 125 (45), 24867–24875.
(33) Zhao, J.; Burke, A. F. Review on Supercapacitors: Technologies and Performance Evaluation. J. Energy Chem. 2021, 59, 276–291.
(34) Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99.
(35) Paul, P. P.; Thampy, V.; Cao, C.; Steinrück, H. G.; Tanim, T. R.; Dunlop, A. R.; Dufek, E. J.; Trask, S. E.; Jansen, A. N.; Toney, M. F.; et al. Erratum: Quantification of Heterogeneous, Irreversible Lithium Plating in Extreme Fast Charging of Lithium-Ion Batteries. Energy Environ. Sci. 2021, 14 (9), 5097.
(36) Kakaei, K.; Esrafili, M. D.; Ehsani, A. Graphene-Based Electrochemical Supercapacitors. In Interface Science and Technology; Elsevier, 2019; Vol. 27, pp 339–386.
(37) Chen, J.; Wiley, B. J.; Xia, Y. One-Dimensional Nanostructures of Metals: Large-Scale Synthesis and Some Potential Applications. Langmuir 2007, 23 (8), 4120–4129.
(38) Song, D.; Zhu, J.; Li, J.; Pu, T.; Huang, B.; Zhao, C.; Xie, L.; Chen, L. Free-Standing Two-Dimensional Mesoporous ZnCo2O4 Thin Sheets Consisting of 3D Ultrathin Nanoflake Array Frameworks for High Performance Asymmetric Supercapacitor. Electrochim. Acta 2017, 257, 455–464.
(39) Prasad, K.; Reddy, G. R.; Rajesh, M.; Reddi Babu, P.; Shanmugam, G.; John Sushma, N.; Siva Pratap Reddy, M.; Raju, B. D. P.; Mallikarjuna, K. Electrochemical Performance of 2d-Hierarchical Sheet-like ZnCo2O4 Microstructures for Supercapacitor Applications. Crystals 2020, 10 (7), 1–13.
(40) Xiao, X.; Wang, G.; Zhang, M.; Wang, Z.; Zhao, R.; Wang, Y. Electrochemical Performance of Mesoporous ZnCo2O4 Nanosheets as an Electrode Material for Supercapacitor. Ionics, 2018, 24 (8), 2435–2443.
(41) Lee, J. W.; Ahn, T.; Kim, J. H.; Ko, J. M.; Kim, J. D. Nanosheets Based Mesoporous NiO Microspherical Structures via Facile and Template-Free Method for High Performance Supercapacitors. Electrochim. Acta 2011, 56 (13), 4849–4857.
(42) Xing, Z.; Chu, Q.; Ren, X.; Ge, C.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Ni3S2 Coated ZnO Array for High-Performance Supercapacitors. J. Power Sources 2014, 245, 463–467.
(43) Vol’Fkovich, Y. M.; Mikhalin, A. A.; Bograchev, D. A.; Sosenkin, V. E. Carbon Electrodes with High Pseudocapacitance for Supercapacitors. Russ. J. Electrochem. 2012, 48 (4), 424–433.
(44) Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. J. Mater. Chem. A 2017, 5 (25), 12653–12672.
(45) Swain, N.; Saravanakumar, B.; Kundu, M.; Schmidt-Mende, L.; Ramadoss, A. Recent Trends in Template Assisted 3D Porous Materials for Electrochemical Supercapacitors. J. Mater. Chem. A 2021, 9 (45), 25286–25324.
(46) Brezesinski, K.; Wang, J.; Haetge, J.; Reitz, C.; Steinmueller, S. O.; Tolbert, S. H.; Smarsly, B. M.; Dunn, B.; Brezesinski, T. Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group v Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains. J. Am. Chem. Soc. 2010, 132 (20), 6982–6990.
(47) Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P. Conducting Polymers as Active Materials in Electrochemical Capacitors. J. Power Sources 1994, 47 (1–2), 89–107.
(48) Lu, X. F.; Li, G. R.; Tong, Y. X. A Review of Negative Electrode Materials for Electrochemical Supercapacitors. Sci. China Technol. Sci. 2015, 58 (11), 1799–1808.
(49) Forouzandeh, P.; Kumaravel, V.; Pillai, S. C. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 2020, 10 (9), 1–73.
(50) Gogotsi, Y.; Penner, R. M. Energy Storage in Nanomaterials–Capacitive, Pseudocapacitive, or Battery-Like? ACS nano. ACS Publications 2018, pp 2081–2083.
(51) Rahman, M. A.; Kumar, P.; Park, D. S.; Shim, Y. B. Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors 2008, 8 (1), 118–141.
(52) Chen, K.; Chou, W.; Liu, L.; Cui, Y.; Xue, P.; Jia, M. Electrochemical Sensors Fabricated by Electrospinning Technology: An Overview. Sensors (Switzerland) 2019, 19 (17), 3676.
(53) Wang, B.; Luo, L.; Ding, Y.; Zhao, D.; Zhang, Q. Synthesis of Hollow Copper Oxide by Electrospinning and Its Application as a Nonenzymatic Hydrogen Peroxide Sensor. Colloids Surfaces B Biointerfaces 2012, 97, 51–56.
(54) Conzuelo, F.; Gamella, M.; Campuzano, S.; Ruiz, M. A.; Reviejo, A. J.; Pingarrón, J. M. An Integrated Amperometric Biosensor for the Determination of Lactose in Milk and Dairy Products. J. Agric. Food Chem. 2010, 58 (12), 7141–7148.
(55) Casella, I. G.; Destradis, A.; Desimoni, E. Colloidal Gold Supported onto Glassy Carbon Substrates as an Amperometric Sensor for Carbohydrates in Flow Injection and Liquid Chromatography. Analyst 1996, 121 (2), 249–254.
(56) Gao, X.; Du, X.; Liu, D.; Gao, H.; Wang, P.; Yang, J. Core-Shell Gold-Nickel Nanostructures as Highly Selective and Stable Nonenzymatic Glucose Sensor for Fermentation Process. Sci. Rep. 2020, 10 (1), 1–10.
(57) Garcia-Cruz, A.; Ahmad, O. S.; Alanazi, K.; Piletska, E.; Piletsky, S. A. Generic Sensor Platform Based on Electro-Responsive Molecularly Imprinted Polymer Nanoparticles (e-NanoMIPs). Microsystems Nanoeng. 2020, 6 (1), 1–9.
(58) Diouf, A.; Bouchikhi, B.; El Bari, N. A Nonenzymatic Electrochemical Glucose Sensor Based on Molecularly Imprinted Polymer and Its Application in Measuring Saliva Glucose. Mater. Sci. Eng. C 2019, 98, 1196–1209.
(59) Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L. I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C. Electrochemical Synthesis of Hydrogen Peroxide from Water and Oxygen. Nat. Rev. Chem. 2019, 3 (7), 442–458.
(60) Melchionna, M.; Fornasiero, P.; Prato, M. The Rise of Hydrogen Peroxide as the Main Product by Metal-Free Catalysis in Oxygen Reductions. Adv. Mater. 2019, 31 (13), 1802920.
(61) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angew. Chemie - Int. Ed. 2006, 45 (42), 6962–6984.
(62) Wood, K. N.; O’Hayre, R.; Pylypenko, S. Recent Progress on Nitrogen/Carbon Structures Designed for Use in Energy and Sustainability Applications. Energy Environ. Sci. 2014, 7 (4), 1212–1249.
(63) Pang, Y.; Xie, H.; Sun, Y.; Titirici, M.-M.; Chai, G.-L. Electrochemical Oxygen Reduction for H2O2 Production: Catalysts, PH Effects and Mechanisms. J. Mater. Chem. A 2020, 8 (47), 24996–25016.
(64) Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catal. 2018, 8 (5), 4064–4081.
(65) Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B. D. Efficient Hydrogen Peroxide Generation Using Reduced Graphene Oxide-Based Oxygen Reduction Electrocatalysts. Nat. Catal. 2018, 1 (4), 282–290.
(66) Pizzutilo, E.; Kasian, O.; Choi, C. H.; Cherevko, S.; Hutchings, G. J.; Mayrhofer, K. J. J.; Freakley, S. J. Electrocatalytic Synthesis of Hydrogen Peroxide on Au-Pd Nanoparticles: From Fundamentals to Continuous Production. Chem. Phys. Lett. 2017, 683, 436–442.
(67) Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single Atom Hot-Spots at Au-Pd Nanoalloys for Electrocatalytic H2O2 Production. J. Am. Chem. Soc. 2011, 133 (48), 19432–19441.
(68) Joghee, P., Malik, J. N., Pylypenko, S., & O’Hayre, R. A review on direct methanol fuel cells–In the perspective of energy and sustainability. MRS Energy & Sustainability, 2015, 2, E3.
(69) Weng, M. M.; Liu, D. J.; He, X. Q.; Asefa, T. Fe3C Nanoparticles-Loaded 3D Nanoporous N-Doped Carbon: A Highly Efficient Electrocatalyst for Oxygen Reduction in Alkaline Media. Int. J. Hydrogen Energy 2019, 44 (39), 21506–21517.
(70) Fu, X.; Wan, C.; Huang, Y.; Duan, X. Noble Metal Based Electrocatalysts for Alcohol Oxidation Reactions in Alkaline Media. Adv. Funct. Mater. 2022, 32 (11), 2106401.
(71) Yu, E. H.; Krewer, U.; Scott, K. Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells. Energies 2010, 3 (8), 1499–1528.
(72) Cifrain, M.; Kordesch, K. V. Advances, Aging Mechanism and Lifetime in AFCs with Circulating Electrolytes. J. Power Sources 2004, 127 (1–2), 234–242.
(73) Yu, E. H.; Scott, K.; Reeve, R. W. A Study of the Anodic Oxidation of Methanol on Pt in Alkaline Solutions. J. Electroanal. Chem. 2003, 547 (1), 17–24.
(74) Cohen, J. L.; Volpe, D. J.; Abruña, H. D. Electrochemical Determination of Activation Energies for Methanol Oxidation on Polycrystalline Platinum in Acidic and Alkaline Electrolytes. Phys. Chem. Chem. Phys. 2007, 9 (1), 49–77.
(75) Kutz, R. B.; Braunschweig, B.; Mukherjee, P.; Dlott, D. D.; Wieckowski, A. Study of Ethanol Electrooxidation in Alkaline Electrolytes with Isotope Labels and Sum-Frequency Generation. J. Phys. Chem. Lett. 2011, 2 (17), 2236–2240.
(76) Uke, S. J.; Akhare, V. P.; Bambole, D. R.; Bodade, A. B.; Chaudhari, G. N. Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite as an Electrode Material for Supercapacitor: A Review. Front. Mater. 2017, 4, 21.
(77) Ruiz-Montoya, J. G.; Quispe-Garrido, Lady V.; Calderón Gómez, J. C.; Baena-Moncada, A. M.; Goncąlves, J. M. Recent Progress in and Prospects for Supercapacitor Materials Based on Metal Oxide or Hydroxide/Biomass-Derived Carbon Composites. Sustain. Energy Fuels 2021, 5 (21), 5332–5365.
(78) Gonçalves, J. M.; Rocha, D. P.; Silva, M. N. T.; Martins, P. R.; Nossol, E.; Angnes, L.; Rout, C. S.; Munoz, R. A. A. Feasible Strategies to Promote the Sensing Performances of Spinel MCo2O4 (M= Ni, Fe, Mn, Cu and Zn) Based Electrochemical Sensors: A Review. J. Mater. Chem. C 2021, 9 (25), 7852–7887.
(79) Zhu, J.; Zhang, D.; Zhu, Z.; Wu, Q.; Li, J. Review and Prospect of MnO2-Based Composite Materials for Supercapacitor Electrodes. Ionics. 2021, 27 (9), 3699–3714.
(80) Gonçalves, J. M.; Silva, M. N. T.; Naik, K. K.; Martins, P. R.; Rocha, D. P.; Nossol, E.; Munoz, R. A. A.; Angnes, L.; Rout, C. S. Multifunctional Spinel MnCo2O4 based Materials for Energy Storage and Conversion: A Review on Emerging Trends, Recent Developments and Future Perspectives. J. Mater. Chem. A 2021, 9 (6), 3095–3124.
(81) Harada, M.; Kotegawa, F.; Kuwa, M. Structural Changes of Spinel MCo2O4(M = Mn, Fe, Co, Ni, and Zn) Electrocatalysts during the Oxygen Evolution Reaction Investigated by in Situ X-Ray Absorption Spectroscopy. ACS Appl. Energy Mater. 2022, 5 (1), 278–294.
(82) Alqahtani, D. M.; Zequine, C.; Ranaweera, C. K.; Siam, K.; Kahol, P. K.; Poudel, T. P.; Mishra, S. R.; Gupta, R. K. Effect of Metal Ion Substitution on Electrochemical Properties of Cobalt Oxide. J. Alloys Compd. 2019, 771, 951–959.
(83) Mary, A. J. C.; Bose, A. C. Surfactant Assisted ZnCo2O4 Nanomaterial for Supercapacitor Application. Appl. Surf. Sci. 2018, 449, 105–112.
(84) Priya, M.; Premkumar, V. K.; Vasantharani, P.; Sivakumar, G. Structural and Electrochemical Properties of ZnCo2O4 Nanoparticles Synthesized by Hydrothermal Method. Vacuum 2019, 167, 307–312.
(85) Mary, A. J. C.; Thilagavathi, S.; Bose, A. C. Influence of Different Synthesis Approach on ZnCo2O4 Nanomaterial and Its Supercapacitor Behavior. In AIP Conference Proceedings; AIP Publishing LLC, 2018; Vol. 1942, p 140042.
(86) He, D.; Gao, Y.; Yao, Y.; Wu, L.; Zhang, J.; Huang, Z. H.; Wang, M. X. Asymmetric Supercapacitors Based on Hierarchically Nanoporous Carbon and ZnCo2O4 From a Single Biometallic Metal-Organic Frameworks (Zn/Co-MOF). Front. Chem. 2020, 8, 719.
(87) Kumar, Y. A.; Kumar, K. D.; Kim, H. J. Reagents Assisted ZnCo2O4 Nanomaterial for Supercapacitor Application. Electrochim. Acta 2020, 330, 135261.
(88) Shang, Y.; Xie, T.; Ma, C.; Su, L.; Gai, Y.; Liu, J.; Gong, L. Synthesis of Hollow ZnCo2O4 Microspheres with Enhanced Electrochemical Performance for Asymmetric Supercapacitor. Electrochim. Acta 2018, 286, 103–113.
(89) Zhou, G.; Zhu, J.; Chen, Y.; Mei, L.; Duan, X.; Zhang, G.; Chen, L.; Wang, T.; Lu, B. Simple Method for the Preparation of Highly Porous ZnCo2O4 Nanotubes with Enhanced Electrochemical Property for Supercapacitor. Electrochim. Acta 2014, 123, 450–455.
(90) Chen, H.; Wang, J.; Han, X.; Liao, F.; Zhang, Y.; Gao, L.; Xu, C. Facile Synthesis of Mesoporous ZnCo2O4 Hierarchical Microspheres and Their Excellent Supercapacitor Performance. Ceram. Int. 2019, 45 (7), 8577–8584.
(91) Liu, B.; Liu, B.; Wang, Q.; Wang, X.; Xiang, Q.; Chen, D.; Shen, G. New Energy Storage Option: Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2013, 5 (20), 10011–10017.
(92) Rajesh, J. A.; Min, B. K.; Kim, J. H.; Kang, S. H.; Kim, H.; Ahn, K. S. Facile Hydrothermal Synthesis and Electrochemical Supercapacitor Performance of Hierarchical Coral-like ZnCo2O4 Nanowires. J. Electroanal. Chem. 2017, 785, 48–57.
(93) Zhu, J.; Song, D.; Pu, T.; Li, J.; Huang, B.; Wang, W.; Zhao, C.; Xie, L.; Chen, L. Two-Dimensional Porous ZnCo2O4 Thin Sheets Assembled by 3D Nanoflake Array with Enhanced Performance for Aqueous Asymmetric Supercapacitor. Chem. Eng. J. 2018, 336, 679–689.
(94) Xiang, K.; Wu, D.; Fan, Y.; You, W.; Zhang, D.; Luo, J. L.; Fu, X. Z. Enhancing Bifunctional Electrodes of Oxygen Vacancy Abundant ZnCo2O4 Nanosheets for Supercapacitor and Oxygen Evolution. Chem. Eng. J. 2021, 425, 130583.
(95) Vijayakumar, S.; Nagamuthu, S.; Lee, S. H.; Ryu, K. S. Porous Thin Layered Nanosheets Assembled ZnCo2O4 Grown on Ni-Foam as an Efficient Electrode Material for Hybrid Supercapacitor Applications. Int. J. Hydrogen Energy 2017, 42 (5), 3122–3129.
(96) Jadhav, H. S.; Roy, A.; Chung, W. J.; Seo, J. G. Growth of Urchin-like ZnCo2O4 Microspheres on Nickel Foam as a Binder-Free Electrode for High-Performance Supercapacitor and Methanol Electro-Oxidation. Electrochim. Acta 2017, 246, 941–950.
(97) Mallem, S. P. R.; Koduru, M.; Chandrasekhar, K.; Prabhakar Vattikuti, S. V; Manne, R.; Reddy, V. R.; Lee, J.-H. Potato Chip-like 0D Interconnected ZnCo2O4 Nanoparticles for High-Performance Supercapacitors. Crystals 2021, 11 (5), 469.
(98) Huang, T.; Zhao, C.; Zheng, R.; Zhang, Y.; Hu, Z. Facilely Synthesized Porous ZnCo2O4 Rodlike Nanostructure for High-Rate Supercapacitors. Ionics. 2015, 21 (11), 3109–3115.
(99) Chen, H.; Du, X.; Sun, J.; Mao, H.; Wu, R.; Xu, C. Simple Preparation of ZnCo2O4 Porous Quasi-Cubes for High Performance Asymmetric Supercapacitors. Appl. Surf. Sci. 2020, 515, 146008.
(100) Rajesh, J. A.; Ahn, K. S. Facile Hydrothermal Synthesis and Supercapacitor Performance of Mesoporous Necklace-Type ZnCo2O4 Nanowires. Catalysts 2021, 11 (12), 48–57.
(101) Bhagwan, J.; Khaja Hussain, S.; Yu, J. S. Aqueous Asymmetric Supercapacitors Based on ZnCo2O4 Nanoparticles via Facile Combustion Method. J. Alloys Compd. 2020, 815, 152456.
(102) Zhao, S.; Yu, X.; Chen, H.; Tao, K.; Hu, Y.; Han, L. Zeolitic Imidazolate Framework Derived ZnCo2O4 Hollow Tubular Nanofibers for Long-Life Supercapacitors. RSC Adv. 2020, 10 (23), 13922–13928.
(103) Chen, H.; Wang, J.; Han, X.; Liao, F.; Zhang, Y.; Han, X.; Xu, C. Simple Growth of Mesoporous Zinc Cobaltite Urchin-like Microstructures towards High-Performance Electrochemical Capacitors. Ceram. Int. 2019, 45 (3), 4059–4066.
(104) Rajeshkhanna, G.; Ranga Rao, G. High Energy Density Symmetric Capacitor Using Zinc Cobaltate Flowers Grown in Situ on Ni Foam. Electrochim. Acta 2018, 261, 265–274.
(105) Bhagwan, J.; Han, J. I. Promotive Effect of MWCNTs on α-NiS Microstructure and Their Application in Aqueous Asymmetric Supercapacitor. Energy and Fuels 2022, 166 (2), A217.
(106) Wei, X.; Wu, H.; Li, L. 3D N-Doped Carbon Continuous Network Supported P-Doped ZnCo2O4 Nanosheets with Rich Oxygen Vacancies for High-Performance Asymmetric Pseudocapacitor. J. Alloys Compd. 2021, 861, 158544.
(107) Yu, H.; Zhao, H.; Wu, Y.; Chen, B.; Sun, J. Electrospun ZnCo2O4/C Composite Nanofibers with Superior Electrochemical Performance for Supercapacitor. J. Phys. Chem. Solids 2020, 140, 109385.
(108) Patil, S. J.; Dubal, D. P.; Lee, D. W. Gold Nanoparticles Decorated RGO-ZnCo2O4 Nanocomposite: A Promising Positive Electrode for High Performance Hybrid Supercapacitors. Chem. Eng. J. 2020, 379, 122211.
(109) Liebig, J. v. About Some Nitrogen Compounds. Ann. Pharm 1834, 10 (10), 10.
(110) Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116 (12), 7159–7329.
(111) Li, H.; Cao, J.; Liu, F.; Zhou, W.; Chen, X.; Deng, Y.; Wu, Z.; Lu, B.; Mo, D.; Xu, J.; Stable Three-Dimensional PEDOT Network Construction for Electrochromic-Supercapacitor Dual Functional Application. ACS Appl. Energy Mater. 2022, 5 (10), 12315–12323.
(112) Vijeth, H.; Ashokkumar, S. P.; Yesappa, L.; Niranjana, M.; Vandana, M.; Devendrappa, H. Camphor Sulfonic Acid Assisted Synthesis of Polythiophene Composite for High Energy Density All-Solid-State Symmetric Supercapacitor. J. Mater. Sci. Mater. Electron. 2019, 30 (8), 7471–7484.
(113) Zhang, M.; Nautiyal, A.; Du, H.; Li, J.; Liu, Z.; Zhang, X.; Wang, R. Polypyrrole Film Based Flexible Supercapacitor: Mechanistic Insight into Influence of Acid Dopants on Electrochemical Performance. Electrochim. Acta 2020, 357, 136877.
(114) Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent Advancements of Polyaniline-Based Nanocomposites for Supercapacitors. J. Power Sources 2019, 424, 108–130..
(115) Stejskal, J.; Sapurina, I.; Prokeš, J.; Zemek, J. In-Situ Polymerized Polyaniline Films. Synth. Met. 1999, 105 (3), 195–202.
(116) Gospodinova, N.; Terlemezyan, L. Conducting Polymers Prepared by Oxidative Polymerization: Polyaniline. Prog. Polym. Sci. 1998, 23 (8), 1443–1484.
(117) Kathalingam, A.; Ramesh, S.; Yadav, H. M.; Choi, J. H.; Kim, H. S.; Kim, H. S. Nanosheet-like ZnCo2O4@nitrogen Doped Graphene Oxide/Polyaniline Composite for Supercapacitor Application: Effect of Polyaniline Incorporation. J. Alloys Compd. 2020, 830, 154734.
(118) Chen, X.; Cai, J. Preparation of ZnCo2O4@PANI Core/Shell Nanobelts for High-Performance Asymmetric Supercapacitors . Dalt. Trans. 2022, 51 (43), 16587–16595.
(119) He, D.; Wang, M.; Wang, X.; Feng, S.; Chen, J.; Jiang, P. Construction of ZnCo2O4 Nanowire Arrays 3D Binder-Free Electrode with Highly Catalytic Activity towards Glucose Oxidation. J. Solid State Chem. 2020, 284, 121214.
(120) Kim, D. S.; Moon, I. K.; Yang, J. H.; Choi, K.; Oh, J.; Kim, S. W. Mesoporous ZnCo2O4 Nanowire Arrays with Oxygen Vacancies and N-Dopants for Significant Improvement of Non-Enzymatic Glucose Detection. J. Electroanal. Chem. 2020, 878, 114585.
(121) Sreekanth, T. V. M.; Nagajyothi, P. C.; Devarayapalli, K. C.; Shim, J.; Yoo, K. Lilac Flower-Shaped ZnCo2O4 Electrocatalyst for Efficient Methanol Oxidation and Oxygen Reduction Reactions in an Alkaline Medium. CrystEngComm 2020, 22 (16), 2849–2858.
(122) Bao, J.; Wang, Z.; Liu, W.; Xu, L.; Lei, F.; Xie, J.; Zhao, Y.; Huang, Y.; Guan, M.; Li, H. ZnCo2O4 Ultrathin Nanosheets towards the High Performance of Flexible Supercapacitors and Bifunctional Electrocatalysis. J. Alloys Compd. 2018, 764, 565–573.
(123) Tao, N.; Liu, J.; Wang, B.; Liang, C.; Lin, S.; Du, Y.; Fan, D.; Yang, H.; Wang, Y.; Huang, K.; et al. Hydrothermal Two-Dimensionalisation to Porous ZnCo2O4 Nanosheets Non-Platinum ORR Catalyst. Micro Nano Lett. 2019, 14 (6), 665–668.
(124) Ratha, S.; Samantara, A. K.; Rout, C. S.; Jena, B. K. Synergistic Electrocatalytic Activity of a Spinel ZnCo2O4/Reduced Graphene Oxide Hybrid towards Oxygen Reduction Reaction. J. Solid State Electrochem. 2016, 20 (1), 285–291.
(125) Xu, N.; Nie, Q.; Liu, J.; Huang, H.; Qiao, J.; Zhou, X.-D. Insert Zn2+ in Tetrahedral Sites of Bi-Metal Zn-Co Spinel Oxides with High Oxygen Catalytic Performance for Liquid and Flexible Zinc-Air Batteries . J. Electrochem. Soc. 2020, 167 (5), 050512.
(126) Ma, L.; Zhou, H.; Xin, S.; Xiao, C.; Li, F.; Ding, S. Characterization of Local Electrocatalytical Activity of Nanosheet-Structured ZnCo2O4/Carbon Nanotubes Composite for Oxygen Reduction Reaction with Scanning Electrochemical Microscopy. Electrochim. Acta 2015, 178, 767–777.
(127) Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. Spinel ZnCo2O4/N-Doped Carbon Nanotube Composite: A High Active Oxygen Reduction Reaction Electrocatalyst. J. Power Sources 2014, 257, 170–173.
(128) Li, J. H.; Liu, M. Y.; Li, Y.; Yuan, L.; Zhang, P.; Cai, Z.; Chen, H.; Zou, J. L. ZIF-8@ZIF-67–Derived ZnCo2O4@nitrogen–Doped Carbon/Carbon Nanotubes Wrapped by a Carbon Layer: A Stable Oxygen Reduction Catalyst with a Competitive Strength in Acid Media. Mater. Today Energy 2021, 19, 100574.
(129) Jadhav, H. S.; Roy, A.; Chung, W. J.; Seo, J. G. Growth of Urchin-like ZnCo2O4 Microspheres on Nickel Foam as a Binder-Free Electrode for High-Performance Supercapacitor and Methanol Electro-Oxidation. Electrochim. Acta 2017, 246, 941–950.
(130) Shi, R.; Zhang, Y.; Wang, Z. Facile Synthesis of a ZnCo2O4 Electrocatalyst with Three-Dimensional Architecture for Methanol Oxidation. J. Alloys Compd. 2019, 810, 151879.
(131) Sreekanth, T. V. M.; Ramaraghavulu, R.; Prabhakar Vattikuti, S. V.; Shim, J.; Yoo, K. Microwave Synthesis: ZnCo2O4 NPs as an Efficient Electrocatalyst in the Methanol Oxidation Reaction. Mater. Lett. 2019, 253, 450–453.
(132) Wang, C.; Wu, W.; Zhao, C.; Liu, T.; Wang, L.; Zhu, J. Rational Design of 2D/1D ZnCo-LDH Hierarchical Structure with High Rate Performance as Advanced Symmetric Supercapacitors. J. Colloid Interface Sci. 2021, 602, 177–186.
(133) Zhao, C.; Lin, L.; Tian, S.; Nie, P.; Xue, X.; Wang, H.; Xu, T.; Chang, L. Facile Fabrication of Binder-Free CoZn LDH/CFP Electrode with Enhanced Capacitive Properties for Asymmetric Supercapacitor. J. Inorg. Organomet. Polym. Mater. 2021, 31 (10), 3953–3961.
(134) Gao, J.; Xuan, H.; Xu, Y.; Liang, T.; Han, X.; Yang, J.; Han, P.; Wang, D.; Du, Y. Interconnected Network of Zinc-Cobalt Layered Double Hydroxide Stick onto RGO/Nickel Foam for High Performance Asymmetric Supercapacitors. Electrochim. Acta 2018, 286, 92–102.
(135) Sekiguchi, T.; Miyashita, S.; Obara, K.; Shishido, T.; Sakagami, N. Hydrothermal Growth of ZnO Single Crystals and Their Optical Characterization. J. Cryst. Growth 2000, 214, 72–76.
(136) Penn, R. L.; Banfield, J. F. Morphology Development and Crystal Growth in Nanocrystalline Aggregates under Hydrothermal Conditions: Insights from Titania. Geochim. Cosmochim. Acta 1999, 63 (10), 1549–1557.
(137) Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer Nanocomposites. Polymer, 2011, 52 (1), 5–25.
(138) Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28 (11), 1539–1641.
(139) Kotov, N. A.; Dékány, I.; Fendler, J. H. Ultrathin Graphite Oxide-Polyelectrolyte Composites Prepared by Self-Assembly: Transition between Conductive and Non-Conductive States. Adv. Mater. 1996, 8 (8), 637–641.
(140) Quickenden, T. I.; Jiang, X. The Diffusion Coefficient of Copper Sulphate in Aqueous Solution. Electrochim. Acta 1984, 29 (6), 693–700.
(141) Xiao, X.; Wang, G.; Zhang, M.; Wang, Z.; Zhao, R.; Wang, Y. Electrochemical Performance of Mesoporous ZnCo2O4 Nanosheets as an Electrode Material for Supercapacitor. Ionics. 2018, 24 (8), 2435–2443.
(142) Chen, H.; Zhang, Q.; Wang, J.; Wang, Q.; Zhou, X.; Li, X.; Yang, Y.; Zhang, K. Mesoporous ZnCo2O4 Microspheres Composed of Ultrathin Nanosheets Cross-Linked with Metallic NiSix Nanowires on Ni Foam as Anodes for Lithium Ion Batteries. Nano Energy 2014, 10, 245–258.
(143) Xiao, X.; Peng, B.; Cai, L.; Zhang, X.; Liu, S.; Wang, Y. The High Efficient Catalytic Properties for Thermal Decomposition of Ammonium Perchlorate Using Mesoporous ZnCo2O4 Rods Synthesized by Oxalate Co-Precipitation Method. Sci. Rep. 2018, 8 (1), 1–14.
(144) Zhou, S. X.; Tao, X. Y.; Ma, J.; Qu, C. H.; Zhou, Y.; Guo, L. T.; Feng, P. Z.; Zhu, Y. B.; Wei, X. Y. Facile Synthesis of Self-Assembled Polyaniline Nanorods Doped with Sulphuric Acid for High-Performance Supercapacitors. Vacuum 2017, 143, 63–70.
(145) Wang, T.; Wu, D.; Wang, Y.; Huang, T.; Histand, G.; Wang, T.; Zeng, H. One-Step Solvothermal Fabrication of Cu@PANI Core-Shell Nanospheres for Hydrogen Evolution. Nanoscale 2018, 10 (46), 22055–22064.
(146) Zhu, B.; Xia, P.; Li, Y.; Ho, W.; Yu, J. Fabrication and Photocatalytic Activity Enhanced Mechanism of Direct Z-Scheme g-C3N4/Ag2WO4 Photocatalyst. Appl. Surf. Sci. 2017, 391 (July), 175–183..
(147) Ratha, S.; Khare, R. T.; More, M. A.; Thapa, R.; Late, D. J.; Rout, C. S. Field Emission Properties of Spinel ZnCo2O4 Microflowers. RSC Adv. 2015, 5 (7), 5372–5378.
(148) Pawar, R. C.; Kang, S.; Ahn, S. H.; Lee, C. S. Gold Nanoparticle Modified Graphitic Carbon Nitride/Multi-Walled Carbon Nanotube (g-C3N4/CNTs/Au) Hybrid Photocatalysts for Effective Water Splitting and Degradation. RSC Adv. 2015, 5 (31), 24281–24292.
(149) Raghu, M. S.; Kumar, K. Y.; Rao, S.; Aravinda, T.; Prasanna, B. P.; Prashanth, M. K. Fabrication of Polyaniline–Few-Layer MoS2 Nanocomposite for High Energy Density Supercapacitors. Polym. Bull. 2018, 75 (10), 4359–4375.
(150) Joshi, N.; da Silva, L. F.; Jadhav, H. S.; Shimizu, F. M.; Suman, P. H.; M’Peko, J. C.; Orlandi, M. O.; Seo, J. G.; Mastelaro, V. R.; Oliveira, O. N. Yolk-Shelled ZnCo2O4 Microspheres: Surface Properties and Gas Sensing Application. Sensors Actuators, B Chem. 2018, 257, 906–915.
(151) Jadhav, H. S.; Pawar, S. M.; Jadhav, A. H.; Thorat, G. M.; Seo, J. G. Hierarchical Mesoporous 3D Flower-like CuCo2O4/NF for High-Performance Electrochemical Energy Storage. Sci. Rep. 2016, 6, 2–13..
(152) Liu, D.; Lv, Y.; Zhang, M.; Liu, Y.; Zhu, Y.; Zong, R.; Zhu, Y. Defect-Related Photoluminescence and Photocatalytic Properties of Porous ZnO Nanosheets. J. Mater. Chem. A 2014, 2 (37), 15377–15388. https://doi.org/10.1039/c4ta02678k.
(153) Naushad, M.; Ahamad, T.; Ubaidullah, M.; Ahmed, J.; Ghafar, A. A.; Al-Sheetan, K. M.; Arunachalam, P. Nitrogen-Doped Carbon Quantum Dots (N-CQDs)/Co3O4 Nanocomposite for High Performance Supercapacitor. J. King Saud Univ. - Sci. 2021, 33 (1), 101252.
(154) Wang, X.; Feng, S.; Zhao, W.; Zhao, D.; Chen, S. Ag/Polyaniline Heterostructured Nanosheets Loaded with g-C3N4 Nanoparticles for Highly Efficient Photocatalytic Hydrogen Generation under Visible Light. New J. Chem. 2017, 41 (17), 9354–9360.
(155) Yu, J.; Li, M.; Wang, X.; Yang, Z. Promising High-Performance Supercapacitor Electrode Materials from MnO2 Nanosheets@Bamboo Leaf Carbon. ACS Omega 2020, 5 (26), 16299–16306.
(156) Meher, S. K.; Rao, G. R. Ultralayered Co3O4 for High-Performance Supercapacitor Applications. J. Phys. Chem. C 2011, 115 (31), 15646–15654.
(157) Chen, S.; Xue, M.; Li, Y.; Pan, Y.; Zhu, L.; Zhang, D.; Fang, Q.; Qiu, S. Porous ZnCo2O4 Nanoparticles Derived from a New Mixed-Metal Organic Framework for Supercapacitors. Inorg. Chem. Front. 2015, 2 (2), 177–183.
(158) Xu, L.; Zhao, Y.; Lian, J.; Xu, Y.; Bao, J.; Qiu, J.; Xu, L.; Xu, H.; Hua, M.; Li, H. Morphology Controlled Preparation of ZnCo2O4 Nanostructures for Asymmetric Supercapacitor with Ultrahigh Energy Density. Energy 2017, 123, 296–304..
(159) Wang, Q.; Du, J.; Zhu, Y.; Yang, J.; Chen, J.; Wang, C.; Li, L.; Jiao, L. Facile Fabrication and Supercapacitive Properties of Mesoporous Zinc Cobaltite Microspheres. J. Power Sources 2015, 284, 138–145.
(160) Wang, Q.; Zhu, L.; Sun, L.; Liu, Y.; Jiao, L. Facile Synthesis of Hierarchical Porous ZnCo2O4 Microspheres for High-Performance Supercapacitors. J. Mater. Chem. A 2015, 3 (3), 982–985.
(161) Kathalingam, A.; Ramesh, S.; Yadav, H. M.; Choi, J.; Soo, H.; Kim, H. Nanosheet-like ZnCo2O4@Nitrogen Doped Graphene Oxide/Polyaniline Composite for Supercapacitor Application : Effect of Polyaniline Incorporation. J. Alloys Compd. 2020, 830, 154734.
(162) Zhang, D.; Zhang, Y.; Li, X.; Luo, Y.; Huang, H.; Wang, J.; Chu, P. K. Self-Assembly of Mesoporous ZnCo2O4 Nanomaterials: Density Functional Theory Calculation and Flexible All-Solid-State Energy Storage. J. Mater. Chem. A 2015, 4 (2), 568-577
(163) Gao, M.; Wu, X.; Qiu, H.; Zhang, Q.; Huang, K.; Feng, S.; Yang, Y.; Wang, T.; Zhao, B.; Liu, Z. Reduced Graphene Oxide-Mediated Synthesis of Mn3O4 Nanomaterials for an Asymmetric Supercapacitor Cell. RSC Adv. 2018, 8 (37), 20661–20668.
(164) Golkhatmi, S. Z.; Khalaj, M.; Izadpanahi, A.; Sedghi, A. One-Step Electrodeposition Synthesis of High Performance Graphene/Cu2O Nanocomposite Films on Copper Foils as Binder-Free Supercapacitor Electrodes. Solid State Sci. 2020, 106, 106336.
(165) Moyseowicz, A.; González, Z.; Menéndez, R.; Gryglewicz, G. Three-Dimensional Poly(Aniline-Co-Pyrrole)/Thermally Reduced Graphene Oxide Composite as a Binder-Free Electrode for High-Performance Supercapacitors. Compos. Part B Eng. 2018, 145, 232–239.
(166) Yuksel, R.; Alpugan, E.; Unalan, H. E. Coaxial Silver Nanowire/Polypyrrole Nanocomposite Supercapacitors. Org. Electron. 2018, 52, 272–280.
(167) Moyseowicz, A.; Gryglewicz, G. High-Performance Hybrid Capacitor Based on a Porous Polypyrrole/Reduced Graphene Oxide Composite and a Redox-Active Electrolyte. Electrochim. Acta, 2020, 354, 13661.
(168) Kurtan, U.; Aydın, H.; Büyük, B.; Şahintürk, U.; Almessiere, M. A.; Baykal, A. Freestanding Electrospun Carbon Nanofibers Uniformly Decorated with Bimetallic Alloy Nanoparticles as Supercapacitor Electrode. J. Energy Storage 2020, 32, 101671.
(169) Liu, Y.; Zhou, J.; Chen, L.; Zhang, P.; Fu, W.; Zhao, H.; Ma, Y.; Pan, X.; Zhang, Z.; Han, W.; et al. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7 (42), 23515–23520.
(170) Malaie, K.; Ganjali, M. R.; Alizadeh, T.; Norouzi, P. Hydrothermal Growth of Magnesium Ferrite Rose Nanoflowers on Nickel Foam; Application in High-Performance Asymmetric Supercapacitors. J. Mater. Sci. Mater. Electron. 2018, 29 (1), 650–657.
(171) Xu, J.; Li, F.; Wang, D.; Hasnain, M.; An, Q.; Han, D. Co3O4 Nanostructures on Fl Exible Carbon Cloth for Crystal Plane effect of Nonenzymatic Electrocatalysis for Glucose. Biosensors and Bioelectronics, 2019, 123, 25–29.
(172) Sup, D.; Kyu, I.; Hyun, J.; Choi, K.; Oh, J.; Wook, S. Mesoporous ZnCo2O4 Nanowire Arrays with Oxygen Vacancies and N-Dopants for Signi Fi Cant Improvement of Non-Enzymatic Glucose Detection. J. Electroanal. Chem. 2020, 878, 114585.
(173) Naik, K. K.; Gangan, A.; Chakraborty, B.; Nayak, S. K.; Rout, C. S. Enhanced Nonenzymatic Glucose-Sensing Properties of Electrodeposited NiCo2O4−Pd Nanosheets : Experimental and DFT Investigations. ACS Appl. Mater. Interfaces, 2017, 28, 23894-23903.
(174) Zhang, D.; Wang, Z.; Li, J.; Hu, C.; Zhang, X.; Jiang, B.; Cao, Z.; Zhang, J.; Zhang, R. MOF-Derived ZnCo2O4 Porous Micro-Rice with Enhanced Electro-Catalytic Activity for the Oxygen Evolution Reaction and Glucose Oxidation. 2020, 9063–9069.
(175) Nico, O.; Guo, Q.; Zeng, W.; Liu, S.; Li, Y. In Situ Formation of Co3O4 Hollow Nanocubes on Carbon Cloth-Supported NiCo2O4 Nanowires and Their Enhanced Performance in Non-Enzymatic Glucose. Nanotechnology, 2020, 31, 265501
(176) Waqas, M.; Wu, L.; Tang, H.; Liu, C.; Fan, Y.; Jiang, Z.; Wang, X.; Zhong, J.; Chen, W. Cu2O Microspheres Supported on Sulfur-Doped Carbon Nanotubes for Glucose Sensing. ACS Appl. Nano Mater. 2020, 3 (5), 4788–4798.
(177) Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent Advances in Electrochemical Glucose Biosensors: A Review. RSC Adv. 2013, 3 (14), 4473–4491.
(178) Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Adv. Energy Mater. 2018, 8 (31), 1801909.
(179) Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Adv. Funct. Mater. 2007, 17 (15), 2855–2861.
(180) Liu, T.; Wang, W.; Yi, M.; Chen, Q.; Xu, C.; Cai, D.; Zhan, H. Metal-Organic Framework Derived Porous Ternary ZnCo2O4 Nanoplate Arrays Grown on Carbon Cloth as Binder-Free Electrodes for Lithium-Ion Batteries. Chem. Eng. J. 2018, 354, 454–462.
(181) Patel, V. K.; Saurav, J. R.; Gangopadhyay, K.; Gangopadhyay, S.; Bhattacharya, S. Combustion Characterization and Modeling of Novel Nanoenergetic Composites of Co3O4/NAl. RSC Adv. 2015, 5 (28), 21471–21479.
(182) Luo, W.; Hu, X.; Sun, Y.; Huang, Y. Electrospun Porous ZnCo2O4 Nanotubes as a High-Performance Anode Material for Lithium-Ion Batteries. J. Mater. Chem. 2012, 22 (18), 8916–8921.
(183) Zhao, Y.; Wei, R.; Feng, X.; Sun, L.; Liu, P.; Su, Y.; Shi, L. Dual-Mode Luminescent Nanopaper Based on Ultrathin g-C3N4 Nanosheets Grafted with Rare-Earth Upconversion Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8(33), 21555–21562.
(184) Zhao, Y.; Chen, S.; Sun, B.; Su, D.; Huang, X.; Liu, H.; Yan, Y.; Sun, K.; Wang, G. Graphene-Co3O4 Nanocomposite as Electrocatalyst with High Performance for Oxygen Evolution Reaction. Sci. Rep. 2015, 5 (1), 7629.
(185) Zinin, P. V.; Ming, L. C.; Sharma, S. K.; Khabashesku, V. N.; Liu, X.; Hong, S.; Endo, S.; Acosta, T. Ultraviolet and Near-Infrared Raman Spectroscopy of Graphitic C3N4 Phase. Chem. Phys. Lett. 2009, 472 (1–3), 69–73.
(186) Hu, L.; Qu, B.; Li, C.; Chen, Y.; Mei, L.; Lei, D.; Chen, L.; Li, Q.; Wang, T. Facile Synthesis of Uniform Mesoporous ZnCo2O4 Microspheres as a High-Performance Anode Material for Li-Ion Batteries. J. Mater. Chem. A 2013, 1 (18), 5596–5602.
(187) Pan, Y.; Zeng, W.; Li, L.; Zhang, Y.; Dong, Y.; Cao, D.; Wang, G.; Lucht, B. L.; Ye, K.; Cheng, K. A Facile Synthesis of ZnCo2O4 Nanocluster Particles and the Performance as Anode Materials for Lithium Ion Batteries. Nano-Micro Lett. 2017, 9 (2), 1–9.
(188) Gong, S.; Jiang, Z.; Zhu, S.; Fan, J.; Xu, Q.; Min, Y. The Synthesis of Graphene-TiO2/g-C3N4 Super-Thin Heterojunctions with Enhanced Visible-Light Photocatalytic Activities. J. Nanoparticle Res. 2018, 20 (11), 1–13.
(189) Xu, M.; Han, L.; Dong, S. Facile Fabrication of Highly Efficient g-C3N4/Ag2O Heterostructured Photocatalysts with Enhanced Visible-Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 2013, 5 (23), 12533–12540.
(190) Bai, J.; Li, X.; Liu, G.; Qian, Y.; Xiong, S. Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material. Adv. Funct. Mater. 2014, 24 (20), 3012–3020.
(191) Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angew. Chemie - Int. Ed. 2014, 53 (1), 102–121.
(192) Shao, M. H.; Liu, P.; Adzic, R. R. Superoxide Anion Is the Intermediate in the Oxygen Reduction Reaction on Platinum Electrodes. J. Am. Chem. Soc. 2006, 128 (23), 7408–7409.
(193) Zhang, J.; Zhang, G.; Jin, S.; Zhou, Y.; Ji, Q.; Lan, H.; Liu, H.; Qu, J. Graphitic N in Nitrogen-Doped Carbon Promotes Hydrogen Peroxide Synthesis from Electrocatalytic Oxygen Reduction. Carbon N. Y. 2020, 163, 154–161.
(194) Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. Oxygen Reduction on a High-Surface Area Pt/Vulcan Carbon Catalyst: A Thin-Film Rotating Ring-Disk Electrode Study. J. Electroanal. Chem. 2001, 495 (2), 134–145.
(195) Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; et al. Erratum: Enabling Direct H2O2 Production through Rational Electrocatalyst Design. Nat. Mater. 2014, 13 (1), 97.
(196) Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y.; Yan, X.; Nilsson, E.; et al. Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. J. Am. Chem. Soc. 2018, 140 (25), 7851–7859.
(197) Byeon, A.; Cho, J.; Kim, J. M.; Chae, K. H.; Park, H. Y.; Hong, S. W.; Ham, H. C.; Lee, S. W.; Yoon, K. R.; Kim, J. Y. High-Yield Electrochemical Hydrogen Peroxide Production from an Enhanced Two-Electron Oxygen Reduction Pathway by Mesoporous Nitrogen-Doped Carbon and Manganese Hybrid Electrocatalysts. Nanoscale Horizons 2020, 5 (5), 832–838.
(198) Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y.; Liang, W.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S.; et al. Highly Selective Oxygen Reduction to Hydrogen Peroxide on Transition Metal Single Atom Coordination. Nat. Commun. 2019, 10 (1), 1–11.
(199) Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nat. Catal. 2018, 1 (2), 156–162.
(200) Li, L.; Tang, C.; Zheng, Y.; Xia, B.; Zhou, X.; Xu, H.; Qiao, S. Z. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. Adv. Energy Mater. 2020, 10 (21), 2000789.
(201) Sun, F.; Yang, C.; Qu, Z.; Zhou, W.; Ding, Y.; Gao, J.; Zhao, G.; Xing, D.; Lu, Y. Inexpensive Activated Coke Electrocatalyst for High-Efficiency Hydrogen Peroxide Production: Coupling Effects of Amorphous Carbon Cluster and Oxygen Dopant. Appl. Catal. B Environ. 2021, 286, 119860.
(202) Singh, V.; Thakur, P. S.; Ganesan, V.; Sankar, M. Zn(II) Porphyrin-Based Polymer Facilitated Electrochemical Synthesis of Green Hydrogen Peroxide. J. Electroanal. Chem. 2022, 919, 116536.
(203) Quaino, P.; Luque, N. B.; Nazmutdinov, R.; Santos, E.; Schmickler, W. Why Is Gold Such a Good Catalyst for Oxygen Reduction in Alkaline Media? Angew. Chemie - Int. Ed. 2012, 51 (52), 12997–13000.
(204) Lee, S. Y.; Chung, D. Y.; Lee, M. J.; Kang, Y. S.; Shin, H.; Kim, M. J.; Bielawski, C. W.; Sung, Y. E. Charting the Outer Helmholtz Plane and the Role of Nitrogen Doping in the Oxygen Reduction Reaction Conducted in Alkaline Media Using Nonprecious Metal Catalysts. J. Phys. Chem. C 2016, 120 (43), 24511–24520.
(205) Contreras, E.; Dominguez, D.; Tiznado, H.; Guerrero-Sanchez, J.; Takeuchi, N.; Alonso-Nunez, G.; Contreras, O. E.; Oropeza-Guzmán, M. T.; Romo-Herrera, J. M. N-Doped Carbon Nanotubes Enriched with Graphitic Nitrogen in a Buckypaper Configuration as Efficient 3D Electrodes for Oxygen Reduction to H 2 O 2. Nanoscale 2019, 11 (6), 2829–2839.
(206) Wang, L.; Zhang, G.; Liu, Y.; Li, W.; Lu, W.; Huang, H. Facile Synthesis of a Mechanically Robust and Highly Porous NiO Film with Excellent Electrocatalytic Activity towards Methanol Oxidation. Nanoscale 2016, 8 (21), 11256–11263.
(207) Narayanan, N.; Bernaurdshaw, N. Reduced Graphene Oxide Supported NiCo2O4 Nano-Rods: An Efficient, Stable and Cost-Effective Electrocatalyst for Methanol Oxidation Reaction. ChemCatChem 2020, 12 (3), 771–780.
(208) Rebekah, A.; Anantharaj, S.; Viswanthan, C.; Ponpandian, N. Zn-Substituted MnCo2O4 Nanostructure Anchored over RGO for Boosting the Electrocatalytic Performance towards Methanol Oxidation and Oxygen Evolution Reaction (OER). Int. J. Hydrogen Energy 2020, 45 (29), 14713–14727.
(209) Jin, D.; Shi, R.; Li, Z.; Wang, Z. Gelidium-Shaped NiCo2O4 Nanomaterial as an Efficient Bifunctional Electrocatalyst for Methanol Oxidation and Oxygen Reduction Reactions. Mater. Lett. 2021, 305, 130854.
(210) Das, A. K.; Jena, S.; Sahoo, S.; Kuchi, R.; Kim, D.; Aljohani, T. A.; Nayak, G. C.; Jeong, J. R. Facile Synthesis of NiCo2O4 Nanorods for Electrocatalytic Oxidation of Methanol. J. Saudi Chem. Soc. 2020, 24 (5), 434–444.
(211) Wei, Z.; Guo, J.; Qu, M.; Guo, Z.; Zhang, H. Honeycombed-like Nanosheet Array Composite NiCo2O4/RGO for Efficient Methanol Electrooxidation and Supercapacitors. Electrochim. Acta 2020, 362, 137145.
(212) Gao, H.; Cao, Y.; Chen, Y.; Lai, X.; Ding, S.; Tu, J.; Qi, J. Au Nanoparticle-Decorated NiCo2O4 Nanoflower with Enhanced Electrocatalytic Activity toward Methanol Oxidation. J. Alloys Compd. 2018, 732, 460–469.
(213) Gopalakrishnan, A.; Badhulika, S. Hierarchical Architectured Dahlia Flower-Like NiCo2O4/NiCoSe2 as a Bifunctional Electrode for High-Energy Supercapacitor and Methanol Fuel Cell Application. Energy and Fuels 2021, 35 (11), 9646–9659.
(214) Wang, S.; Yu, D.; Dai, L. Polyelectrolyte Functionalized Carbon Nanotubes as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. J. Am. Chem. Soc. 2011, 133 (14), 5182–5185.
(215) Yuan, P.; Zhang, N.; Zhang, D.; Liu, T.; Chen, L.; Liu, X.; Ma, R.; Qiu, G. Fabrication of Nickel-Foam-Supported Layered Zinc–Cobalt Hydroxide Nanoflakes for High Electrochemical Performance in Supercapacitors. Chem. Commun. 2014, 50 (76), 11188–11191.
(216) Salunkhe, R. R.; Jang, K.; Yu, H.; Yu, S.; Ganesh, T.; Han, S. H.; Ahn, H. Chemical Synthesis and Electrochemical Analysis of Nickel Cobaltite Nanostructures for Supercapacitor Applications. J. Alloys Compd. 2011, 509 (23), 6677–6682.
(217) Lobinsky, A. A.; Tolstoy, V. P. Synthesis of 2D Zn-Co LDH Nanosheets by a Successive Ionic Layer Deposition Method as a Material for Electrodes of High-Performance Alkaline Battery-Supercapacitor Hybrid Devices. RSC Adv. 2018, 8 (52), 29607–29612.
(218) Li, Y.; Zhang, L.; Xiang, X.; Yan, D.; Li, F. Engineering of ZnCo-Layered Double Hydroxide Nanowalls toward High-Efficiency Electrochemical Water Oxidation. J. Mater. Chem. A 2014, 2 (33), 13250–13258.
(219) Xia, D.; Chen, H.; Jiang, J.; Zhang, L.; Zhao, Y.; Guo, D.; Yu, J. Facilely Synthesized α Phase Nickel-Cobalt Bimetallic Hydroxides: Tuning the Composition for High Pseudocapacitance. Electrochim. Acta 2015, 156, 108–114.
(220) Lonkar, S. P.; Raquez, J.-M.; Dubois, P. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide (LDH) Nanohybrids. Nano-micro Lett. 2015, 7 (4), 332–340.
(221) Li, C.; Zhao, Y.; Zhang, Y.; Luo, D.; Liu, J.; Wang, T.; Gao, W.; Li, H.; Wang, X. A New Defect-Rich and Ultrathin ZnCo Layered Double Hydroxide/Carbon Nanotubes Architecture to Facilitate Catalytic Conversion of Polysulfides for High-Performance Li-S Batteries. Chem. Eng. J. 2021, 417, 129248.
(222) Nagaraju, G.; Raju, G. S. R.; Ko, Y. H.; Yu, J. S. Hierarchical Ni-Co Layered Double Hydroxide Nanosheets Entrapped on Conductive Textile Fibers: A Cost-Effective and Flexible Electrode for High-Performance Pseudocapacitors. Nanoscale 2016, 8 (2), 812–825.
(223) Qi, J.; Ruan, C.; Hu, R.; Sui, Y.; He, Y.; Meng, Q.; Wei, F.; Ren, Y.; Wei, W. Flexible Wire-Shaped Symmetric Supercapacitors with Zn–Co Layered Double Hydroxide Nanosheets Grown on Ag-Coated Cotton Wire. J. Mater. Sci. 2020, 55 (35), 16683–16696.
(224) Cao, J.; Li, L.; Xi, Y.; Li, J.; Pan, X.; Chen, D.; Han, W. Core-Shell Structural PANI-Derived Carbon@Co-Ni LDH Electrode for High-Performance Asymmetric Supercapacitors. Sustain. Energy Fuels 2018, 2 (6), 1350–1355.
(225) Zhang, L.; Hu, X.; Chen, C.; Guo, H.; Liu, X.; Xu, G.; Zhong, H.; Cheng, S.; Wu, P.; Meng, J.; et al. In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and Ultrafast Sodium Storage. Adv. Mater. 2017, 29 (5), 1604708.
(226) Lan, Y.; Zhao, H.; Zong, Y.; Li, X.; Sun, Y.; Feng, J.; Wang, Y.; Zheng, X.; Du, Y. Phosphorization Boosts the Capacitance of Mixed Metal Nanosheet Arrays for High Performance Supercapacitor Electrodes. Nanoscale 2018, 10 (25), 11775–11781.
(227) Zhou, K.; Zhou, W.; Yang, L.; Lu, J.; Cheng, S.; Mai, W.; Tang, Z.; Li, L.; Chen, S. Ultrahigh-Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets Array via Phosphorization: A General and Effective Approach. Adv. Funct. Mater. 2015, 25 (48), 7530–7538.
(228) Li, C.; Wang, J.; Yan, Y.; Huo, P.; Wang, X. MOF-Derived NiZnCo-P Nano-Array for Asymmetric Supercapacitor. Chem. Eng. J. 2022, 446, 137108.
(229) Liao, L.; Zheng, K.; Zhang, Y.; Li, X.; Jiang, D.; Liu, J. Self-Templated Pseudomorphic Transformation of ZIF into Layered Double Hydroxides for Improved Supercapacitive Performance. J. Colloid Interface Sci. 2022, 622, 309–318.
(230) Liu, Y.; Wang, Y.; Shi, C.; Chen, Y.; Li, D.; He, Z.; Wang, C.; Guo, L.; Ma, J. Co-ZIF Derived Porous NiCo-LDH Nanosheets/N Doped Carbon Foam for High-Performance Supercapacitor. Carbon N. Y. 2020, 165, 129–138.
(231) Zou, J.; Xie, D.; Xu, J.; Song, X.; Zeng, X.; Wang, H.; Zhao, F. Rational Design of Honeycomb Ni-Co LDH/Graphene Composite for Remarkable Supercapacitor via Ultrafast Microwave Synthesis. Appl. Surf. Sci. 2022, 571, 151322.
(232) Zhao, C.; Tian, S.; Nie, P.; Deng, T.; Ren, F.; Chang, L. Electrodeposited Binder-Free CoMn LDH/CFP Electrode with High Electrochemical Performance for Asymmetric Supercapacitor. Ionics (Kiel). 2020, 26 (3), 1389–1396.
(233) Sun, Q.; Yao, K.; Zhang, Y. MnO2-Directed Synthesis of NiFe-LDH@FeOOH Nanosheeet Arrays for Supercapacitor Negative Electrode. Chinese Chem. Lett. 2020, 31 (9), 2343–2346.
(234) Zheng, W.; Sun, S.; Xu, Y.; Yu, R.; Li, H. Facile Synthesis of NiAl-LDH/MnO2 and NiFe-LDH/MnO2 Composites for High-Performance Asymmetric Supercapacitors. J. Alloys Compd. 2018, 768, 240–248.
(235) Luo, Y.; Tian, Y.; Tang, Y.; Yin, X.; Que, W. 2D Hierarchical Nickel Cobalt Sulfides Coupled with Ultrathin Titanium Carbide (MXene) Nanosheets for Hybrid Supercapacitors. J. Power Sources 2021, 482, 228961.
(236) Luo, Y.; Yang, C.; Tian, Y.; Tang, Y.; Yin, X.; Que, W. A Long Cycle Life Asymmetric Supercapacitor Based on Advanced Nickel-Sulfide/Titanium Carbide (MXene) Nanohybrid and MXene Electrodes. J. Power Sources 2020, 450, 227694.
(237) Nanwani, A.; Deshmukh, K. A.; Subramaniyam, C. M.; Deshmukh, A. D. Augmenting the Nickel-Cobalt Layered Double Hydroxide Performance: Virtue of Doping. J. Energy Storage 2020, 31, 101604.
(238) Salazar-Banda, G. R.; Eguiluz, K. I. B.; Pupo, M. M. S.; Suffredini, H. B.; Calegaro, M. L.; Avaca, L. A. The Influence of Different Co-Catalysts in Pt-Based Ternary and Quaternary Electro-Catalysts on the Electro-Oxidation of Methanol and Ethanol in Acid Media. J. Electroanal. Chem. 2012, 668, 13–25.
(239) van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production. Joule 2021, 5 (2), 290–294.
(240) Huang, P.; Fan, T.; Ma, X.; Zhang, J.; Zhang, Y.; Chen, Z.; Yi, X. 3D Flower‐Like Zinc Cobaltite for Electrocatalytic Reduction of Nitrate to Ammonia under Ambient Conditions. ChemSusChem 2022, 15 (4), e202102049.
(241) Xue, Z.-H.; Zhang, S.-N.; Lin, Y.-X.; Su, H.; Zhai, G.-Y.; Han, J.-T.; Yu, Q.-Y.; Li, X.-H.; Antonietti, M.; Chen, J.-S. Electrochemical Reduction of N2 into NH3 by Donor–Acceptor Couples of Ni and Au Nanoparticles with a 67.8% Faradaic Efficiency. J. Am. Chem. Soc. 2019, 141 (38), 14976–14980.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *