帳號:guest(18.223.206.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Nurzal
作者(英文):Nurzal
論文名稱:以電漿輔助式分子束磊晶系統成長六方氮化硼及氮化銦鎵量子點材料
論文名稱(英文):Growth of Hexagonal Boron Nitride and Indium Gallium Nitride Quantum Dot Materials by Plasma-Assisted Molecular Beam Epitaxy System
指導教授:余英松
指導教授(英文):Ing-Song Yu
口試委員:黃清安
何炎騰
李炤佑
紀渥德
余英松
口試委員(英文):Ching-An Huang
Yen-Teng Ho
Chao-Yu Lee
Wojciech Gierlotka
Ing-Song Yu
學位類別:博士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:810722204
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:86
關鍵詞(英文):BNInGaNdroplet epitaxyquantum dotsmolecular beam epitaxy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
Quantum dots (QDs) are tiny semiconductor nanostructures that have garnered significant attention for future nanoscale applications in recent years. So far, there is still a challenge for the growth of QDs to control the composition, size, and morphology significantly. In our dissertation, we investigate the growth QDs using a plasma-assisted molecular beam epitaxy (PA-MBE) system with various characterization of QDs, mainly hexagonal boron nitride (h-BN) and indium gallium nitride (InGaN). In this dissertation, two research projects are discussed.
The first research project (Chapter 4) observes the growth of h-BN QDs on the surface of polycrystalline Ni film at 700 to 800 °C by PA-MBE. RHEED patterns can identify the surface condition during growth and BN formation. Observing the surface morphology of Ni films with FE-SEM and AFM revealed BN QDs on the Ni films. Raman spectroscopy and KPFM analysis confirmed the existence of h-BN QDs. Cathodoluminescence spectra showed h-BN QDs at wavelengths 546 and 610 nm. Impurities and vacancies in the trapping centres triggered this. Furthermore, the effect of substrate and boron source cell temperatures ware also discussed, suggesting that h-BN QDs grew better as the temperatures of boron K-cell and substrate growth increased.
The second research project (Chapter 5) is focused on the droplet epitaxy of InGaN QDs on Si (111) substrate. PA-MBE was used to examine the formation of In-Ga droplets in an ultra-high vacuum, followed by surface nitridation. During the droplet epitaxy technique, in-situ RHEED patterns confirm the transformation of amorphous In-Ga alloy droplets onto polycrystalline InGaN QDs, further verified by HR-TEM and XPS spectroscopy. The growth mechanism of InGaN QDs on silicon is investigated by varying the substrate temperature, In-Ga droplets' deposition time, and nitridation plasma duration, which are vital parameters. Self-assembled InGaN QDs can be achieved at 350 oC with 1.33 x 1011 cm-2 density and an average size of 13.3+3nm. Uncapped InGaN QDs emit visible red (715 nm) and infrared (795 and 857 nm) lights from the photoluminescence spectrum. The formation of Indium-rich composition of InGaN QDs by droplet epitaxy technique could be used to create optoelectronic devices with long wavelengths.
Chapter 1. Introduction ....... 2
1.1 Overview 2
1.2 Motivation and objectives 4
1.3 Organization of dissertation 5

Chapter 2. Literature Review .........10
2.1 Hexagonal Boron Nitride (h-BN) 10
2.2 Indium Galium Nitride (InGaN) 15
2.3 Substrates 20
2.3.1 Nickel (Ni) 20
2.3.2 Silicon (Si) 20
2.4 Self-assembled Quantum Dots (QDs) 21

Chapter 3. Research Method .......26
3.1 Plasma-assisted molecular beam epitaxy (PA-MBE) 26
3.2 Growth Mechanism of InGaN QDs by Droplet Epitaxy 32

Chapter 4. The Growth of Hexagonal Boron Nitride Quantum Dots on Polycrystalline Nickel Films by Plasma-Assisted Molecular Beam Epitaxy .....36
4.1 Materials and Methods 36
4.1.1 Preparation of Substrate 36
4.1.2 The Growth of h-BN QDs 36
4.1.3 The Growth Characterizations of h-BN Quantum Dots 37
4.2 Results and Discussion 38
4.2.1 Reflection High-Energy Electron Diffraction (RHEED) Pattern 38
4.2.2 Field Emission-Scanning Electron Microscopy (FE-SEM) 39
4.2.3 Atomic force microscopy (AFM) and Kevin probe force microscopy (KPFM) 40
4.2.4 Raman spectroscopy 42
4.2.5 Cathodoluminescence (CL) spectroscopy 43
4.3 Conclusions 44

Chapter 5. Droplet Epitaxy of InGaN Quantum Dots growth on Silicon (111) by Plasma-Assisted Molecular Beam Epitaxy .....48
5.1 Materials and Methods 48
5.1.1 Substrate preparation 48
5.1.2 InGaN QDs growth 48
5.1.3 Characterizations of InGaN quantum dots 49

5.2 Results and Discussion 50
5.2.1 Reflection high energy electron diffraction 50
5.2.2 Field emission scanning electron microscopy (FE-SEM) 51
5.2.3 Atomic force microscopy and scanning kevin probe force microscopy 54
5.2.4 X-ray photoelectron spectroscopy (XPS) 56
5.2.5 Transmission electron microscopy 59
5.2.6 Photoluminescence spectroscopy 60
5.3 Conclusions 62

Chapter 6. Overall Conclusions .....66
6.1 Overall Conclusions 66
6.2 Future recommendations. 67

References .......70
[1] G. Ramalingam et al., “Quantum Confinement Effect of 2D Nanomaterials,” in Quantum Dots - Fundamental and Applications, August, 2020.
[2] X. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chem. Soc. Rev., vol. 45, no. 8, pp. 2239–2262, 2016, doi: 10.1039/c5cs00811e.
[3] R. Cheriton, S. M. Sadaf, L. Robichaud, J. J. Krich, Z. Mi, and K. Hinzer, “Two-photon photocurrent in InGaN/GaN nanowire intermediate band solar cells,” Commun. Mater., vol. 1, no. 1, pp. 1–7, 2020, doi: 10.1038/s43246-020-00054-6.
[4] Q. Zhang et al., “Highly luminescent red emitting CdZnSe/ZnSe quantum dots synthesis and application for quantum dot light emitting diodes,” Opt. Mater. Express, vol. 7, no. 11, p. 3875, 2017, doi: 10.1364/ome.7.003875.
[5] A. Aiello, A. K. M. Hasibul Hoque, M. Z. Baten, and P. Bhattacharya, “High-Gain Silicon-Based InGaN/GaN Dot-in-Nanowire Array Photodetector,” ACS Photonics, vol. 6, no. 5, pp. 1289–1294, 2019, doi: 10.1021/acsphotonics.9b00390.
[6] A. Hu et al., “Graphene on Self-Assembled InGaN Quantum Dots Enabling Ultrahighly Sensitive Photodetectors,” Adv. Opt. Mater., vol. 7, no. 8, p. 1801792, Apr. 2019, doi: 10.1002/adom.201801792.

[7] S. Bhowmick, A. K. Singh, and B. I. Yakobson, “Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride,” J. Phys. Chem. C, vol. 115, no. 20, pp. 9889–9893, 2011, doi: 10.1021/jp200671p.
[8] F. Chen, X. Ji, and S. P. Lau, “Recent progress in group III-nitride nanostructures: From materials to applications,” Mater. Sci. Eng. R Reports, vol. 142, no. July, p. 100578, 2020, doi: 10.1016/j.mser.2020.100578.
[9] M. Garg, R. Rani, A. L. Sharma, and S. Singh, “White graphene quantum dots as electrochemical sensing platform for ferritin,” Faraday Discuss., vol. 227, pp. 204–212, 2021, doi: 10.1039/c9fd00111e.
[10] P. Ahmad et al., “Fabrication of hexagonal boron nitride quantum dots via a facile bottom-up technique,” Ceram. Int., vol. 45, no. 17, pp. 22765–22768, 2019, doi: 10.1016/j.ceramint.2019.07.316.
[11] P. M. Revabhai, R. K. Singhal, H. Basu, and S. K. Kailasa, “Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry,” J. Nanostructure Chem., vol. 13, no. 1, pp. 1–41, 2023, doi: 10.1007/s40097-022-00490-5.
[12] W. Zhai et al., “Nanodots Derived from Layered Materials: Synthesis and Applications,” Adv. Mater., vol. 33, no. 46, pp. 1–31, 2021, doi: 10.1002/adma.202006661.
[13] X. Zhang, L. An, C. Bai, L. Chen, and Y. Yu, “Hexagonal boron nitride quantum dots: Properties, preparation and applications,” Mater. Today Chem., vol. 20, p. 100425, 2021, doi: 10.1016/j.mtchem.2021.100425.
[14] P. Thangasamy, M. Santhanam, and M. Sathish, “Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging,” ACS Appl. Mater. Interfaces, vol. 8, no. 29, pp. 18647–18651, 2016, doi: 10.1021/acsami.6b04614.
[15] J.-Y. Chung et al., “Light-Emitting V‑Pits: An Alternative Approach toward Luminescent Indium-Rich InGaN Quantum Dots,” ACS Photonics, vol. 8, p. 2853−2860, 2021, doi: 10.1021/acsphotonics.1c01009.
[16] D. Park, D. Min, and O. Nam, “Growth mechanism of InGaN nanodots on three-dimensional GaN structures,” Phys. Status Solidi - Rapid Res. Lett., vol. 11, no. 7, pp. 1–5, 2017, doi: 10.1002/pssr.201700042.
[17] H. Seo, J. H. Park, O. H. Kwon, O. P. Kwon, S. K. Kwak, and S. W. Kim, “Highly qualified InP based QDs through a temperature controlled ZnSe shell coating process and their DFT calculations,” Nanoscale Adv., vol. 2, no. 12, pp. 5615–5622, 2020, doi: 10.1039/d0na00451k.
[18] S. Vichi et al., “Droplet epitaxy quantum dot based infrared photodetectors,” 2020, vol. 31, pp. 3–8, doi: doi.org/10.1088/1361-6528/ab7aa6.
[19] H. Yin et al., “Electrocatalytic activity of InN/InGaN quantum dots,” Electrochem. commun., vol. 106, no. August, p. 106514, 2019, doi: 10.1016/j.elecom.2019.106514.
[20] P. Chen, S. J. Chua, and J. N. Tan, “High-density InGaN nanodots grown on pretreated GaN surfaces,” Appl. Phys. Lett., vol. 89, no. 2, pp. 87–90, 2006, doi: 10.1063/1.2218312.
[21] L. Wang et al., “Abnormal Stranski–Krastanov Mode Growth of Green InGaN Quantum Dots: Morphology, Optical Properties, and Applications in Light-Emitting Devices,” ACS Appl. Mater. Interfaces, vol. 11, no. 1, pp. 1228–1238, Jan. 2019, doi: 10.1021/acsami.8b16767.
[22] Y. Qian et al., “Electric dipole of InN/InGaN quantum dots and holes and giant surface photovoltage directly measured by Kelvin probe force microscopy,” Sci. Rep., vol. 10, no. 1, pp. 1–9, 2020, doi: 10.1038/s41598-020-62820-3.
[23] G. Linares-García et al., “Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy,” Nanoscale Res. Lett., vol. 11, no. 1, 2016, doi: 10.1186/s11671-016-1518-2.
[24] C. W. Chin, Z. Hassan, F. K. Yam, and M. A. Ahmad, “Growth of self-assembled InGaN quantum dots on Si (111) at reduced temperature by molecular beam epitaxy,” Thin Solid Films, vol. 544, pp. 33–36, 2013, doi: 10.1016/j.tsf.2013.05.010.
[25] X. Zhang et al., “Investigation of Micromorphology and Carrier Recombination Molecular Beam Epitaxy,” Cryst. Artic., vol. 1312, pp. 1–10, 2021, doi: https://doi.org/10.3390/cryst11111312.
[26] H. Dong et al., “Evolution mechanism of InGaN quantum dots and their optical properties,” Opt. Mater. (Amst)., vol. 99, no. September, p. 109554, 2020, doi: 10.1016/j.optmat.2019.109554.


[27] G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–10, 2011, doi: 10.1186/1556-276X-6-342.
[28] L. Yu et al., “Metal organic vapor phase epitaxy of high-indium-composition InGaN quantum dots towards red micro-LEDs,” Opt. Mater. Express, vol. 12, no. 8, p. 3225, 2022, doi: 10.1364/ome.465134.
[29] K. Prabakaran et al., “Effect of spiral-like islands on structural quality, optical and electrical performance of InGaN/GaN heterostructures grown by metal organic chemical vapour deposition,” Mater. Sci. Semicond. Process., vol. 142, no. October, p. 106479, 2022, doi: 10.1016/j.mssp.2022.106479.
[30] D. Y. Um, Y. H. Ra, J. H. Park, G. E. Hong, and C. R. Lee, “Near-IR emission of InGaN quasi-quantum dots on non-polar GaN nanowire structures,” Nanoscale Adv., vol. 3, no. 17, pp. 5036–5045, 2021, doi: 10.1039/d1na00338k.
[31] P. Aseev et al., “Formation mechanisms of single-crystalline InN quantum dots fabricated via droplet epitaxy,” J. Cryst. Growth, vol. 493, pp. 65–75, 2018, doi: 10.1016/j.jcrysgro.2018.04.027.
[32] M. Azadmand et al., “Droplet Controlled Growth Dynamics in Molecular Beam Epitaxy of Nitride Semiconductors,” Sci. Rep., vol. 8, no. 1, p. 11278, Jul. 2018, doi: 10.1038/s41598-018-28984-9.
[33] S. Sanguinetti, S. Bietti, and N. Koguchi, “Droplet Epitaxy of Nanostructures,” in Molecular Beam Epitaxy, Elsevier Inc., 2018, pp. 293–314.
[34] A. Pakdel, Y. Bando, and D. Golberg, “Nano boron nitride flatland,” Chem. Soc. Rev., vol. 43, no. 3, pp. 934–959, 2014, doi: 10.1039/C3CS60260E.
[35] W. H. Balmain, “Bemerkungen über die Bildung von Verbindungen des Bors und Siliciums mit Stickstoff und gewissen Metallen,” J. für Prakt. Chemie, vol. 27, no. 1, pp. 422–430, 1842, doi: 10.1002/prac.18420270164.
[36] T. S. Cheng et al., “High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire,” J. Vac. Sci. Technol. B, vol. 02L101-1, pp. 1–6, 2016, doi: 10.1116/1.4938157.
[37] R. Arenal and A. Lopez-Bezanilla, “Boron nitride materials: An overview from 0D to 3D (nano)structures,” Wiley Interdiscip. Rev. Comput. Mol. Sci., vol. 5, no. 4, pp. 299–309, 2015, doi: 10.1002/wcms.1219.
[38] I. Natalia, O. D. Denis, D. Saikat, Ö. Ümit, A. Vitaliy, and M. and Hadis, “Recent Development of Boron Nitride towards Electronic Applications,” Adv. Electron. Mater., p. 1600485 (1 of 22), May 2017, doi: 10.1002/aelm.201600485.
[39] J. M. Wofford et al., “A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures,” Sci. Rep., vol. 7, no. October 2016, pp. 1–10, 2017, doi: 10.1038/srep43644.
[40] Y. Y. Stehle et al., “Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations,” Nano Lett., vol. 17, no. 12, pp. 7306–7314, 2017, doi: 10.1021/acs.nanolett.7b02841.


[41] K. P. Sharma, S. Sharma, A. Khaniya Sharma, B. Paudel Jaisi, G. Kalita, and M. Tanemura, “Edge controlled growth of hexagonal boron nitride crystals on copper foil by atmospheric pressure chemical vapor deposition,” CrystEngComm, vol. 20, no. 5, pp. 550–555, 2018, doi: 10.1039/c7ce01846k.
[42] K. Ahmed, R. Dahal, A. Weltz, J. J. Q. Lu, Y. Danon, and I. B. Bhat, “Effects of sapphire nitridation and growth temperature on the epitaxial growth of hexagonal boron nitride on sapphire,” in Materials Research Express, 2017, vol. 4, no. 1, doi: 10.1088/2053-1591/aa54d5.
[43] K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nat. Mater., vol. 3, no. 6, pp. 404–409, 2004, doi: 10.1038/nmat1134.
[44] D. Chugh, J. Wong-Leung, L. Li, M. Lysevych, H. H. Tan, and C. Jagadish, “Flow modulation epitaxy of hexagonal boron nitride,” 2D Mater., vol. 5, no. 4, 2018, doi: 10.1088/2053-1583/aad5aa.
[45] Z. Liu et al., “Ultrathin higherature oxidation-resistant coatings of hexagonal boron nitride,” Nat. Commun., vol. 4, no. May, pp. 1–8, 2013, doi: 10.1038/ncomms3541.
[46] C. L. Ã. Tsai, Y. Kobayashi, T. Akasaka, and M. Kasu, “Molecular beam epitaxial growth of hexagonal boron nitride on Ni (111) substrate,” Cryst. Growth, vol. 311, pp. 3054–3057, 2009, doi: 10.1016/j.jcrysgro.2009.01.077.


[47] D. A. Laleyan, K. Mengle, S. Zhao, Y. Wang, E. Kioupakis, and Z. Mi, “Effect of growth temperature on the structural and optical properties of few-layer hexagonal boron nitride by molecular beam epitaxy,” Opt. Express, vol. 26, no. 18, p. 23031, Sep. 2018, doi: 10.1364/OE.26.023031.
[48] S. Nakhaie et al., “Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy,” Appl. Phys. Lett., vol. 106, pp. 1–5, 2015, doi: 10.1063/1.4921921.
[49] A. A. Tonkikh, E. N. Voloshina, P. Werner, H. Blumtritt, and B. Senkovskiy, “Structural and electronic properties of epitaxial multilayer h -BN on Ni ( 111 ) for spintronics applications,” Sci. Rep., vol. 6:23547, pp. 1–8, 2016, doi: 10.1038/srep23547.
[50] S. Nakhaie, M. Heilmann, T. Krause, M. Hanke, and J. M. J. Lopes, “Nucleation and growth of atomically thin hexagonal boron nitride on Ni/MgO(111) by molecular beam epitaxy,” J. Appl. Phys., vol. 125, no. 11, 2019, doi: 10.1063/1.5081806.
[51] H. Tian et al., “Growth Dynamics of Millimeter-Sized Single-Crystal Hexagonal Boron Nitride Monolayers on Secondary Recrystallized Ni (100) Substrates,” Adv. Mater. Interfaces, vol. 6, no. 22, 2019, doi: 10.1002/admi.201901198.
[52] Y. He et al., “Growth of High-Quality Hexagonal Boron Nitride Single-Layer Films on Carburized Ni Substrates for Metal–Insulator–Metal Tunneling Devices,” ACS Appl. Mater. Interfaces, vol. 12, no. 31, pp. 35318–35327, Aug. 2020, doi: 10.1021/acsami.0c07201.
[53] G. Lu et al., “Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy,” Nat. Commun., vol. 6, pp. 1–7, 2015, doi: 10.1038/ncomms7160.
[54] J. Meng, X. Zhang, Y. Wang, Z. Yin, H. Liu, and J. Xia, “Aligned Growth of Millimeter-Size Hexagonal Boron Nitride Single-Crystal Domains on Epitaxial Nickel Thin Film,” small-journal, vol. 1604179, pp. 1–8, 2017, doi: 10.1002/smll.201604179.
[55] S. Figge, C. Tessarek, T. Aschenbrenner, and D. Hommel, “Ingan quantum dot growth in the limits of stranski-krastanov and spinodal decomposition,” Phys. Status Solidi Basic Res., vol. 248, no. 8, pp. 1765–1776, 2011, doi: 10.1002/pssb.201147165.
[56] J. M. Woodward, A. Y. Nikiforov, K. F. Ludwig, and T. D. Moustakas, “Analysis of InGaN nanodots grown by droplet heteroepitaxy using grazing incidence small-angle X-ray scattering and electron microscopy,” J. Appl. Phys., vol. 122, no. 6, 2017, doi: 10.1063/1.4986272.
[57] F. M. Morales et al., “Determination of the composition of InxGa1−xN from strain measurements,” Acta Mater., vol. 57, no. 19, pp. 5681–5692, Nov. 2009, doi: 10.1016/j.actamat.2009.07.063.
[58] J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys., vol. 106, no. 1, 2009, doi: 10.1063/1.3155798.



[59] V. Y. Davydov et al., “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi Basic Res., vol. 229, no. 3, pp. r1–r3, 2002, doi: 10.1002/1521-3951(200202)229:33.0.CO;2-O.
[60] P. Aseev et al., “Uniform low-to-high in composition InGaN layers grown on Si,” Appl. Phys. Express, vol. 6, no. 11, pp. 3–6, 2013, doi: 10.7567/APEX.6.115503.
[61] P. Aseev et al., “Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range,” Appl. Phys. Lett., vol. 106, no. 7, pp. 1–4, 2015, doi: 10.1063/1.4909515.
[62] G. R. Fu et al., “Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor,” Int. J. Electrochem. Sci., vol. 4, no. 8, pp. 1052–1062, 2009.
[63] Q. W. Jiang, G. R. Li, S. Liu, and X. P. Gao, “Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells,” J. Phys. Chem. C, vol. 114, no. 31, pp. 13397–13401, 2010, doi: 10.1021/jp1035184.
[64] “Nickel - Wikipedia.” .
[65] S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI, FIrst. John Wiley & Sons, Ltd, 2009.
[66] T. Werninghaus, J. Hahn, F. Richter, and D. R. T. Zahn, “Raman spectroscopy investigation of size effects in cubic boron nitride,” Appl. Phys. Lett., vol. 70, no. 8, pp. 958–960, 1997, doi: 10.1063/1.118452.
[67] V. V. Fedorov et al., “Droplet epitaxy mediated growth of GaN nanostructures on Si (111): Via plasma-assisted molecular beam epitaxy,” CrystEngComm, vol. 20, no. 24, pp. 3370–3380, 2018, doi: 10.1039/c8ce00348c.
[68] S. V. Nistor, L. C. Nistor, A. C. Joita, and A. M. Vlaicu, “Presence and distribution of impurity defects in crystalline cubic boron nitride. A spectroscopic study,” Radiat. Meas., vol. 123, no. October 2018, pp. 21–25, 2019, doi: 10.1016/j.radmeas.2019.02.003.
[69] A. Nemcsics, “Quantum Dots Prepared by Droplet Epitaxial Method,” Quantum Dots - Theory Appl., 2015, doi: 10.5772/60823.
[70] H. J. Y. Chen, Y. Z. Su, D. L. Yang, T. W. Huang, and I. S. Yu, “Effects of substrate pre-nitridation and post-nitridation processes on InN quantum dots with crystallinity by droplet epitaxy,” Surf. Coatings Technol., vol. 324, pp. 491–497, 2017, doi: 10.1016/j.surfcoat.2017.06.025.
[71] H. J. Y. Chen, D. L. Yang, T. W. Huang, and I. S. Yu, “Formation and Temperature Effect of InN Nanodots by PA-MBE via Droplet Epitaxy Technique,” Nanoscale Res. Lett., vol. 11, no. 1, pp. 0–9, 2016, doi: 10.1186/s11671-016-1455-0.
[72] C. Y. Tsai, Y. Z. Su, and I. S. Yu, “Effects of temperature and nitradition on phase transformation of GaN quantum dots grown by droplet epitaxy,” Surf. Coatings Technol., vol. 358, no. October 2018, pp. 182–189, 2019, doi: 10.1016/j.surfcoat.2018.11.031.

[73] Y. Z. Su and I. S. Yu, “Crystal structures of GaN nanodots by nitrogen plasma treatment on Ga metal droplets,” Metals (Basel)., vol. 8, no. 6, 2018, doi: 10.3390/met8060419.
[74] M. A. Vasilenko, I. G. Neizvestny, and N. L. Shwartz, “Formation of GaAs nanostructures by droplet epitaxy - Monte Carlo simulation,” Comput. Mater. Sci., vol. 102, pp. 286–292, 2015, doi: 10.1016/j.commatsci.2015.02.032.
[75] S. Vichi et al., “Droplet epitaxy quantum dot based infrared photodetectors,” Nanotechnology, vol. 31, no. 24, pp. 3–8, 2020, doi: 10.1088/1361-6528/ab7aa6.
[76] R. A. Oliver et al., “Growth of InGaN quantum dots with AlGaN barrier layers via modified droplet epitaxy,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 178, no. 20, pp. 1390–1394, 2013, doi: 10.1016/j.mseb.2013.08.011.
[77] B. Liu et al., “One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology,” Chem. - A Eur. J., vol. 22, no. 52, pp. 18899–18907, 2016, doi: 10.1002/chem.201603935.
[78] H. Li, R. Y. Tay, S. H. Tsang, X. Zhen, and E. H. T. Teo, “Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots,” Small, vol. 11, no. 48, pp. 6491–6499, 2015, doi: 10.1002/smll.201501632.
[79] B. J. Matsoso, K. Ranganathan, B. K. Mutuma, T. Lerotholi, G. Jones, and N. J. Coville, “Single-step synthesis of crystalline h-BN quantum- and nanodots embedded in boron carbon nitride films,” Nanotechnology, vol. 28, no. 10, 2017, doi: 10.1088/1361-6528/aa56df.
[80] W. H. Goh et al., “Selective growth of GaN nanodots and nanostripes on 6H-SiC substrates by metal organic vapor phase epitaxy,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 6, no. SUPPL. 2, pp. 1–4, 2009, doi: 10.1002/pssc.200880770.
[81] B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si(111) substrate,” Appl. Phys. Lett., vol. 75, no. 7, pp. 962–964, 1999, doi: 10.1063/1.124567.
[82] N. T. Pelekanos, G. E. Dialynas, J. Simon, H. Mariette, and B. Daudin, “GaN quantum dots: From basic understanding to unique applications (invited),” J. Phys. Conf. Ser., vol. 10, no. 1, pp. 61–68, 2005, doi: 10.1088/1742-6596/10/1/016.
[83] J. Kim, Z. Croft, D. G. Steel, and P. C. Ku, “Optically Controlled Spin Gate Using GaN Quantum Dots,” ACS Photonics, 2022, doi: 10.1021/acsphotonics.2c00083.
[84] C. E. Reilly, S. Keller, S. Nakamura, and S. P. DenBaars, “InN Quantum Dots by Metalorganic Chemical Vapor Deposition for Optoelectronic Applications,” Front. Mater., vol. 8, no. March, pp. 1–6, 2021, doi: 10.3389/fmats.2021.647936.
[85] C. E. Reilly, S. Keller, S. Nakamura, and S. P. DenBaars, “Metalorganic chemical vapor deposition of InN quantum dots and nanostructures,” Light Sci. Appl., vol. 10, no. 1, 2021, doi: 10.1038/s41377-021-00593-8.
[86] Z. Bi et al., “Self-assembled InN quantum dots on side facets of GaN nanowires,” J. Appl. Phys., vol. 123, no. 16, 2018, doi: 10.1063/1.5022756.
[87] S. Deshpande et al., “Formation and nature of InGaN quantum dots in GaN nanowires,” Nano Lett., vol. 15, no. 3, pp. 1647–1653, 2015, doi: 10.1021/nl5041989.
[88] P. Kumar et al., “Quantum dot activated indium gallium nitride on silicon as photoanode for solar hydrogen generation,” Commun. Chem., vol. 2, no. 1, 2019, doi: 10.1038/s42004-018-0105-0.
[89] P. Chen, A. Chen, S. J. Chua, and J. N. Tan, “Growth and optical properties of highly uniform and periodic InGaN nanostructures,” Adv. Mater., vol. 19, no. 13, pp. 1707–1710, 2007, doi: 10.1002/adma.200602110.
[90] K. Clark et al., Molecular Beam Epitaxy as a Mass Production Enabling Technology for Electronic/Optoelectronic Devices. Elsevier Inc., 2018.
[91] M. Ilegems, “An Introduction to Molecular Beam Epitaxy,” in Crystal Growth in Science and Technology, 1989, pp. 359–395.
[92] W. P. Mccray, “MBE deserves a place in the history books,” Nat. Nanotechnol., vol. 2, no. 5, pp. 259–261, 2007, doi: 10.1038/nnano.2007.121.
[93] 黃榮俊, “分子束磊晶技術之發展與磁性薄膜之製備應用,” 科儀新知, vol. 第二十三卷第六期, pp. 74–79, 2002.
[94] S. Hasegawa, “Reflection High-Energy Electron Diffraction,” in Characterization of Materials, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012, pp. 1928–1931.

[95] O. Ambacher, “Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 14, no. 6, p. 3532, Nov. 1996, doi: 10.1116/1.588793.
[96] B. Xie et al., “Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding,” Adv. Funct. Mater., vol. 28, no. 30, pp. 1–8, 2018, doi: 10.1002/adfm.201801407.
[97] H. Yamada, S. Inotsume, N. Kumagai, T. Yamada, and M. Shimizu, “Chemical Vapor Deposition Growth of BN Thin Films Using B2H6 and NH3,” Phys. Status Solidi Basic Res., vol. 257, no. 2, pp. 1–5, 2020, doi: 10.1002/pssb.201900318.
[98] S. Hou et al., “Localized emission from laser-irradiated defects in 2D hexagonal boron nitride,” 2D Mater., vol. 5, no. 1, p. 015010, Oct. 2017, doi: 10.1088/2053-1583/aa8e61.
[99] T. Nakanishi, S. Yoshida, K. Murase, O. Takeuchi, and ..., “The Atomic and Electronic structure of 0° and 60° grain boundaries in MoS2,” Frontiers in …. frontiersin.org, 2019.
[100] S. Sadewasser and T. Glatzel, “Kelvin probe force microscopy,” in Springer Series in Surface Sciences, vol. 48, no. 1, 2012.
[101] C. S. S. R. Kumar, “Surface science tools for nanomaterials characterization,” in Surface Science Tools for Nanomaterials Characterization, 2015, pp. 1–652.

[102] M. Salerno and S. Dante, “Scanning Kelvin probe microscopy: Challenges and perspectives towards increased application on biomaterials and biological samples,” Materials (Basel)., vol. 11, no. 6, 2018, doi: 10.3390/ma11060951.
[103] T. Kimura et al., “Investigation of InN mole fraction fluctuation in InGaN films grown by RF-MBE,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 8, no. 5, pp. 1499–1502, 2011, doi: 10.1002/pssc.201001203.
[104] D. Doppalapudi, S. N. Basu, K. F. Ludwig, and T. D. Moustakas, “Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy,” J. Appl. Phys., vol. 84, no. 3, pp. 1389–1395, 1998, doi: 10.1063/1.368251.
[105] M. Tian et al., “Investigation of high indium-composition InGaN/GaN heterostructures on ZnO grown by metallic organic chemical vapor deposition,” Opt. Mater. Express, vol. 8, no. 10, p. 3184, 2018, doi: 10.1364/ome.8.003184.
[106] P. Kumar, P. E. D. S. Rodriguez, V. J. Gómez, N. H. Alvi, E. Calleja, and R. Nötzel, “First demonstration of direct growth of planar high-in-composition InGaN layers on Si,” Appl. Phys. Express, vol. 6, no. 3, 2013, doi: 10.7567/APEX.6.035501.
[107] C. Tessarek, K. S. S. Figge, T. Aschenbrenner, S. Bley, A. Rosenauer, M. Seyfried, J. Kalden, and and D. H. J. Gutowski, “Strong phase separation of strained InxGa1−xN layers due to spinodal and binodal decomposition.pdf,” Phys. Rev. B, vol. 83, no. 11, p. 115316, 2011, doi: 10.1103/PhysRevB.83.115316.

[108] R. Nötzel, “InN/InGaN quantum dot electrochemical devices: New solutions for energy and health,” Natl. Sci. Rev., vol. 4, no. 2, pp. 184–195, 2017, doi: 10.1093/nsr/nww101.
[109] E. F. Schubert, “The AlGaInN material system and ultraviolet emitters,” in Light-Emitting Diodes, 2010, pp. 222–238.
[110] M. Henini, Handbook of Thin-Film Deposition Processes and Techniques, vol. 31, no. 3. 2000.

(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *